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Abstract: Distributed Replica (REPDSTR) is a powerful
parallelization technique enabling simulations of a group of
replicas in a parallel/parallel fashion, where each replica is
distributed to different nodes of a large cluster [Theor. Chem.
Acc. 2003, 109, 140]. Here, we use the framework provided
by REPDSTR to combine a staged free energy perturbation
protocol with replica-exchange molecular dynamics (FEP/
REMD). The structure of REPDSTR, which allows multiple
parallel input/output (1/O), facilitates the treatment of replica-
exchange to couple the N window simulations corresponding
to different values of the thermodynamic coupling parameters.
As a result, each of the N synchronous window simulations
benefit from the sampling carried out by the N-1 others. As
illustrative examples of the FEP/REMD strategy, calculations
of the absolute hydration and binding free energy of small
molecules were performed using the biomolecular simulation
program CHARMM adapted for the IBM Blue Gene/P
platform. The computations show that a FEP/REMD strategy
significantly improves the sampling and accelerates the
convergence of absolute free energy computations.

Introduction
The design of accurate and rapid methods for calculating the
free energy of solvation and binding of small molecules is one
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of the central goals of computer simulations. Progress in this
area could, for example, help speed up the development and
prediction of new therapeutic molecules and accelerate drug
discovery. In principle, this can be achieved using free energy
perturbation (FEP) calculations based on molecular dynamics
(MD) simulations of atomic models including explicitly the
solvent molecules. To enable robust and effective computations
of absolute solvation free energies and of binding free energies,
a staged FEP/MD simulation protocol based on a step-by-step
decomposition of the total reversible work was developed.' ™
The staged protocol effectively breaks down the complete free
energy calculation into several independent MD simulations,
which are easy to distribute over independent compute nodes.
Nevertheless, a treated based on independent simulations does
not exploit all the available information in the computations
for the sampling. Furthermore, such a treatment does not make
the best possible use of supercomputing platforms allowing
massively distributed processes.

One possible strategy to improve the FEP/MD is to couple
the staged free energy simulations using replica-exchange
methodologies.s_l2 With REMD, the rate at which the con-
figurations of a system are being explored can be considerably
enhanced by attempting coordinate swapping between indepen-
dent simulations generated at different temperatures>®'"'? or
with different Hamiltonians.”~'? Of particular interest, replica-
exchange has been combined in Monte Carlo simulations to
compute relative free energies.”'* This suggests that REMD
might be a promising avenue to further improve FEP/MD
simulations. The Distributed Replica (REPDSTR) technique
recently developed and implemented in the biomolecular
program CHARMM'* by Hodoscek and co-workers'>!'® allows
multiple MD simulations on similar systems to be simulta-
neously performed in a highly efficient parallel/parallel mode.
In the REPDSTR implementation, each independent MD
simulation is treated as an independent replica that occupies a
group of processors, and each has its “private” input/output
(I/0), including the input script. This is illustrated in Figure 1.
REPDSTR is in contrast to the more standard parallel MD,
where only the root process deals with the I/O. For this reason,
the parallel scaling in REPDSTR is primarily determined by
the number of CPUs occupied by each replica, rather than by the
total number of CPUs in use. The multiple I/O and parallel
structure of REPDSTR greatly facilitate the usage of replica-
exchange protocols, with infrequent communication between
the separate simulations. It follows that an implementation of a
staged FEP protocol with replica-exchange between the different
thermodynamic window simulations is relatively transparent and
easy to manage. One advantage is that the resulting free energy
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Figure 1. Multiple I/O structure of distributed replica parallel.

perturbation distributed replica-exchange molecular dynamics
(FEP/REMD) algorithm is controlled within a single program
rather than via an external job-driven script. It is therefore well
adapted for massively distributed supercomputing platforms.

In this communication, we describe and implement a com-
putational scheme based on the REPDSTR of CHARMM for
computing the absolute hydration and binding free energies
within a staged FEP protocol using a replica-exchange MD
simulations with A-swap moves. It is shown that this FEP/REMD
scheme improves the sampling efficiency and convergence of
free energy computations. FEP/REMD is illustrated with the
calculation of the absolute hydration free energy of water and
benzene and the absolute binding free energy of camphor-P450
complex.

Computational Details

A. Staged FEP Simulation Protocol. The staged FEP/MD
simulation protocol with biasing restraints was described in refs
1—4. Briefly, the insertion of the ligand into the binding pocket
is done in three steps, with the help of the three thermodynamic
coupling parameters, Arep, Agis, and Aciec, controlling the non-
bonded interaction of the molecule with its environment. One
additional parameter, A, is used to control the translational
and orientational restraints. The potential energy is expressed
in terms of the four coupling (window) parameters

U(}’rep’ dis® elec’ rslr) UO + U, rep(irep) + j'disl]dis
/‘Lelchelec + irstrUrstr (1)

where U, is the potential of the system with the noninteracting
ligand, Uy, and Uy, are the shifted Weeks-Chandler-Anderson
(WCA) repulsive and dispersive components of the Lennard-
Jones potential (introduced in ref 1), Uy, is the electrostatic
contribution, and u, denotes the restraining potential that helps
improve phase space sampling. The repulsive contribution AGy,
corresponds to the process
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The insertion of the ligand or solute into the bulk is calculated
according to the same protocol but without the restraint.

B. REPDSTR Implementation. With the REPDSTR module
of CHARMM,'>'® each A-staging FEP window is treated as a
replica. The hydration free energy calculation is separated into three
types of jobs, corresponding to the contributions from the repulsive,
dispersive, and electrostatic nonbonded interactions. The binding
free energy calculation is separated into four types of jobs,
corresponding to the repulsive, dispersive, electrostatic, and restraint
contributions. Each replica from the set of replicas within a given
type occupies multiple processors, in a parallel/parallel mode.
Figure 2 shows the REPDSTR implementation of each interaction
type as well as the corresponding coupling parameters and replica
labels.

The replica-exchange algorithm follows the conventional
Metropolis MC exchange probability with A-swap moves
P(/ltype lype) =

min{l, e [U(llypevxi)-‘—U()'{ypevxj)_U(lé.ypevXj)_U(}'{ypesxi)]/kBT} (6)
where U denotes the total potential energy of the underlying
replica, and Aij,. and A, denote the staging parameters. When
a move is accepted, then the A values are exchanged (A1-swap).
During the REMD simulation, alternating pairs are considered
for exchange attempts. Figure 2 shows these replica pairs for
each type of interaction, with even and odd denoting the
“alternating” replica exchange mode. This A-swap replica-
exchange protocol could easily be extended to the windows of
umbrella sampling simulations.

C. MD Simulation. All the FEP/MD simulations were carried
out on the IBM Blue Gene/P cluster Intrepid of Argonne National
Laboratory using version c36al of the CHARMM program,'*
which was modified for the present study. For the hydration
calculations each replica (window) occupies 16 CPUs, while for
the binding free energy calculation each replica occupies 64 CPUs.
To decrease the computational cost without compromising ac-
curacy, reduced systems of the bulk solution and of the binding
site were simulated in which the influence of the surrounding was
incorporated by a mean-field treatment. The Spherical Solvent
Boundary Potential (SSBP)17 was used for the bulk simulation,
and the Generalized Solvent Boundary Potential (GSBP) was used
for the binding site simulations.'® The hydration FEP calculations
were done with 400 explicit water molecules and SSBP at 300 K.
The systems were propagated with a 2 fs time step using Langevin
dynamics. Calculations based on simulation of 40 and 100 ps with
different replica-exchange frequencies were generated and com-
pared. To estimate the statistical convergence of the calculations,
10 independent FEP/REMD simulations runs were performed
consecutively starting from the configuration saved at the end of
the previous run.

For the binding free energy calculations of the camphor-P450
complex with a fixed number of water molecules, ten 100 ps
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Figure 2. REPDSTR implementation of the staging simulation

protocol. Note that the LJ-WCA repulsive interaction is decomposed

into 9 stages where each stage consists of two windows with 0 and 1 denoting the initial and final FEP state, respectively. All
the windows of the same type were run in a single parallelized job. Each FEP window has its corresponding replica label, and

each replica further occupies multiple processors, of which

only the root (I/0O) process (vertical solid line) is shown. Replica-

exchange attempts occur between the two root processes of a selected replica pair.

Table 1. Hydration Free Energy and the Individual Components for Water

MD run exchange frequency AGiep AGigisp AGelec AG expt
40 ps 0 4.79 + 0.1 —2.81 £ 0.03 —8.09 + 0.07 —6.12 +£ 0.14 —6.3
1/1000 steps 5.10 £ 0.16 —2.87 + 0.01 —-8.20 +0.12 —-5.97 +£0.23
1/100 steps 511 +£0.15 —2.87 +0.02 —8.13 + 0.08 —5.89 + 0.18
100 ps 0 5.12 £ 0.10 —2.88 + 0.01 —8.20 + 0.05 —5.95 +0.11
1/1000 steps 5.11 £ 0.06 —2.87 + 0.01 —-8.21 +0.07 —5.97 £ 0.12
1/100 steps 5.09 + 0.07 —2.88 + 0.01 —8.21 + 0.06 —6.00 +£ 0.12

production runs were performed for the binding site (with
GSBP) and hydration, respectively, with a replica-exchange
frequency of 1/100 steps. The systems were propagated with a
2 fs time step using Langevin dynamics. The GCMC simulation
algorithm, which allows the number of water molecules to
fluctuate in equilibrium with an infinite bulk,* was employed
with a replica exchange frequency of 1/100 steps. The force
field parameters and initial structure of camphor-P450 complex
were taken from ref 4. To estimate the statistical convergence
of the calculations, 10 independent FEP/REMD simulations (10
x 100 ps) were performed consecutively for each system with
a fixed number of water molecules, each starting from the
configuration saved at the end of the previous run. In the FEP
simulations combining GCMC and REMD, 30 consecutive
calculations were performed to eliminate the influence of
structural relaxation on the calculated free energy.

For all calculations, the energies were collected during the
production run and postprocessed using the weighted histogram
analysis method (WHAM).'® The results for the hydration free
energy of water and benzene in bulk water are given in Tables
1 and 2, respectively. The results for the binding of camphor to
cytochrome P450 are summarized in Tables 3 and 4.

Results and Discussions

A. Hydration Free Energy. Tables 1 and 2 report the
calculated hydration free energy for water and benzene using
different replica-exchange frequencies and simulation length.
For each exchange frequency, an acceptance ratio of about 30%
to 40% was achieved using the A-swap moves and the present
set of window parameters. A similar acceptance ratio was
obtained for the absolute binding free energy calculation. A
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Table 2. Hydration Free Energy and Individual Components for Benzene
MD run exchange frequency AGiep AGiisp AGeiec AG expt
40 ps 0 13.46 + 0.47 —12.63 +0.18 —1.88 £ 0.04 —1.05+0.45 —0.87
1/1000 steps 14.41 £ 0.31 —13.07 + 0.06 —1.89 £ 0.06 —0.55 £ 0.29
1/100 steps 14.45 + 0.39 —13.01 £ 0.07 —1.85 £ 0.05 —0.41 £0.39
1/10 steps 14.67 +£ 0.45 —18.07 £ 0.07 —1.90 £0.10 —0.30 £+ 0.50
100 ps 0 14.47 £0.20 —13.06 £+ 0.06 —1.87 £0.04 —0.45 £ 0.19
1/1000 steps 14.50 + 0.21 —13.06 + 0.04 —1.86 £ 0.06 —0.42 £0.18
1/100 steps 14.49 £+ 0.11 —13.03 £ 0.05 —1.86 £ 0.03 —0.41 +£0.13
1/10 steps 14.49 £ 0.13 —13.03 + 0.08 —1.86 £ 0.07 —0.41 £0.15

Table 3. Binding Site Free Energies of Camphor-P450 Complex with a Fixed Number of Water Molecules at Binding Site
and Hydration Free Energies of Camphor

binding site bulk water
fixed number of water (MD) fixed number of water (REMD) MD REMD expt
AGrep 7.99 +0.13 8.32 + 0.29 21.15 +0.21 21.06 + 0.30
AGiisp —35.50 + 0.06 —35.97 + 0.03 —21.15+0.15 —21.12 +0.08
AGelec —1.52 + 0.04 —1.25+ 0.04 —4.80 + 0.04 —4.82 + 0.04
AAGisie 9.98 +0.03 10.07 + 0.04 .. - .
sum —-19.05 + 0.14 —18.83 + 0.33 —4.80 + 0.15 —4.88 + 0.30 -3.5
AG) —14.25 + 0.21 —13.95 + 0.55 —7.75
Table 4. Binding Free Energies of Camphor to p450
MD run AGrep AGiaisp AGagieo AG) expt
GCMC-REMD run 0—9 13.63 + 1.23 —36.10 + 0.10 —1.21 +£ 0.02 —8.73 +1.43 —7.75
run 10—19 15.61 + 0.83 —36.18 + 0.03 —1.24 £+ 0.02 —6.86 + 0.99
run 20—29 15.76 + 0.56 —36.19 + 0.03 —1.24 + 0.02 —6.71 + 0.69
GCMC-MD run 0—9 13.58 + 1.19 —36.00 + 0.03 —1.30 £+ 0.01 —8.87 + 1.31
run 10—19 14.32 + 0.53 —36.05 + 0.02 —1.29 £+ 0.03 —8.16 + 0.48
run 20—29 15.75 +£ 0.73 —36.20 £+ 0.05 —1.31 £ 0.03 —6.91 + 0.64

higher acceptance ratio can be obtained by increasing the
number of windows but that would also increase the compu-
tational cost. The statistical uncertainties (standard deviation)
for the total hydration free energy and the various components
were calculated from the 10 separate production runs.

For the solute water molecule, the total hydration free energy
from the 100 ps production runs converges toward a value of
—6.0 kcal/mol. The three individual contributions are more
informative of the performance of the FEP/REMD than the total
free energy, as they display different convergences. The
electrostatic and dispersive components converge, consistent
with the observation that switching those relatively “soft”
interactions is not associated with any sudden reorganization
of the surrounding bulk. In contrast, the convergence of the
repulsive component is more clearly improved by replica-
exchange. The trends are clearer with the 40 ps production runs.
With straight FEP/MD (no replica-exchange), the value of AG,,
is 4.97 kcal/mol (based on 10 independent runs), which
systematically deviates by ~0.3 kcal/mol from the converged
value of 5.09 kcal/mol. Such deviation disappears when replica-
exchange is attempted every 1000 or 100 steps. This observation
is consistent with the fact that extensive sampling is necessary
to sample the cavity formation associated with the repulsive
solute—solvent interaction. With FEP/REMD, the AG,. cal-
culated from the 100 ps runs is essentially unchanged compared
to the 40 ps runs, though the uncertainty is slightly smaller.
The two nonpolar components converge well; the averaged
AG,p and AGyis, of the 40 ps FEP/REMD runs are almost the
same as those of 100 ps runs, regardless of the relatively larger
uncertainty due to shorter sampling.

Benzene provides a more interesting testing ground to
illustrate the gain by FEP/REMD because of its larger size. The
absolute hydration free energy of benzene calculated from 10
independent 40 ps production runs without replica-exchange
(—1.05 kcal/mol) deviates systematically from the best-
converged value obtained by FEP/REMD (—0.41 kcal/mol).
This demonstrates the enhanced convergence from FEP/REMD.
With respect to the impact of increasing the replica-exchange
frequency and the sampling time, the individual components
display similar trends as water shown in Table 1. In the 40 ps
runs, the largest deviation again comes from AG,, and a
systematic deviation of almost —1.0 kcal/mol is avoided by
replica-exchange. It is also noteworthy that the contribution from
van der Waals dispersion (—12.63 kcal/mol) deviates systemati-
cally from the converged value (—13.03 kcal/mol).

The statistical uncertainty in the 40 ps simulation runs exhibits
a curious “turnover” with increasing exchange frequency, i.e.,
the statistical uncertainty is larger when replica exchanges are
attempted every 10 steps (£0.45 kcal/mol) than every 1000 steps
(£0.31 kcal/mol). It is likely that the cause of this is the
difficulty to sample the cavity formation associated with the
harsh solute—solvent repulsive interaction. With higher ex-
change frequency, the trajectories jump along the A, coupling
parameter rapidly, which results in larger fluctuations in the
energy samples. This situation is hidden for small solutes such
as a water molecule, while the larger benzene molecule requires
a more important surrounding reorganization of the solvent upon
solute insertion. These observations suggest that a systematic
investigation of the relation between the exchange frequency
and length of MD trajectory should be the object of further
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Figure 3. Cost of replica-exchange MD simulation relative
to that without replica-exchange. The CPU time of simulation
without replica-exchange is denoted with exchange frequency
1/10000 steps (0.0001).

analysis. Of relevance to such issues, it was recently shown
that Hamiltonian replica exchange provides a direct route for
minimizing the hysteresis error in hydration free energy
calculations.®

As shown in Tables 1 and 2, the free energy with replica-
exchange converges better with increased exchange frequency.
To assess the additional computational cost associated with the
exchanges, Figure 3 shows the CPU time of FEP/REMD relative
to that of FEP simulations without replica-exchange. It can be
seen that with exchange frequencies up to 1/100 steps, there is
no significant increase of the CPU time, while for 1/10 steps,
the CPU time increases by ~17%. Thus, an exchange frequency
of ~1/100 steps seems to be an optimal choice with the current
FEP/REMD implementation.

B. Binding Free Energy. The convergence of a calculation
of the absolute binding free energy of camphor for p450 is
challenging because the binding site is deeply buried within
the protein and is not solvent accessible. For this reason, the
movement of water molecules in and out of the binding pocket
is extremely slowly. This is expected to complicate the
convergence of FEP/MD calculations. It was shown previously
that the contribution from the repulsive interaction is grossly
underestimated in FEP/MD calculations initiated from the
structure of the bound complex with a fixed number of water
molecules in the buried site. Reasonable results are obtained if
the number of water molecules is allowed to fluctuate via a
GCMC algorithm.* It is of interest to test if replica-exchange
without GCMC is able to cure this problem. To this end, the
FEP/REMD calculation was first performed with a fixed number
of water molecules corresponding to the X-ray structure of the
bound camphor-P450 complex. In Table 3, it can be seen that
REMD does not actually improve the convergence of the
repulsive interaction contribution. The resulting binding free
energy is too favorable by almost 5—6 kcal/mol, similar to
previous results.* This shows that the FEP/REMD scheme, by
itself, is unable to enhance the sampling of different number of
water molecules in the buried binding pocket. Combining
replica-exchange with GCMC and MD to perform FEP calcula-
tions appears to be necessary in this case. Table 4 gives the
results for the calculations performed within a FEP/GCMC-
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Figure 4. Binding site free energy convergence of GCMC/
(RE)MD simulations. Note that GCMC/REMD shows faster
convergence than GCMC/MD simulation.

REMD scheme and compares those with the FEP/GCMC-MD.
It can be seen that both methods yield a reasonable total binding
free energy, indicating that the GCMC algorithm is essential to
treat the buried p450 binding site. Again, the repulsive free
energies estimated from FEP/GCMC-REMD converged better
than that from FEP/GCMC-MD simulation. For the absolute
hydration free energy of camphor in bulk water, no noticeable
gain is observed with FEP/REMD compared to FEP/MD. In
both approaches, the repulsive and dispersive interactions nearly
cancel out. This is consistent with the previous results with water
and benzene (Tables 1 and 2).

Table 4 shows that from the 10th MD run the repulsive free
energies are essentially converged to 15.6 kcal/mol, whereas
the corresponding results from the FEP/GCMC-MD simulation
are underestimated by ~1.4 kcal/mol. Ultimately, the average
repulsive free energies of both methods reach a value about
15.75 kcal/mol but only after the 20th run. Figure 4 provides a
more detailed picture for the convergence of FEP/GCMC-
REMD calculations. One can see that some structural relaxation
dominates the early stage of the simulations with and without
replica-exchange. The free energy from the FEP/GCMC-REMD
simulations starts to fluctuate around a stable value of —12.0
kcal/mol from the 12th run. In contrast, the FEP/GCMC-MD
calculation seems to be drifting up even after the 20th run. This
shows that replica-exchange significantly accelerates the configu-
rational sampling of the receptor—ligand—solvent complex. The
calculation of the electrostatic and dispersive contributions benefits
less markedly from REMD, probably because they are switched-
on after the formation of a cavity and the fluctuations of the
surrounding water molecules are smaller. As observed in Table 4,
the dispersion free energy and charging free energy of FEP/GCMC-
REMD are very close to the results from FEP/GCMC-MD. The
introduction of replica-exchange does not have a large impact in
the case of the geometrical restraining potential (Table 3).

Conclusion
A free energy perturbation staging protocol with replica-
exchange molecular dynamics (FEP/REMD) implemented
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with a distributed in a parallel/parallel mode replica strategy
REPDSTR has been described and implemented for large
supercomputing platforms. As a natural outcome of this
implementation, replica-exchange over configuration with dif-
ferent thermodynamic coupling parameters was shown to
enhance the sampling for the calculation of hydration free
energies. The benefit is most striking in the case of the repulsive
contribution to the free energy (related to the cavity formation).
This would be expected to hold in general for ligand binding at
the solvent-exposed site near the surface of a receptor. For the
deeply buried binding site, the REMD combined with the
GCMC algorithm significantly accelerates the free energy
convergence. Applications to the present FEP/REMD method
to produce a general protocol to different ligand binding
processes are currently underway.
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Abstract: Milestoning is a method aimed at reconstructing
the statistical properties of the long-time dynamics of a
system by exploiting the crossing statistics of a set of
hypersurfaces, called the “milestones”, placed along the
reaction coordinate [Faradjian and Elber, J. Chem. Phys.
2004, 120, 10880]. Recently, Vanden-Eijnden and Ven-
turoli [J. Chem. Phys. 2009, 130, 194101] showed that
when a complete Voronoi tessellation of the configurational
space is available, milestoning can be reformulated to
utilize the statistics from a series of independent simula-
tions, each confined within a single cell via strict reflections
at the boundaries. As a byproduct, this “Voronoi tessellated
milestoning” method also permits to compute the free
energy of the tessellation. Here, the method is extended
to support the usage of differentiable restraining potentials
to confine the trajectories within each cell.

1. Introduction

Conformational changes in large biomolecules are complex and
slow processes taking place on very long time scales, which
often extend well beyond the reach of brute force molecular
dynamics (MD) simulations. An emerging class of techniques

* Corresponding authors. E-mail: eve2 @cims.nyu.edu (E.V.-E.);
roux @uchicago.edu (B.R.).

" University of Chicago.

*New York University.

T Argonne National Laboratory.

attacks this problem by first trying to determine an optimal
reaction pathway (or pathways) for the transition in a space of
very high dimensionality, without making any a priori assump-
tions about the mechanism.' > Once such an optimal pathway
has been identified, a strategy then consists of inferring the
statistical properties of the long-time dynamics by exploiting
the information harvested from relatively short independent
trajectories.® " Of particular interest is the milestoning method
introduced by Faradjian and Elber,® in which the dynamical
properties of a reactive event are reconstructed out of a series
of short trajectories between a set of hypersurfaces (the
“milestones”), disposed sequentially along the reaction pathway
between the reactant and the product.'®”'* Recently, Vanden-
Eijnden and Venturoli extended milestoning by identifying the
edges of the cells of a complete Voronoi tessellation of
configurational space as the milestones.® It was shown that the
“Voronoi tessellated milestoning” could be formulated to require
only a series of independent simulations, each confined within
a single Voronoi cell, leading to a simplification and an increase
in robustness of the original algorithm. The confinement was
realized by a simple collision rule via strict hard-wall reflections
(velocity inversion) at the boundaries.*

Despite its formal simplicity, the hard-wall boundary condi-
tion involves modifications of the dynamical propagation
algorithm at the heart of MD source codes. This makes its
implementation in widely used biomolecular simulation MD
packages (e.g., AMBER,'> CHARMM,'® GROMACS,'” and
NAMD'®) somewhat cumbersome, and may even affect per-
formance. With the aim of extending the range of applicability
of the method, in this work, we propose and test an alternative
strategy based on the introduction of continuous and dif-
ferentiable restraining potentials to confine the system within a
given cell. We illustrate how the formalism presented in ref 9
can still be used, with minor modifications, to compute the
equilibrium probability and the rates of transitions for the origi-
nal dynamics. The possibility to use potentials will facilitate
the application of the Voronoi tessellated milestoning because
the introduction of user-defined external forces is straightfoward.
We note that the confinement with potentials can also affect
performance because portions of trajectories that are transiently
out of the cells are discarded in the analysis, but this effect can
be minimized by proper tuning of the parameters in the
potentials.

In the remaining part of this letter, we first describe the details
of the restraining potentials and the key quantities to be
computed for free energy and milestoning calculations, and then

10.1021/ct900279z CCC: $40.75 © 2009 American Chemical Society
Published on Web 08/31/2009
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we illustrate the method by applying it to two simple examples,
a numerical toy model and a solvated alanine dipeptide.

2. Theoretical Developments

2.1. Soft Wall Restraining Potentials. Let us consider a
molecular system with coordinates x and potential energy U(x).
In most biomolecular applications, the dimensionality of the
system is very high, but most of the variables can be unimportant
for the description of a reactive mechanism. For this reason, it
is customary to introduce a smaller number of collective
variables to characterize the process. Let us indicate the set of
collective variables, functions of x, by {z(x)}. Suppose we are
given a set of K points in z-space, (21, 22, ..., Zx), that we call
centroids. These support a complete and unique Voronoi
tessellation of the original Cartesian space of the system, where
each cell a is defined such that llz(x) — zll < llz(x) — z, |l for all
y #= o Il indicates the norm in some metric, which shall be
assumed Euclidean for the sake of simplicity.

It was shown previously,” via a reformulation of the
milestoning algorithm,® that the statistical properties of the long-
time dynamics of the system can be reconstructed from
independent simulations, each confined inside one of the K cells.
The key feature required for this result is that the confined
dynamics must be equivalent to that from a long unbiased
trajectory passing through the same set of cells.*° More
specifically, the confinement must leave unperturbed the dy-
namical properties of the systems when it is in the interior of
the cell as well as the probability flux in and out of the cells. In
ref 9, the confinement was realized with a strict reflection rule,*
i.e., by reversing the velocity of the atoms when a trajectory
attempted to cross the hyperplane between two neighboring cells
o and y. An alternative strategy, explored here, is to introduce
planar half-pseudoharmonic restraining potentials to confine the
system within each cell:

K
kW
o) = 3, 5 (g, [206) = Z4,))° Hlfy, [2%) = Z,])
y=1
(1)

where the unit vector ﬁa y = @, — 2)/llz, — zoll is normal to the
hyperplane separating the cells o and y, Zo, = (z, + z)/2 is the
midpoint between the centroids o and y, and H is the Heaviside
step function. The real parameter k,, determines the strength of
the restraining potential. Hereafter, we will refer to the present
approach as the soft walls (SW) restraints, to emphasize the
distinction with the strict hard walls (HW) reflections used in refs
9 and 4.

An illustration of u,(x) is given in Figure 1. The restraining
potential uy(x) is O in the interior of the cell a, and it acts as a
penalty function toward the cell boundary when the trajectory
crosses any of the hyperplanes separating o from other cells.

It can be understood from the following argument that the
fundamental requirements of the confined dynamics can be met
when the restraints of eq 1 are used. First, since u,(x) = 0 inside
the cell, using eq 1 guarantees that the equilibrium distribution
inside the cell is the same as that of an unbiased simulation,
apart for small errors at the boundaries related to time discreti-
zation. Moreover, this implies that we also have the correct
fluxes in and out of the cell (otherwise, their effect would
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Figure 1. An illustration of the potential u,(x) used to
constraint a trajectory in cell o, eq 1. Portions of three cells
o, 8, and y with centroids (Z,, 2;, z,) are shown. The potential
is 0 in cell a (white region), and its units are arbitrary. Cell
edges are represented as black lines. Note that the edge
between cells 8 and y (dashed black line) has no effect on
the restraint, and it is shown only for the purpose of clarity.

propagate in and spoil the distribution inside), and hence, the
pieces of trajectory of the restricted simulation are indistinguish-
able from the pieces of an unbiased trajectory passing through
the same cell.

It is possible to compute the equilibrium probability and the
rates of transitions for the original dynamics from the simula-
tions confined within the Voronoi cells by the HW reflections.’
In the following sections, we show that, with minor modifica-
tions, the formalism can still be used with the SW restraints.

2.2. Free Energy of the Tessellation. The conservation of
probability flux through the boundaries of the cell gives a way
to compute, 74, the equilibrium probability of the system to be
in cell o, and the associated free energy, G, = —f 'log 7,
(where 8 = 1/kgT, with kg the Boltzmann constant and 7 the
temperature), as summarized hereafter.** The rate of escape
from cell a to cell y, conditional on the system being in the
cell @, is defined as vy, = Ng, /Ty, Where Ny, is the number of
collisions with the boundary separating the cells o and y, and
T, is the total simulation time spent inside cell a. The
normalized equilibrium probability m, solves the following
equations involving the rates of escape v,:

K K
= D TV Sa=1 @
y=1 = o=1

YF YFO

K

This equation expresses that, at statistical steady state, the
total probability flux in cell & must be equal to the flux out of
a by conservation of the total probability. In ref 9, T, was simply
the total simulation time with the system confined in cell a by
means of HW. With SW, eq 2 is still valid, as long as one counts
only the portion of trajectory spent inside the cell a as the time
To.

2.3. Milestoning. Identifying the edges of the Voronoi
tessellation as milestones, the dynamics of the system is reduced
to that of a discrete state continuous-time Markov chain in the
state space of the milestones indices.® By indexing the mile-
stones as 7 and j, this amounts to defining a rate matrix g;;, whose
elements are given by
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q; = N, ij/ R, 3)

The factors N; and R; in this equation can be expressed’ in
terms of the average properties extracted from simulations
confined to the cell o, weighted by the equilibrium probability
7, of finding the system in cell a:

N N
Ny= D m (NYIT,), R,= D 7 (RYT,) (4)
a=1 a=1

Here T, is the duration of the simulation confined in cell o,
N is the number of transitions from edges i to j observed during
this simulation, and R} is the total time that edge i was the last
edge to be hit during this simulation (i.e., X;R* = T,). The only
requirement to use eqs 4 with SW is to prune the trajectory to
its portion that is strictly inside the cell a before computing
N, RY, and T, (i.e., the parts spent outside the cell in the SW
region must be discarded).

The rate matrix q;; specifies completely the dynamics of the
Markov process, and hence, it can be used to compute many
important quantities as, for example, the mean first passage times
(MFPTs) from any milestone to any other.>'* For instance, if
N withi =1, ..., N — 1 denote the MFPTs from milestone i to
milestone N (zjy = 0 by definition), then these MFPTs can be
computed by solving the linear system of equations:

> g7 =1, i=1,..N—1 (5)

3. Results and Discussion

In the following, we illustrate the implementation of milestoning
with SW restraints on two simple systems, the Mueller poten-
tial' and the solvated alanine dipeptide. Prior to this, an
important point concerning the position of the centroids sup-
porting the Voronoi tessellation deserves special attention. While
eqs 3—5 can be applied to any set of hypersurfaces, it has been
shown that the formalism gives exact MFPTs, if the hypersur-
faces used as milestones are chosen as the isocommittor surfaces
of the reaction.'* From a practical viewpoint, the isocommittor
surfaces can be calculated approximately by the string method
and its variants.>~>2°"? In the string method, the transition path
is represented as by an ordered sequence of K discrete “images”,
{zV, 22, ..., 20}, in the space of collective variables z(x). This
suggests’ to first use the string method to determine the transition
path by optimizing the position of the K images and then use
these images as centroids to support the Voronoi tessellation.
Naturally, the edges between the cells are hyperplanes perpen-
dicular to the optimized path and, hence, approximations of the
isocommittor surfaces.

3.1. The Mueller Potential. We first consider a simple
2-dimensional system evolving on the Mueller potential energy
surface according to Langevin dynamics (i.e., we take {z(x.y)}
= (x,y), the coordinates of the system). The same model was
studied in ref , so for comparison, we took the same centroids
as generators of the Voronoi tessellation. These are 18 equi-
distant images (the red circles in Figure 2), computed with the
finite-temperature string method.* All simulations were per-
formed by integrating Langevin equations of motion with the
second-order algorithm of ref 23 by taking ~! = 20, friction
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Figure 2. Mueller potential with a set of milestones, corre-
sponding to the edges of Voronoi cells, generated by images
along the converged string from the finite-temperature string
method. The successive positions of the system at every time
step along a piece of simulation with SW are also shown as
white dots. MFPTSs, discussed in the text, are calculated from
the dashed to the continuous black line.

5 , . ,
45+ g
4_ i
=350 1
=
> 3r 1
=
@ 25t .
L
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L st ]
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0.5- _
0 : : ‘
0 5 10 15 20
cell index
Figure 3. Free energy G, = —f 'log 7, of the Voronoi

tessellation from HW and SW simulations on the Mueller
potential compared with the exact one obtained by numerical
integration. Numbering of the cells goes from top-left to
bottom-right in Figure 2.

400, and a time step At = 10~*. Hard and soft wall trajectories
of 108 steps were generated in each cell.

Figure 2 shows the Mueller potential together with the
Voronoi tessellation associated to the images from the string.
The edges of the cells were taken as milestones. The successive
positions of the system at every time step along a piece of
simulation with SW are also shown as white dots. Note that, as
already pointed out before, the portion of trajectory inside the
cell samples the equilibrium distribution associated to the
underlying potential in the cell.

Figure 3 shows the free energy G, =—p'log 714, where 7,
is the solution of eq 2, corresponding to the tessellation shown
in Figure 2. Results are presented for SW and HW simulations
and numerical integration (Exact). The numbering of the cells
goes from 1 to 18 from top-left to bottom-right in Figure 2.
Table 1 summarizes results for MFPTs calculations considering
the transition from the black dashed line to the black continuous
line in Figure 2. The table also shows the mean and the extremal
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Table 1. Kinetics for the Mueller Potential for the Transition from the Black Dashed Milestone to the Black Continuous

Milestone in Figure 22

MFPT (R) Rimax Rmin (Np Njjmax Njmin
soft walls 547 + 24 0.0065 0.4644 1.55 x 1078 1.35 x 107 3.32 x 10°° 6.05 x 107"
hard walls 553 + 14 0.0065 0.4645 9.99 x 107°° 1.37 x 107 3.27 x 10°° 410 x 107
free simulation 562 + 16 0.0065 0.4645 1.89 x 1078 1.37 x 107 3.19 x 107° 4.02 x 107"

2 The agreement of all quantities shows that the dynamical properties of the trajectory inside the cells are left unperturbed by the two
different confinement methods, i.e., it is as if the confinement was absent. Errors on MFPTs were obtained from five different runs.

16

' ‘ |
4‘5‘! ] !

-150 -100 50 0 50 100 150

Figure 4. Backbone dihedral free energy surface of solvated
alanine dipeptide (units are kcal/mol) with a set of milestones
(red lines) corresponding to the edges of Voronoi cells
generated by images along the converged minimum free
energy path (red circles) and the helical to extended transition.
The successive values of dihedral angles at every time step
along pieces of simulations with HW are shown as white and
gray dots. MFPTs, discussed in the text, are calculated from
the dashed to the continuous black line.

values of the elements needed for the calculation of the q; matrix
defined in eq 3, computed from SW and HW simulations and
a long free trajectory (2 x 10° steps). The excellent agreement
shows that the confinements do not introduce biases in the
calculations of qj;.

3.2. Solvated Alanine Dipeptide. In order to test the
implementation of SW and HW in a realistic biomolecular
context, we examine the transition from helical to extended
conformation of the alanine dipeptide solvated in explicit water.
We describe the transition here by using two collective variables,
the ¢ and 1 backbone dihedral angles, neglecting the role of
the solvent degrees of freedom.”* We used the CHARMM'®
code for all calculations with CHARMM?22 all-atom force field*
and the TIP3P model?® for water molecules.

The free energy landscape in ¢ and 1 variables was computed
with the single-sweep method,?” and it is shown for reference
in Figure 4 (energies are in kcal/mol). A minimum free energy
path in (¢,3) space was computed using the string method.? 20
images along this path are represented as circles in Figure 4,
and they were used as centroids for the Voronoi tessellation.
Note that in our calculation, we focus on the reaction channel
with ¢ < 0, where the main metastable states are. In principle,
we could also investigate the kinetics of transitions between
the states with ¢ > 0, but these are less often visited, and hence,
their existence does not affect much the rates we compute. The
edges of the Voronoi cells are represented as red lines in Figure

4.5 T T T T T T T T T

——HW
—5—SW k=200 |
—A—SW k=400 |

4+

3.5

3

25

2

1.5

Free Energy [kcal/mol]

1

050y

1 3 5 7 9 11 13 15 17 19
cell index

Figure 5. Free energy of the Voronoi tessellation from HW
and SW sampling for the solvated alanine dipeptide. Number-
ing of the cells goes from 1 to 20, counting from top to bottom
in Figure 4.

14

e -
o N

escape rate [*10° ns™']
[e-]

0 0.2 0.4 0.6 0.8 1.0
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Figure 6. Rates of escape from cell #2 (i.e., associated to
the second string image counting from top to bottom in Figure
4), voq, top line, and v,3, bottom line, as a function of the
trajectory length for the alanine dipeptide SW simulation with
k, = 200 kcal/mol/rads?.

4 (taking into account periodicity). The dashed and continuous
black lines are the start and the ending milestones for MFPTs
calculation. The HW confinement condition was implemented
into the Nosé—Hoover (NH) dynamics subroutine of
CHARMM.?® The successive values of dihedral angles at every
time step along pieces of simulations with ahrd walls are shown
as white and gray dots. NH dynamics was also used for SW
simulations. In this case, the forces on atoms coming from the
potential (1) were implemented and added to the standard
CHARMM forces.
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Table 2. Kinetics for the Solvated Alanine Dipeptide for the Transition from the Black Dashed Milestone to the Black

Continuous Milestone in Figure 4

MFPT (ps) (Rp Rimax Rmin (Np Njmax N;min
soft walls 28.33 0.0053 0.3242 6.65 x 1077 9.24 x 10°° 6.87 x 107* 2.99 x 10°°
hard walls 28.13 0.0053 0.3306 5.00 x 1077 8.86 x 10°° 7.02 x 107 1.97 x 1078

Figure 5 shows the free energy corresponding to the tessel-
lation shown in Figure 4. Results are for HW and SW
simulations (with two different values of the penalty constant
ky). In all cases, the trajectories in each cell were 1 ns long.
Numbering of the cells goes from 1 to 20 and top to bottom in
Figure 4. In order to assess convergence of the calculation, we
monitored, during the simulations, the values of the escape rates
from the cells, vq,. Figure 6 shows the rates from cell two versus
the length of the entire confined trajectory for SW simulations
with k,, = 200 kcal/mol/rads®. Escape rates from other cells
converge on the same time scale.

MFPTs were computed considering the transition from the
black dashed to the black continuous line in Figure 4. Results
are summarized in Table 2, together with the mean and the
extremal values of the elements needed for the calculation of
the q; matrix defined in eq 3. The excellent agreement shows
again that the confinements do not introduce biases in the
calculations of qj;.

The MFPT for the transition from dashed to continuous
milestone in Figure 4 estimated from milestoning with HW and
SW simulations is about 28 ps. For comparison, the MFPT
between the same two milestones was computed by direct
counting of consecutive hittings, along a free, unbiased simula-
tion of 80 ns, obtaining 29.97 ps. These values agree with results
from other CHARMM calculations of solvated alanine dipeptide
in a similar simulation setup, where the MFPT for the same
transition was estimated to be of about 30 ps.>**°

4. Concluding Remarks

Milestoning with Voronoi tessellation” is a method to reconstruct
the dynamical properties of complex reactive systems by
matching together informations obtained from multiple trajec-
tories, each confined in a different cell of a Voronoi tessellation
of configurational space. In this letter, we have illustrated how
the formalism can still be applied, with minor modifications,
when the confinement in the cells is realized via continuous
and differentiable potentials. With respect to the original
formulation, where the confinement is realized with strict
reflections (velocity inversion at the boundary), the possibility
to use potentials will facilitate the application of the method
because user-defined external forces are easy to introduce in
most MD codes and do not require modification of the
dynamical propagators. However, the confinement with poten-
tials can also affect performance because portions of trajectories
that are transiently out of the cells are discarded in the analysis.
Note also that we did not optimize for efficiency here, which
would require adjusting the penalty constant &, in eq 1.

As a final remark, let us point out that the method proposed
in this letter, like the one in ref 9, can be trivially distributed

on multiple processing nodes, since it is based on independent
simulations with no required communication among them.
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Abstract: Events of scientific interest in molecular dynamics (MD) simulations, including
conformational changes, folding transitions, and translocations of ligands and reaction products,
often correspond to high-level structural rearrangements that alter contacts between molecules
or among different parts of a molecule. Due to advances in computer architecture and software,
MD trajectories representing such structure-changing events have become easier to generate,
but the length of these trajectories poses a challenge to scientific interpretation and analysis. In
this paper, we present automated methods for the detection of potentially important structure-
changing events in long MD trajectories. In contrast with traditional tools for the analysis of
such trajectories, our methods provide a detailed report of broken and formed contacts that
aids in the identification of specific time-dependent side-chain interactions. Our approach employs
a coarse-grained representation of amino acid side chains, a contact metric based on higher
order generalizations of Delaunay tetrahedralization, techniques for detecting significant shifts
in the resulting contact time series, and a new kernel-based measure of contact alteration activity.
The analysis methods we describe are incorporated in a newly developed package, called
TimeScapes, which is freely available and compatible with trajectories generated by a variety
of popular MD programs. Tests based on actual microsecond time scale simulations demonstrate
that the package can be used to efficiently detect and characterize important conformational
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changes in realistic protein systems.

1. Introduction

As progress in computer technology has extended the reach
of molecular dynamics (MD) simulations'- from picoseconds
to nanoseconds and microseconds, complex and functionally
important biomolecular motions, such as protein folding and
ligand binding, have become more accessible, but the
resulting data sets have become increasingly large and
unwieldy. Routine MD simulations currently generate tra-
jectories consisting of thousands or millions of frames,
rendering both visual inspection and data analysis difficult
and time-consuming. We expect that, over time, the analysis

* Corresponding author phone: (212) 478-0260; fax: (212) 845-
1286; e-mail: David.Shaw @ DEShawResearch.com. David E. Shaw
is also with the Center for Computational Biology and Bioinfor-
matics, Columbia University, New York, New York 10032.

of these trajectories will require increasing automation, with
human intervention limited to selected events of scientific
interest.

We are particularly interested in the detection of significant
secondary or tertiary structure rearrangements of proteins,
as these motions are often of functional importance. Ex-
amples of such large-scale motions include allosteric con-
formational transitions and folding processes, which give rise
to substantial alterations in the interactions between amino
acid residues. To shed light on such phenomena, the work
described in this paper focuses largely on the automated
recognition of significant amino acid contact changes in MD
trajectories and on measurement of the activity, the total
number of such changes per unit time.

Our approach makes use of a particular type of “coarse-
grained” model to reduce the level of detail in the spatial

10.1021/ct900229u CCC: $40.75 © 2009 American Chemical Society
Published on Web 09/04/2009
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representations of long MD trajectories. In particular, we
employ a coarse-grained model based on side chains, which
offers certain advantages over models based on o-carbon
atoms in the context of the present application. Three-
dimensional protein structures are described using a distance
matrix representation®* that records all pairwise distances
between the coarse-grained side chains. In contrast with
traditional methods based on the use of global root mean
square deviation (rmsd) measurements, the use of distance
matrices does not require the translational and rotational
alignment of protein structures and facilitates the identifica-
tion of local structural differences.” Our approach decom-
poses structural changes into a set of key side-chain motions,
providing greater sensitivity to a wide range of significant
conformational changes than is typically obtained from
traditional rmsd-based metrics.

We introduce two alternative approaches to identifying
time-dependent contact graphs from distance matrices: a
method based on distance cutoffs, which proves useful for
detecting local contact formation and breaking activities, and
an approach based on Delaunay tetrahedralization, which is
better suited to the detection of global folding activities. A
recrossing filter is used to eliminate transiently appearing or
disappearing edges in the contact graph that are likely to
represent random fluctuations and not biologically significant
conformational changes.

In the remainder of this paper, we describe the essential
elements of our approach, using four microsecond-scale
simulations for illustrative purposes. For each trajectory
frame, we construct a graph representing all contacts between
amino acid side chains, computed using a spatially coarse-
grained representation. We track changes in this graph over
time, employing a median filter and a recrossing filter for
the counting of discrete events that are reflected in the time-
dependent contact graph. Finally, we use a kernel measure
to derive activity levels from the event data. Although in
this work we only examine protein trajectories, it should be
relatively straightforward to generalize our approach to, for
example, nucleic acids or carbohydrates.

2. Methods

2.1. Molecular Dynamics Simulations. We applied our
algorithms to four all-atom MD trajectories, each ap-
proximately 1 us in length. (More detailed system parameters
are given in the Supporting Information.) Using the tradi-
tional metric of a-carbon rms deviation from the known
atomic structure, Figure 1 shows distinct dynamic behavior
among the chosen trajectories, which we found particularly
useful for method validation. Trajectory 1 (blue) results from
a 0.52 us simulation of Src kinase. In this ‘“generic”
trajectory, the system experiences a series of conformational
changes, forcing it to increasingly higher rms deviations of
up to 4 A. The “stationary” trajectory 2 (red) corresponds
to a stable 1.0 us simulation of the fast-folding triple mutant
K65(NLE), N68H, K70(NLE) of chicken villin subdomain
HP-35,° where the system remains close to the initial
conformation (rms deviation ~1 A) over the entire length
of the simulation. The “diffusive” trajectory 3 (black) shows
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Figure 1. o-Carbon rms deviation from the native conforma-
tion as a function of simulation time: trajectory 1 (blue, Src
kinase); trajectory 2 (red, villin near-native); trajectory 3 (gray,
villin unfolded); trajectory 4 (green, villin folding). The double
logarithmic plot bridges between the various time and spatial
scales explored by the four trajectories.

the opposite behavior. Starting from an extended (unfolded)
villin chain, the system remains far from the native structure
during the full 4.3 us simulation time, visiting various
unfolded conformations. Finally, trajectory 4 (green) corre-
sponds to a 2.5 us “folding” simulation of villin. Together,
the four trajectories in Figure 1 cover several scenarios that
are commonly encountered in MD simulations of folded and
unfolded proteins.

2.2. Coarse-Graining of Side-Chain Contacts. Nonco-
valent interactions between side chains, such as hydrogen
bonds or salt bridges, play a critical role in protein dynamics.
Singh and Thornton have shown that each of the 400 possible
amino acid side chain pairings exhibits a pronounced peak
in its separation histogram at a distance of 5—8 A.” Following
this finding, we identify a representative atom in each side
chain for an efficient calculation of such contact separation
distances. (Some side chains have more than one functional
group, but our current Delaunay tetrahedralization approach
relies on the choice of one representative atom per side
chain.) For most residues, we define the second heavy (non-
hydrogen) atom counted from the end of the chain as the
representative atom. This rule takes into account the fact that
in branched residues (e.g., Gln, Asp, or Arg) the end of the
chain may be ambiguous, whereas the second heavy atom
is straightforward to define in 14 amino acids. Of the
remaining six, three aromatic residues (His, Phe, and Tyr)
form special cases due to the presence of an aromatic ring;
here we pick the atom at the base of the ring (closest to the
main chain) as representative. The rare Trp is represented
by the epsilon-2 carbon at the center of the double ring.
Finally, the achiral Gly and cyclic Pro do not have extended
side chains. We represent them by the o~ and y-carbons,
respectively, to account for all amino acids.

The idea of reducing the level of detail is not unique to
our work, and a number of similar concepts have already
been described.* '* One possibility is to consider the
hydrogen bonding network'# as a coarse representation of
relevant contacts. We have decided against using hydrogen
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bonds because they tend to be very transient in MD
simulations'®> and provide too much detail; it is often
sufficient to know which amino acids are interacting. Another
possibility is to select the centroids of side chains'® or the
o-carbon atoms instead of the representative atoms intro-
duced above. Due to the widely variable sizes of side chains,
however, the centroids or a-carbons are imprecise markers
for interactions with neighboring residues. Alternatively, one
could consider the five to seven spatial contact patterns
discovered by Singh and Thornton for each of the pairings
of amino acids in their Atlas of Side-Chain Interactions,’
but the enumeration of such patterns for every amino acid
candidate pair in every trajectory frame would be much more
expensive than our simple distance metric.

Given a coarse representation of the structure, an important
step in our analysis is to estimate the time-dependent contact
pattern (or graph) that captures interactions between repre-
sentative side-chain atoms. Any such graph approximates
the actual atomic interactions, so in practice we can expect
some inaccuracies in the assignment of contacts. We
introduce two possible approaches for identifying contact
graphs with this model: the distance cutoff and the so-called
generalized masked Delaunay (GMD) tetrahedralization.
Each of these graph-based concepts has its unique advantages
for event detection and activity monitoring. While the
distance cutoff approach is more selective with respect to
local proximity relationships, which is useful for tasks such
as distinguishing between the formation and breaking of
contacts, the GMD approach accounts for global geometric
changes and offers a way to monitor the overall structural
variability. For the assignment of the contact graph, it is
useful to consider advantages and limitations of these
concepts in more detail. Figure 2 provides a schematic
overview of proximity measures in two dimensions (the
generalization to three dimensions is straightforward). The
initial side-chain model is depicted in Figure 2A.

2.3. Distance Cutoff. The cutoff-based metric is the most
basic proximity criterion. Contacts are based on the Euclidean
distance between representative atoms, and atoms closer than
a given cutoff are considered in contact. Parts B and C of
Figure 2 illustrate the difficulties associated with identifying
contacts by a cutoff distance. If the cutoff is too short (Figure
2B), some valid contacts may be missed, producing false
negatives. If the cutoff is too long (Figure 2C), too many
undesired contacts are included in the graph, leading to false
positives. Such redundant graph edges are typically incon-
sistent with the actual nearest-neighbor interactions of side
chains. In practice, a compromise between these two extreme
cases must be found by adjusting the distance cutoff.

The acceptable tolerance for false positives or negatives
depends on the application. For example, in o.-carbon-based
elastic network models, which exhibit a level of detail similar
to our side-chain model, the tolerance for false positives is
high. Hence, long cutoff distances of 10—15 A are typically
applied in elastic networks, about twice the separation of
adjacent o-carbons.!” Ideally, however, we select in our
coarse model only those contacts that correspond to atomic
contacts between side chains, requiring us to use a shorter
cutoff and leading to a risk of false negatives (Figure 2B) in
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Figure 2. ldealized depiction of computational geometry
concepts: (A) Coarse model (black, representative side-chain
atoms) superimposed over the “protein” (gray); (B) contacts
selected by distance cutoff (too short); (C) contacts selected
by distance cutoff (too long); (D) Voronoi cells; (E) Delaunay
triangulation; (F) Delaunay triangulation superimposed over
protein; (G) masked Delaunay triangulation graph superim-
posed over protein; (H) masked Delaunay triangulation graph.

the resulting contact graph. The distance cutoff criterion also
assumes that the side chains are densely packed and that the
packing density remains invariant, which is true only for
tightly folded proteins.

2.4. Generalized Masked Delaunay Tetrahedralization.
The Voronoi diagram (Figure 2D) and the related Delaunay
triangulation (Figure 2E) are well-known proximity measures
that automatically adapt to the packing density and do not
require cutoff parametrization. Voronoi cells correspond to
a nearest-neighbor tessellation of the embedding space:'®
each Voronoi cell contains one representative atom (repre-
senting a single side chain) and the region of space that is
closer to that representative atom than to any other. A
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Figure 3. General masked Delaunay (GMD) tetrahedralization of side-chain contacts (blue) in villin (brown, PDB entry 2F4K;
see text): (A) Order 2 contacts; (B) order 3 contacts; (C) order 4 contacts. Molecular graphics were created with VMD.2?”

Delaunay graph is the “dual graph” of the Voronoi graph
for the same set of representative atoms; one obtains the
Delaunay graph by connecting representative atoms whose
Voronoi cells share a face or edge. It is straightforward to
generalize the first-order Voronoi cells in Figure 2D to higher
order; a second-order cell, for instance, corresponds to the
regions of space closest to a particular pair of representative
atoms. In general, kth-order cells correspond to regions in
space that are closest to a particular k-tuple.'” Such higher
order cells might be very small in size (for a depiction see
Figure 2 in ref 19).

The Delaunay graph (Figure 2E) appears to be well-suited
for our identification of adjacent contacts among representa-
tive atoms in three dimensions, but only a subgraph of the
Delaunay graph is embedded in the protein structure
(schematically shown in Figure 2F). We thus use the so-
called “masked Delaunay” tetrahedralization introduced by
Martinetz?° to represent the protein shape more accurately
(Figure 2G,H). The Martinetz masking algorithm takes
advantage of a theorem (theorem 3 in ref 21) stating that
the existence of a second-order Voronoi cell between two
representative atoms is equivalent to the presence of a
Delaunay edge between them (Figure 2E). An edge-defining
second-order Voronoi cell is identified when it contains at
least one point of a discretely sampled masking manifold.
In our application, the proposed mask is the protein structure
and the required discrete sampling is provided naturally by
the protein atoms. Figure 3A illustrates the three-dimensional
masked Delaunay tetrahedralization for villin.

The original masked Delaunay approach identifies a
second-order graph (Figure 3A), connecting pairs (1-sim-
plices) of adjacent representative atoms. We generalize the
masked Delaunay approach to higher order, connecting
triangles (Figure 3B), tetrahedra (Figure 3C), or, in general,
(k—1)-simplices, where k is the order of the generalized
masked Delaunay graph. This higher order generalization is
motivated by the need for a discrete metric for the separation
of arbitrary pairs of representative atoms in the GMD context;
we use as a metric the minimum order k of the GMD graph
for which the pair forms an edge. This discrete k-metric
enables us to establish a recrossing filter for accurate
detection of contact transitions (further discussed below). The
recrossing filter aims to suppress any time-dependent spuri-
ous variations in the graph and will also suppress the effect
of sampling granularity, i.e., the spacing of generic atoms
in the system that might lead to missing GMD edges. To
our knowledge, the GMD graph is a new concept, but the

related Voronoi cells have already been generalized to higher
order, as described above.

Following Martinetz’s original definition of the masked
Delaunay graph,? and sampling the protein mask by the full
atom representation, we arrive at a compact formulation of
the order-k GMD as applied to biomolecular systems:

(i) Begin with the empty graph G, atom positions 7; € R®
(i=1,2, ..., N), and representative side-chain atom positions
v eER(G=1,2,..,M).

(i1) For each atom position 7;, identify a set of k indices
S: = {ji» j2» ---» jx} and its complement SF, S; U S¢ = {1, 2,
.., M} with

1, = 2,1 <15~ < .<IP, = 3,1 < [D=D) (jeS$)

(iii) Add the (k—1)-simplex with vertices (W;,, Wj,, ..., W},)
to G; continue with (ii) until all atoms have been explored.

For a general order £, rule (ii) implies that an edge in the
GMD corresponds to a nonempty kth-order Voronoi cell,
where in our case the nonempty property refers to the
sampling by at least one atom in the system. The rule requires
only a partial sorting of the w;, which can be efficiently
implemented with complexity O(NkM) per trajectory frame.
The proposed GMD algorithm is efficient since it does not
require an expensive geometric construction of Voronoi
polyhedra or Delaunay tetrahedra.

The effect of the GMD order k on the pair distance
distribution of the representative side-chain atom model is
demonstrated in Figure 4. The tail of the distribution arising
from the second-order GMD (a subgraph of the traditional
Delaunay tetrahedralization) reaches to distances as high as
10 A. Figure 4 shows that a 10 A cutoff would be too
permissive and would include many higher order (i.e.,
redundant) contacts. As a trade-off between false positives
and false negatives in cutoff-based graphs, we thus recom-
mend cutoff values of ~7 10\, which would include the peak
of the second-order GMD and only a small number of third-
order GMD contacts.

2.5. Suppressing High-Frequency Motion. MD time
series exhibit a considerable amount of fluctuation on short
time scales, introducing noise in the conformational analysis.
This noise complicates the reliable identification of significant
“level shifts” in the distribution of representative atom pair
distances that are relevant over longer time scales (the term
“level shifts” is used in time series analysis for low-frequency
changes of a nonstationary signal?). Such shifts are impor-
tant both for the cutoff and GMD graphs since they affect
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Figure 4. Pair distance distribution histograms for the
representative side-chain atom model (see text). Histograms
are sorted by the minimum GMD order of a representative
atom pair (the smallest number k whose GMD includes the
edge). Shown in color: minimum GMD order 2 (green), 3 (red),
4 (blue), and >4 (gray). The frequency values were sampled
from trajectory 2 (peak distances and shapes of the pair
distribution functions are trajectory invariant).

the time-dependent distance matrix and thereby determine
the formation and breaking of graph edges. Figure 5SA shows
a separation distance time series of two representative atoms
exhibiting typical level shifts. The two side chains form a
contact from 600 to 1400 ns, but a direct assignment of
contact formation and breaking using a cutoff of, for example,
8 A would yield many spurious transitions within this time
window due to the noise present on short time scales.

An abundance of alternative low-pass filtering and shift-
detection methods have been proposed.”*** We tested two
well-known and efficient filters for smoothing the time series,
the moving average and the median, both defined within a
sliding window. In this work, the median is defined as the
smallest number in a series such that at least half the numbers
are no greater than it. The median is influenced only by the
ranking in the sample, making it robust against outliers. The
moving average, on the other hand, is a linear filter, and
thus it can be easily parallelized if desired. Figure 5B shows
the performance of the moving average and median filter as
applied to the level shift near 600 ns, indicating that the
nonlinear median filter offers a satisfactory preservation of
the shift.

In the following section, we implement the median filter
for suppressing high-frequency noise in the distance matrix
time series. The window half-width, o, is an important time
scale parameter defined by the user which controls the
number of events that are detected. In preliminary testing,
we have found that half-widths on the order of 10—100 ns
provide a reduction of spurious transitions by 2—3 orders
of magnitude (Supporting Information Figure 1) relative to
the absence of a filter. The choice of 6 depends on the time
scale of the molecular process investigated by the user.

2.6. Suppressing Trivial Recrossings. One of the well-
known problems in transition-state theory®* is the overcount-
ing of spurious recrossings at the boundary between two
states.'>?> Such recrossings may occur even after median
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filtering, e.g., in the case of cutoff-based contact graphs when
the cutoff is close to the mean of a distance distribution.
The “event log” file (see Supporting Information) gives an
example of repeated formation and breaking of the same
contacts in the absence of any suppression of such recross-
ings. An overcounting of transitions occurs also for GMD-
based events, since the Delaunay tetrahedralization is sen-
sitive to representative atom motions. Several approaches
have been proposed to remedy this problem, including the
“almost Delaunay” triangulation by Bandyopadhyay and
Snoeyink.?® Here we take a different approach, exploiting
the time dependence of the underlying model.

A large number of recrossings is simply an indication that
a classification into contacts and noncontacts is not sufficient
for the intended purpose of tracking “significant” level shifts.
To compensate for these unwanted effects, we have devel-
oped a “trivial recrossing suppression” scheme (see Sup-
porting Information). The idea, discussed in the “stable states
picture” of chemical reactions® and recently used in the
construction of Markov models from MD simulations,'? is
to introduce a buffer region and to track crossings until this
buffer has been crossed completely. Figure 6 provides an
overview of the nine possible paths crossing the buffer and
identifies the remaining “nontrivial” contact formation and
breaking events (green and red arrows, respectively), after
application of the recrossing filter. Numeric labels assigned
to the regions by our algorithm (Supporting Information) are
also shown.

The use of a buffer requires the definition of a “contact
metric” that separates the buffer from contacts and noncon-
tacts. The metric may be continuous, as in the case of cutoffs,
or discrete, as in the case of GMD graphs, where we use the
minimum GMD order of an edge as metric (the smallest
number k whose GMD includes the edge). The width of the
buffer region is a free parameter defined by the user. In tests
using cutoff-based contacts and the stationary trajectory 2
(which exhibits little activity and is thus a good test system
for detecting spurious recrossings), we have found that even
very small buffer zones of 0.3—0.5 A are highly effective
in eliminating unwanted recrossings (Supporting Information
Figure 2). In the case of GMD, we found the smallest
possible buffer with a minimum order 2 (contacts), 3 (buffer),
and 4 or higher (noncontacts) to be effective; it will be
denoted as the “k = 3” crossing buffer in the following
discussion.

2.7. Kernel-Based Activity Measure. The analysis de-
scribed so far yields a detailed listing of K broken and formed
contacts at corresponding times #; (i = 1, ..., K). The cutoft-
or GMD-based activities (rates of events) are computed from
the event times by smoothing with a Gaussian kernel:

| &
alt) = —— ze*(t - 1)?20° (1)

270 5

The activity a(f) is not normalized to unity as in probability
density estimation, but to K, the total number of events, such
that a gives the number of events per frame. The kernel
standard deviation ¢ is matched to the median half-width 6
as follows. The median filter can be considered a low-pass
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Figure 5. Smoothing of a typical contact time series (black) by moving average (red) and median filters (blue): (A) Full time
window; (B) detailed view of a level shift at 600 ns. Shown is the separation of model atoms representing Asp5 and Phe10 in
trajectory 3. The moving average and median filters used a sliding window of half-width = 100 ns.
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Figure 6. Suppression of trivial recrossings using a buffer
zone (blue) between contact (green) and noncontact (red)
zones. Nine types of buffer boundary crossings (thin black
arrows) are theoretically possible. The colored arrows mark
the time of four designated crossings (green, contact forma-
tion; red, contact breaking). All other crossings are suppressed
(see text). Red numbers show initial numeric values used in
the bidirectional tracking (see Supporting Information). Blue
numbers are the final labels assigned to each of the nine
crossing types. The metric for assigning zone boundaries may
be continuous (distance cutoff) or discrete (GMD minimum
order).

contact metric

v

filter that attenuates frequencies above (20)~! (the inverse
of the median window width). The minimum sampling rate
(or Nyquist rate) should be twice this frequency, or 1,
according to the Nyquist—Shannon sampling theorem. The
“full width at half-maximum” (fwhm) parameter is com-
monly used to describe the resolving width of a kernel. This
width must be small enough to resolve Nyquist rate samples.
For the Gaussian kernel, the fwhm = 2(2 In 2)"?c is thus
matched to the inverse Nyquist rate: fwhm = 0.

Although it would, in principle, be possible to sample
above the Nyquist rate (i.e., 0 could be considered an upper
bound for the kernel fwhm), we note that the smoothness of
the activity curves is critical for estimating basin minima
and basin transitions corresponding to local extrema of a(f),
so the maximum fwhm = ¢ is chosen in our application to

ensure the maximum smoothness of a(r) (see Results and
Discussion). The smoothing parameter O thus corresponds
to both the half-width of a median filter and the fwhm of a
Gaussian kernel in our application.

2.8. Output. Our implementation provides a number of
output files for inspection, plotting, and visualization of the
methods described above: (a) a detailed log file of formation
and breaking of contacts (for an example, see Supporting
Information); (b) an activity time series data file containing
the frame number, combined activity a(f), and separate
activities derived from either formation or breaking events;
(c) trajectory files containing basin minima and basin
transitions corresponding to local extrema of the combined
activity a(f); (d) a VMD-readable®’ contact graph for each
frame (Figure 3A), enabling animation of contact graphs.

In the following section, we illustrate the use of the
proposed analysis tools in practical MD applications.

3. Results and Discussion

The major idea associated with the tools introduced in the
previous section is their ability to decompose the overall
dynamics (expressed by the activity curves a(f) of eq 1) into
constituent individual events related to the breaking and
formation of amino acid side-chain contacts. Before assessing
the utility of detailed event logs in the practical analysis
workflow, it is useful to compare the activities a(f) to more
traditional rms alignment techniques. Any similarities with
the traditional techniques are nontrivial due to the different
methodological paths taken by our methods. Differences, on
the other hand, will suggest application areas for which our
strategies are uniquely specified. We will describe two
especially advantageous applications, the visualization of
activity measures and the identification of activity basins and
transitions in the trajectory.

3.1. Comparison of Tools for Activity Analysis. Figures
7 and 8 show the results of GMD-based (A) and cutoff-
based (B) activity analysis applied to the “generic” trajectory
1 and the “folding” trajectory 4 (results for trajectories 2
and 3 are shown in Supporting Information Figure 2 and in
Figure 9, respectively). For comparison with traditional
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Figure 7. Comparison of conformational analysis tools
applied to trajectory 1: (A) GMD-based activity (k= 3 crossing
buffer); (B) cutoff-based activity (6.0—7.0 A crossing buffer);
(C) rms fluctuation in a sliding window; (D) o-carbon rms
deviation from PDB entry 1Y57. The smoothing parameter 6
setting Gaussian fwhm and median half-widths (see text) was
12.5 ns.

techniques, Figures 7 and 8 present also the rms fluctuation
(C) and rms deviation from the native structure (D). The
rms fluctuation in C measures the all-atom variability of
consecutive frames in the trajectory weighted by a sliding
Gaussian envelope function. To provide comparable detail,
we have again matched the fwhm of the Gaussian envelope
to the smoothing parameter O (see above). We note that the
unusual choice of a Gaussian envelope function for smooth-
ing the rms fluctuations is critical for allowing comparison
between these curves. If we used a more traditional sliding
box envelope for the rms fluctuations, the curves in C would
exhibit high-frequency noise (not shown), reducing the
similarity with those in A and B.

The “generic” Src kinase trajectory 1 in Figure 7 represents
a frequently encountered MD scenario and is thus of
particular utility for the comparison of analysis tools. We
describe similarities of analysis techniques by the Pearson
correlation coefficient. The GMD-based (A) and cutoff-based
activities (B) are quite similar in this case (correlation 0.86).
Likewise, both activities are similar to the time-dependent
rms fluctuation (C; correlations 0.90 and 0.84 for GMD- and
cutoff-based activity, respectively). It is reassuring that the
three measures (Figure 7A—C) are consistent in their
characterization of traditional MD trajectories, even though
there are considerable methodological differences in their
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Figure 8. Comparison of conformational analysis tools applied
to trajectory 4: (A) GMD-based activity (k = 3 crossing buffer);
(B) cutoff-based activity (7.5—8.5 A crossing buffer); (C) rms
fluctuation in a sliding window; (D) a-carbon rms deviation from
PDB entry 2F4K (with “A” variants of dual occupancy rotamers).
The smoothing parameter d setting Gaussian fwhm and median
half-widths (see text) was 100 ns.

design. A minor difference from the two activity measures
is the elevated background level exhibited by the rms
fluctuation (Figure 7C), but this is inconsequential for
analysis. Differences are more pronounced when comparing
the three measures (Figure 7A—C) to the rms deviation. The
first three measures show increased activity preceding a
pronounced conformational change evident in the rms
deviation (Figure 7D) after 100 ns (see also below). The
subsequent activity peaks are not seen to have any major
effect on the rms deviation. For example, the peak at 420 ns
is due to local fluctuations in the disordered C-terminus
which do not affect the rms deviation, since the structure
has already moved far from the native conformation at this
point.

The villin folding trajectory 4 in Figure 8 offers an
opportunity to analyze a trajectory going from an extended
to a compact, native state. The rms deviation (D) shows that
the protein folds at 1400 ns. The GMD-based (A) and cutoft-
based (B) activities yield a more detailed picture of the
dynamic activity of the system up to 1400 ns, although the
measures exhibit striking differences in this case (correlation
0.64). The major difference at the beginning of the trajectory
is due to the fact that most contacts are outside the cutoff
range in the initial extended conformation, but such folding
events are included in the GMD, which does not depend on
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Figure 9. Activity levels exhibited by the diffusive trajectory
3 during the first 1.25 us: total GMD activity (gray); cutoff-
based contact formation activity (green); cutoff-based contact
breaking activity (red, plotted in negative direction to simplify
comparison). A median filter (see text) was applied, using a
half-width of 100 ns. Recrossing suppression used a buffer
of 6.0—7.0 A (cutoff) or in the case of GMD, a buffer of k= 3
(see text). Snapshots of the trajectory above the plot cor-
respond to the initial conformation and to three local minima
of GMD activity that represent the basins directly below them.
Molecular graphics renderings were created with VMD.?” An
animated AVI version of this figure, showing the full length of
the trajectory, is available in the Supporting Information.

the cutoff. This difference highlights the adaptive property
of contacts employed by the GMD approach. The rms
fluctuation (C) is more similar (correlation 0.91) to the GMD-
than to the cutoff-based activity (correlation 0.46). Despite
the relatively high correlation, the local variations of the rms
fluctuation (C) are significantly attenuated in this example
compared to the variations of the GMD activity (A), in
contrast to Figure 7, where the two measures show similar
variability. Also, a small activity peak at 2200 ns is missed
by the rms fluctuation. As described in subsection 3.2, this
activity peak corresponds to substantial fluctuations of the
first helix.

Our results suggest that the rms deviation is the least
reliable predictor of conformational transitions because it
misses some events detected by the other measures once the
rms deviation reaches high numeric values. Also, GMD- and
cutoff-based activities provide some additional information
one could not obtain from rms fluctuations. The GMD- and
cutoff-based activities differ especially in the folding trajec-
tory 4. We explore differences between GMD- and cutoft-
based activities further in subsection 3.3.

3.2. Utility of Detailed Event Logs. One important
advantage of the proposed analysis is that it provides a
detailed listing of constituent events that facilitates an
underlying structural interpretation of the activity, beyond
detection of periods of high activity itself. Traditional
analysis tools based on Cartesian coordinates are not able
to provide such detail. The cases of trajectories 1 and 4
illustrate the utility of event logs provided by the new
algorithms. These can be particularly useful when combined
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with expert knowledge, for example from mutagenesis data,
of which residues are believed to play an important role.

The event logs of the Src kinase trajectory 1 indicate that
Phe405 undergoes a conformational change that results in
its exchange of packing partner during the 90—140 ns time
period. Initially, Phe405 is in proximity of Glu310, Val313,
Leu317, and Met314, contacts which are broken at 89, 90,
96, and 136 ns, respectively. The loss of contacts is
compensated by the formation of a new contact with His384
at 96 ns simulation time. This conformational change mainly
involving Phe405, His384, and Met314 is highly intriguing
and potentially important, since Phe405 and His384 belong
to the well-known DFG and HRD motifs that are almost
universally conserved among protein kinases, and Met314,
Phe405, and His384 are all part of a critical structural “spine”
that was identified to stabilize kinase active structures.®

For the villin folding trajectory 4, formation of helical
(i,i+3) and (i,i+4) contacts contribute substantially to the
activity in the initial part of the trajectory. This is not directly
followed by folding, but rather the protein appears tempo-
rarily trapped due to the formation of nonnative interactions.
Specifically, after approximately 600 ns, a contact forms
between the oppositely charged N- and C-terminal residues.
This contact, together with an overextension of helix 1
through to residue Thr13, characterizes a persistent nonnative
state between approximately 900 and 1100 ns that is
associated with a dip in activity (Figure 8). Exit from this
state is accompanied by the loss of the nonnative helical
contacts in helix 1 and the subsequent formation of helix 2.
The final event in folding is the unraveling and re-formation
of helix 1, together with a reorientation of the loop between
helices 1 and 2. This is accompanied by a burst of contact
formation between hydrophobic residues, including the Phe6-
Phel7 contact in the core, which is formed at ~1400 ns.
After folding, helix 1 occasionally undergoes substantial
fluctuations, leading to the rise in activity at approximately
2200 ns visible in Figure 8. This involves the partial transient
loss of helical structure from helix 1, reflected in changes
in the contacts in that helix, accompanied by a change in
orientation of helix 1 with respect to the rest of the protein
that is reflected in changing contacts between residues at
the beginning of helix 1 with those near the beginning of
helix 2.

Once the contact formation or breaking events are identi-
fied, geometric inspection tools such as those provided by
VMD?” may add to the interpretation. It would have been
impossible to extract this highly specific information with
one of the traditional rms deviation or rms fluctuation
measures.

3.3. Visualization of Activity Results. Given the differ-
ences between GMD and cutoff when applied to folding
trajectory 4 (Figure 8B), we have investigated the discrep-
ancy further using the “diffusive” trajectory 3. Since the
original level shifts that give rise to activities can be separated
into formation and breaking events, we considered separately
the formation and breaking activities derived from the two
classes. The differences were striking for cutoff-based activity
levels (Supporting Information Figure 3; correlation 0.07
between formation and breaking), whereas in the case of
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GMD the formation and breaking contributions were very
similar (Supporting Information Figure 4; correlation 0.77).
This indicates that, at least in the case of folding trajectories,
the formation and breaking of cutoff-based contacts are
asymmetric and at times either one may be dominating,
whereas in the GMD graph the total number of contacts is
nearly constant. We thus propose to visualize separate
formation and breaking activities in the case of cutoff
contacts, and only the total activity of the GMD.

Figure 9 displays such a “combination plot” of activities
together with snapshots of the trajectory at low GMD
activity. An animated AVI version of this visualization is
available in the Supporting Information. One can observe at
several times the pronounced asymmetry in the cutoff activity
levels. A dominant formation of cutoff contacts, such as at
250, 700, and 1000 ns, typically precipitates a stabilization
of the system (as judged by low GMD activity at 350, 750,
and 1100 ns). Likewise, a dominant breaking of cutoff
contacts, such as at 500 and 800 ns, clearly favors subsequent
folding transitions (corresponding to high GMD activity at
600 and 900 ns). The proposed combination plot thus
provides a nuanced characterization of folding activity, in
which periods of stabilization or destabilization of the overall
fold can be matched with more detailed changes in the side-
chain packing.

The results suggest that inactive periods observed in
folding trajectories are caused by preceding periods of contact
formation of the structure, whereas large-scale folding
transitions follow after periods of contact destabilization. The
observed dependence of structural stability on contact
formation could be used to enhance sampling in folding
trajectories.

3.4. Segmentation of Activity Basins and Transitions.
Figure 9 suggests a natural segmentation of the trajectory
into quiescent “basins” separated by “transitions.” We
assigned local minima (basin centers) and local maxima
(transitions) using a finite difference approximation of the
first derivative of the total (GMD- or cutoff-based) activity
a(t). The local maxima correspond to highly active periods
of the trajectory that separate basins of inactivity. The local
minima roughly correspond to the structures with the greatest
contact similarity to the average structure of the local basin.
These minima are shown in Figure 9 above the GMD activity
plot, representing the inactive basins directly below them.
This strategy can also be applied (after Gaussian smoothing)
to the traditional rms fluctuation.

For typical MD trajectories such as trajectory 1, the
maxima and minima of a(f) are not very sensitive to the graph
method used. For example, 75% of the minima and transi-
tions derived from the GMD activity (Figure 7A) can be
found to be within 5 ns simulation time of like extrema
exhibited by the rms fluctuation (Figure 7C). The similarity
with the rms fluctuation was somewhat less pronounced for
the cutoff-based activity (63%; Figure 7B). As can be
expected, the observed conservation of minima and transi-
tions agrees qualitatively with the above Pearson correlation
analysis. We propose to use the GMD activities for the
assignment of basins and transitions whenever possible, due
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to the more pronounced undulations relative to the rms
fluctuation (Figure 8A,C).

4. Conclusion

We have introduced tools for automated event detection and
activity monitoring in MD simulations and demonstrated their
application to state-of-the-art trajectories. Our method in-
troduces intuitive parameters to be defined by the user, as
follows:

(a) The type of contact graph. We recommend a cutoff-
based graph to detect detailed side-chain contact formation
and breaking, or a GMD-based graph to detect global activity.

(b) The designated crossing buffer. We recommend 6—7
A cutoffs or GMD order k = 3.

(¢) The temporal smoothing parameter 6. This value
depends on the length of the simulation and the desired level
of detail.

(d) The side-chain atom selection. We provide a default
profile for standard amino acid residues, which may be
modified for specific systems or nonstandard residues.

All other steps in the methodology are automated, includ-
ing median filtering, suppression of trivial recrossings, kernel
activity estimation, calculation of basin minima and transi-
tions, and data file output.

Our current serial implementation is sufficiently efficient
to allow for the analysis of microsecond-scale trajectories.
An analysis of 4496 frames of trajectory 3 took only a few
minutes of compute time on a standard Linux workstation.
For much longer trajectories, we expect that parallelization
of the analysis may be required; such parallelization should
be straightforward using, for example, the recently developed
HiMach framework.?

Our implementation brings together state-of-the-art meth-
odologies from time-series analysis, computational geometry,
graph theory, and biochemistry to address the activity-
monitoring and event-detection problem. The limitations of
our methods include the focus on global rearrangements in
the structure; some events of scientific interest leave only
very small footprints in the surrounding protein matrix. Ion
and solvent diffusion through membrane channels, for
example, would require different detection techniques. In
addition, the parameters of our method have not yet been
optimized for lipids and nucleic acids, although it would in
principle be possible to generalize the coarse-grained model
to nonprotein contacts—especially in the case of GMD, which
is independent of specific cutoff distances.

An additional limitation of our analysis is that events are
still relatively frequent for human interpretation (about
100—1000 events were observed per microsecond). For
longer trajectories, it may be helpful to further reduce the
complexity of the contact patterns using one or more of the
following strategies: (i) ignoring contacts formed by residues
with nonexistent or short side chains such as Cys, Pro, and
Ala; (ii) substantially increasing the crossing buffer; (iii)
ranking events by the sequence conservation of participating
residues, the energy levels of participating residues, or a
correlation analysis of the motion of participating residues.

Our tests on four trajectories have revealed a number of
advantages of our activity-based calculations relative to the
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more traditional rms fluctuation. These include (i) a higher
sensitivity at low activity levels (Figure 8 A,C); (ii) a reduced
background noise contribution (Figure 7A, C); (iii) a detailed
listing of individual events underlying the observed activity;
(iv) coarse model calculations that are roughly an order of
magnitude faster than an all-atom analysis; and (v) a
functionally relevant diversification of the tool arsenal: the
GMD activities show an overall fold rearrangement, the
cutoff activities measure contact formation and breaking, and
the traditional rms fluctuation measures the variability of
Cartesian coordinates of neighboring frames. The importance
of automated analysis techniques will only grow as efforts
in high-throughput MD simulation—such as the “Dynameom-
ics” project’®—make large numbers of MD trajectories
publicly available for mining and interrogation.

4.1. Dissemination. All tools described in this article
will be documented and freely distributed as part of the
Python-based “TimeScapes” package at URL http://
www.DEShawResearch.com (Resources). TimeScapes is
capable of reading the trajectories produced by many popular
MD programs, including AMBER, CHARMM, NAMD,
X-PLOR, Desmond, LAMMPS, and GROMACS, making
the package widely applicable.

Supporting Information Available: Supporting meth-
ods, supporting figures, an events log file, and an animation
in AVI format. This information is available free of charge
via the Internet at http://pubs.acs.org.
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Abstract: A computer programs suite, SIMUFLEX, has been constructed for the calculation of
solution properties of flexible macromolecules modeled as bead-and-connector models of
arbitrary topology. The suite consists mainly of two independent programs, BROWFLEX that
generates the macromolecular trajectory by using the Brownian dynamics technique and
ANAFLEX that analyzes that trajectory to get solution properties of the macromolecule. In this
paper, we describe theoretical aspects about the macromolecular model and the Brownian
dynamics algorithm used and describe some of the numerous properties that can be evaluated.
In order to provide examples of the application of the methodology, we present simulations of
dynamic properties of DNA with length ranging from 10 to 10° base pairs. SIMUFLEX is able to
run simulations with more or less coarse-grained models, thus enabling such multiple-scale

studies.

1. Introduction

Solution properties of macromolecules (hydrodynamic coef-
ficients, intrinsic viscosity, radiation scattering-related quanti-
ties...) shed light about their shape and conformation' and
therefore are a primary source of information to predict their
solution behavior. For example, the determination of such
properties are of fundamental relevance when treating with
biological macromolecules (DNA, proteins...), since their
physiological functions are closely related to the solution
conformations that they can adopt.” A powerful tool that
helps to predict and understand macromolecular structure and
dynamics is computational modeling and simulation.’

* Corresponding author e-mail: jgt@um.es.

""Facultad de Quimica Universidad de Murcia.

" Universidade da Madeira.

¥ Forschungszentrum Karlsruhe GmbH, Institut fiir Nanotechnologie.
$ University of Oslo.

There exist well developed procedures based on bead
modeling*™® or alternative approaches® ™ '? to predict hydro-
dynamic properties of rigid macromolecules and nanopar-
ticles. However, most synthetic polymers and many biologi-
cal macromolecules are flexible and do not present a defined
shape. Therefore, the development of computational proce-
dures to predict the solution behavior of flexible and
semiflexible macromolecules is of great interest. The large
size typical of macromolecules and nanoparticles, and the
long times typical of their dynamics, precludes usually the
use of atomic-level models, and the conformational vari-
ability of flexible entities adds further complexity. Thus, the
prediction of solution properties requires simplified schemes,
based on more or less coarsely grained models. The classical
bead-and-spring model of polymer physics, in which the
model elements represents large pieces (subchains) of the
long polymer chain,'*'* is a very coarse grained model.
Nowadays, the coarse-grained modeling concept is being

10.1021/ct900269n CCC: $40.75 © 2009 American Chemical Society
Published on Web 08/24/2009
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applied with more detail, with models whose elements
represent, for instance, the repeating units - amino acid or
nucleotide residues - of biomacromolecules.'> On the other
hand, useful schemes to build coarse-grained models have
been recently developed.'®'” Because of the widespread
utilization - over the past two decades - of atomistic
molecular dynamics simulations, there are many commercial
and public domain tools for that purpose. However, for
multiscale, coarse-graining simulation, one misses a wide
availability of similar tools. Thus, we have intended'® to
develop computational methodologies where flexible mac-
romolecules are represented at such a coarse-grained level
as bead-and-connector models and to predict their solution
behavior by simulation techniques as Monte Carlo (MC) and
Brownian dynamics (BD).'®

When the simulation of flexible entities is restricted to the
prediction of conformational, equilibrium properties, and
some overall hydrodynamic coefficients, Monte Carlo meth-
ods are applicable. In order to provide a tool for the MC
simulation of quite general flexible bead-and-connector
models, we recently published the public-domain program
MONTEHYDRO, " that implements an importance sampling
Monte Carlo procedure for the generation of random
conformations of flexible structures, which includes the
calculation of overall hydrodynamic properties in the so-
called rigid-body treatment,?* 22 obtained as conformational
averages over the values calculated for instantaneous con-
formations considered as rigid structures.>>

However, to study dynamic aspects of flexible macromol-
ecules in solution, such as relaxation processes and non-
equilibrium behavior, it is necessary to solve the equation
of motion that governs the macromolecular dynamics. This
can be done by using molecular dynamics (MD) or Brownian
dynamics (BD).?* Because of the above-mentioned draw-
backs, MD is not adequate for long time and size scales.
BD is a numerical technique to solve the stochastic equation
of motion that arises from considering the solvent as a
continuum, thus eliminating the solvent degrees of freedom
which allows for reaching longer times in the simulated
physical system. In other words, BD simulations describe
the Brownian motion of a collective of frictional elements,
beads in our model, which can interact with each other
through different potentials.

An essential aspect in the BD simulation is the inclusion
of the so-called hydrodynamic interaction (HI) effect, which
determines the solvent-mediated influence of the motion of
every element of the model on the others. Our group® 2’
was among others®® ** who pioneered the use of BD
simulations including hydrodynamic interaction (HI) effects
to predict dynamic properties of macromolecules in solution.
As it is known from polymer hydrodynamic theory,'*>> and
confirmed by BD simulations,?®*%*” the rigorous inclusion
of the HI effect (avoiding approximations, like that of
conformational preaverage) is essential for the accurate
prediction of hydrodynamic properties results comparable
to experiments. Nevertheless, BD simulations without inclu-
sion of HI sample correctly the configurational space, so that
some authors have proposed that BD could be used as a smart
Monte Carlo method.*® This adds a further utility to BD
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methodologies, providing an efficient way to obtain also
equilibrium conformational properties.

Along our previous works we have been developing a BD
simulation scheme that enables for the calculation of solu-
tion properties of flexible macromolecules with arbitrary
complexity. Our procedures take into account fluctuating
(nonpreaveraged) hydrodynamic interaction as well as the
possibility of including different types of intramolecular
potentials to represent excluded volume conditions (solvent
quality) and electrostatic interactions. That computational
scheme is implemented in a suite of public domain (freely
available from our Web server, see below), named SIMU-
FLEX, which is presented in this paper. The suite consists
mainly of two programs BROWFLEX and ANAFLEX. The
program BROWFLEX generates a Brownian trajectory of a
flexible bead-and-connector model with arbitrary connectiv-
ity, and the program ANAFLEX analyzes that trajectory to
obtain several steady and time-dependent macromolecular
quantities. In this way, many conformational and hydrody-
namic solution properties, from single-valued coefficients to
more complex experiments as well as different time cor-
relation functions, can be straightforwardly evaluated from
the Brownian trajectory. Furthermore, a most interesting
feature of the BD technique is that it allows the simulation
of the behavior of an individual molecule,***® which is of
great importance due to the emergence of single-molecule
experimental techniques.*' At this respect, SIMUFLEX is
an useful tool to study single-molecule behavior of flexible
macromolecules with arbitrary topology. Thus, our contribu-
tion joins those of other groups who have published
Brownian dynamics simulation programs with different scope
or structure*>** and focused on particular macromolecular
systems (for instance the UHBD package*? is appropriate
for studying protein—protein association). On the other hand,
the SIMUFLEX package was devised to treat with a variety
of macromolecular models and physical situations, for
example the presence of external agents, as well as to analyze
easily an amount of macromolecular properties including a
number of commonly employed correlation functions.

In this paper, we first describe some theoretical aspects
of the modeling and BD simulation methodology imple-
mented in SIMUFLEX. Then, we present several examples,
all concerning the dynamics of DNA molecules in solution.
In order to illustrate the multiscale possibilities of SIMU-
FLEX, the examples span a wide range of DNA sizes and
cover both bulk-solution and single-molecule properties.

2. Models and Simulation Methods

In this section we specify the two main features in the
simulated model. The first one corresponds to the mechanical
or energetic features pertaining to the molecule itself and,
eventually, its interaction with external agents (e.g., fields,
walls, etc.). The second group of aspects comprise those
relative to the motion of the molecular model in the viscous
solvent, like viscous drag, hydrodynamic interaction, Brown-
ian motion, etc., which are key factors for the construction
of the simulation algorithm.

2.1. Mechanical Model: The Force Field. The simulation
model is composed by what we generically call elements,
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Figure 1. Pictorial representation of the generalized bead-
and-spring model.

which will be later considered as spheres, or “beads”, for
the description of their hydrodynamic behavior. The N
elements interact in a number of ways, which give rise to a
potential energy that we decompose in several contributions

V(tot) — 2 Vf;otm) + 2 Vg}(ng) + vajtzlrs) +
conn ang tors

z foprair) + 2 ijCHpair) + EVfE) (1)

EVpairs CHpairs i

The terms in eq 1 correspond to each kind of interaction, as
described in the following paragraphs. A schematic overview
of the model is displayed in Figure 1.

Primarily, the elements are joined by connectors, which
describe the topology of the molecule or particle that is being
modeled. A common case is that of linear chains, in which
each element (except the terminal ones) is joined to its two
neighbors. In general, an element may be joined to an
arbitrary number of other elements. The sum extends over
all the pairs of connected elements. Connectors behave
mechanically as springs with an associated potential V(1)
that depends on the instantaneous distance between the two
joined elements, equal to the length of the spring vector, /;
= Iryl = Ir; — ri, where r; is the position vector of the i-th
bead. Among others, BROWFLEX considers the following
spring potential devised in a previous work to simulate
dendrimer molecules**

Lo —
V(mnn) — _lHIZ ln( max ) _

2 e —
1 (lmax + l)(lmax - le)
2Hlmdxleln [ (lmax - l)(lmax + le) (2)

In eq 2 subscripts ij, that should be attached to Vo™, [,
ley, Lnax, and H, are omitted for the sake of legibility. The
equilibrium length [, (V°"(1,) = 0), the maximum elonga-
tion I, and the force constant H are the three parameters
of this general spring potential, which we call “hard-FENE”
because it includes, as particular cases, several commonly
used spring types. When [,,,, — oo (in practice, a sufficiently
large number), it reduces to V" = 1/2H(l — 1,)?, proper
of a Hookean (Fraenkel)** spring that is usually employed,
with a large value of H, to represent stiff connectors with
an equilibrium length /, (the rms fluctuation in spring length,
() — (1) = HI(kgT)*>**® is, for instance 10% of I, for H
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= 100kgT/1%). Furthermore, with I, — e and [, = 0 we
have V" = 1/2HI?, which is the potential associated with
a Gaussian distribution of the spring length, with (*) =
3kzT/H as used in the Rouse model'? of linear polymer chains
composed by Gaussian subchains. The Rouse model with a
linear force and infinite extensibility is inappropriate when
external agents, particularly strong flows, stretch the chain
and the distribution is not Gaussian. For those cases, the most
popular choice is the FENE (finitely extensible, nonlinear
elastic; Warner)*’ spring, whose potential, Vo = —(1/
)HBE, In(1 — %/, is a particular case of eq 2 for [, = 0.
For the spring potential, as for the other pairwise potentials
depending on the distance between elements, the forces
acting on the two elements are F; = —F; = [dV(r)/dr;]r;/
r;;, where the derivative of the potential adopts a long but
immediate expression (omitted) that allows an easy calcula-
tion of the forces.

The angles, o, between two neighbor springs joining
beads i and j, and j and k, may have an associated potential
Vird(oy). A simple and useful potential for the bending
angle is the quadratic form, V(o) = (1/2)Q(0. — 0)%, where
oy is the equilibrium value of the angle, and Q is a bending
force constant. Again, the subscripts ijk are omitted for
brevity, but we recall that there may be specific values of
the parameters for each angle in the model. In order to make
the program applicable to chemical entities (real molecules),
we have also included in SIMUFLEX torsional potentials
associated with hindered internal rotation. If ij, jk, and ki,
are three consecutive bonds, internal rotation around the jk
bond can be represented by a potential Vg,@f‘)(qb,-jk,), where
@i 1s the internal rotation angle. In the program we have
included a variety of V(¢) functions, corresponding to the
most frequent kinds of chemical bonds. The expressions for
the forces associated with bending and internal rotations can
be found in the literature.>**°

The force field includes two other kinds of pairwise
intramolecular potentials. One kind, denoted in eq 1 as
fovm"r) is usually for excluded-volume (EV) interactions,
for which BROWFLEX considers various possibilities,
including the useful and meaningful Lennard-Jones potential

e T

r

where €7, and oy, are the Lennard-Jones parameters, along
with other forms, like hard-spheres, exponential or Gaussian
repulsion, etc. The second kind of pairwise potentials
indicated in eq 1 as Vf-j-CHp”ir) is intended for any other
interaction that would superimpose to the excluded volume
effect. An example is the intramolecular electrostatic interac-
tion between charged elements, which can be properly

described by a screened Coulomb, Debye—Hiickel potential
VACHPAD = (Alr)exp(—kr) “4)

where A is related to the charge of the two elements and the
dielectric constant of the solution, and «, the screening
parameter, is related to the ionic strength of the medium.*®
Again, in eqs 3 and 4 the subscripts ij are omitted, and each
pair may have its own parameters.
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Finally, V®) indicates any interaction between any indi-
vidual element and an external agent (or constrain), since
BD is an adequate technique to simulate macromolecules
in, for example, electric fields**° and in biomembranes.
BROWFLEX includes various useful possibilities like in-
teraction of a charged element with an external electric field;
walls that the element cannot trespass; and anchorage, by
means of a hard spring, of an element to a fixed point. In
the BROWFLEX user guide there is a detail relation of the
forces included in the force field of BROWFLEX and how
they must be used to build the chain model.

2.2. Hydrodynamics and Brownian Dynamics: The
Algorithms. For the generation of Brownian trajectories of
the mechanical molecular model in the viscous solvent,
including hydrodynamic interaction effects, we propose the
use of a procedure, based on the Ermak-McCammon>%4¢ (E-
M) algorithm, proposed by Iniesta and Garcia de la Torre*’
(I-GT). In the E-M algorithm, the final position r; of bead i
after at time step At is calculated starting from its initial
position rY, according to

°+A’iD° F°+AiaD’jO+R+A 0
m/‘:l A ’j:i or, i T (Any;
(5)

where FY is the total force on bead i, Dj is the 3 x 3 ij-
block of the 3N x 3N grand diffusion tensor, D, and R; is a
Gaussian random vector with zero mean and covariance

(RR)=2D,At i,j=1,..,N (6)

If the dynamics takes place in a flowing solvent, we include
in the E-M algorithm the term v?, which is the fluid velocity
in the position of the bead i due to the flow field.

As the E-M is equivalent (without the Brownian drift term)
to the first-order Euler algorithm for ordinary differential
equations, Iniesta and Garcia de la Torre proposed and
algorithm inspired in the second-order Runge—Kutta pro-
cedure. In the I-GT procedure, each step is taken twice, in
a predictor-corrector fashion. First, the predictor step is an
E-M step, taking according to eq 5 that conducts to
preliminary new bead positions r’;. Next, the forces, diffusion
tensors, and their gradients are evaluated at these positions,
and then the step is repeated, from the original initial position,
taking the means of the quantities calculated before and after
the predictor step (indicated with superscript *); thus, the
second corrector step is given by

Ar 1 ’ ’
r,=r +k—T§z(D° F 4D F) +
At—Z[( ) ( )]+R’+At(v+v)
J

(N

Although in the I-GT algorithm each step is taken twice,
which amounts to duplicating the computing time per step,
the time step Ar can be remarkably (over 1 order of
magnitude) longer than in the first-order E-M procedure, so
that the computing time needed to simulate a trajectory of a

J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2609

given duration is notably reduced. Several authors have
commented on the advantages of the I-GT procedure.”* >

Fluctuating hydrodynamic interactions between beads can
be accounted for by means of the Rotne-Prague-Yamakawa
tensor,”®>” valid when all elements or beads of the chain
are equal size. Garcia de la Torre and Bloomfield’® extended
that tensor to the case of nonequal elements. Using that HI
tensor, the diffusion tensor that enters in the Brownian
algorithm, Dy, reads

kgT
i Smyorij

+ ruru + 02 + sz(ll _ rt/rt/)]

2 3 2
rij ry ry

®)

where r;; is the distance between beads i and j, and I is the
unit tensor. If beads i and j overlap (r; < 0; + 0;), then

k,T T
a (1 — 21)1 -

— 3 Nty
i 6mn.o 20

32 10

&)

where 0 = 0; = 0; if beads are equal size or 0 = (0; + 0))/2
otherwise.

Using this representation of the HI effect in the diffusion
tensors instead of the original Oseen tensor, the gradient oD,/
or; terms in eqs 5 and 7 vanish and the simulation algorithm
becomes simpler.

The most time-consuming process in BD with HI is the
generation of the random displacement vectors, which require
the calculation of a matrix B that satisfies D = B+B”. For
this purpose, McCammon and co-workers>**® used Cholesky
decomposition, with computing time proportional to N* with

= 3, and Fixman’? proposed an alternative procedure,
based on a Chebyshev polynomial approximation, that has
been implemented by some authors,®°”* with a ~ 2. It is
clear that for sufficiently large N, the Fixman procedure will
be more efficient, although (depending on details of the
numerical implementation) for the moderate N employed in
many instances, the procedure of McCammon may be faster.
BROWFLEX will implement both methods, and a detailed
comparison is to be published separately.

As in most dynamic simulation techniques, the time step
At must be sufficiently small so that the forces do not change
much in the step. When hard springs and other strong
interactions are present in the model, this requires quite short
steps. However, the fluctuations in hydrodynamic interaction
are much slower than those interactions, and during such
short time steps the change in the diffusion tensor is quite
small. Then, in an efficient strategy,“’63 the D tensor is not
calculated at each time step; instead, it is kept fixed for a
block of (say, 5—50) consecutive time steps, during which
the same B is used.

As indicated above, BROWFLEX includes also the
simulation of Brownian dynamics in a flowing solvent, which
allows the prediction of rheological properties and single-
molecule phenomena in flows.>”**** In a homogeneous flow,
the velocity of a fluid element can be written as

VW=G-r, (10

1
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Table 1. Velocity Gradient Tensors for Different Types of Flows

de la Torre et al.

tensor simple shear uniaxial elongational planar elongational
09 0 & 0 0 £ 0 0
veloc. grad., G 000 0 —¢2 0 00 O
000 0 0 =& 00 —¢

where r; is the position vector of the fluid element, and G is
the velocity gradient tensor that characterizes the flow. Table
1 gives the expressions®>®° of that tensor for three common
type of flows which, among others, are included in our
program.

3. BROWFLEX, the Simulation Program

As commented on above, BROWFLEX is the program
devised to perform both equilibrium and nonequilibrium BD
simulations of bead-and-spring chains with any topology and
with the possibility of selecting among several interaction
potentials associated with connectors, angles, torsions, and
nonbonded beads.

The information required to control the simulation is
organized in several input files having a simple, clear format,
so that long input files that are required in some situations
can be written by other user-supplied ancillary programs.
Thus, as other available software from our lab, BROWFLEX
is a data-file driven program, and it is not necessary to have
any script for running the simulations. The main input data
file just contains the collection of names of both the other
input files and the output files, as appreciated in Figure 2A.
One of the output files will provide a run-time simulation
report and the other one will contain the trajectory, i.e. the
Cartesian coordinates defining the macromolecular confor-
mations along the time.

Three compulsory input files are those containing (i) the
initial conformation (initcfile.txt) that consists just of a list
with the beads Cartesian coordinates; (ii) information on
molecular features as number of beads and their radii,
connectivity, and parameters of the forces (moleculefile.txt);
and (iii) information on simulation features as its duration,
the sample size (number of molecules), the time step value,
and the type of algorithm used (brownfile.txt). In Figure 2,
we show two examples of moleculefile.txt, one for a 12 base
pairs double-helical DNA model (Figure 2B), and another
one for a 471 base pairs bent DNA model (Figure 2C) (point
lines indicate that content is larger but it was omitted to save
space). As appreciated, the molecular file is formed by
several blocks of information that allow for defining indi-
vidually the different components of the model. Thus, we
have a list with the beads hydrodynamic radii, next a list of
bonds where the indices of the two connected beads and the
connector force parameters are supplied, next the list of
bending interactions with the indices of the three beads
involved and the bending force parameters, then a block for
torsions that in this case are not present, and finally the list
of excluded volume interactions with the indices of the pair
of beads not involved in bonds or angles and the excluded
volume force parameters.

4. Analysis of Trajectories and Calculation
of Properties. ANAFLEX, the Analysis
Program

The other program that forms part of the SIMUFLEX suite,
named ANAFLEX, was designed to analyze the trajectories
generated by BROWFLEX. Separating the generation and
the analysis of trajectories has the obvious advantages of
speeding up the trajectory generation and allowing for
analyzing the trajectory in as many ways as desired.

tlog file

(/\) bentDNA471bp-log.txt
!trajectory file

bentDNA471lbp-tra.txt
moleculefile.txt !molecular file
initcfile.txt !initial file

- !no flow file

- 'no electric field
- 'no wall file

- !'no special file
brownfile.txt !brownian file

(E;] 20. !temperature (Celsius)
0.01 !'solvent viscosity
12000. !molecular weight
DNA 20 base pairs 'title
40 !number of beads
3.5E-8 !bead radius
166 'number of connectors
7 10 1 2 1623.9 1.9127E-7 !middle connector
8 10 1 2 1623.9 1.3584E-7
9 10 1 2 1623.9 7.0538E-8
10 11 1 2 1623.9 7.0538E-8
10 12 1 2 1623.9 1.3584E-7
10 13 1 2 1623.9 1.9127E-7
10 29 1 2 1623.9 1.9322E-7
10 30 1 2 1623.9 2.0000E-7
10 31 1 2 1623.9 1.9322E-7
0 !'number of bending angles
0 !number of torsions
0 !number of nonbonded interactions
[(::) 20. !temperature (Celsius)
0.01 !solvent viscosity
2.8E+5 !molecular weight
Bent DNA 471 base pairs title
11 !number of beads
26.7E-8 !bead radius
10 !number of connectors
1 2 1 2 1.580 160.0E-8 !1st connector
10 11 1 2 1.580 160.0E-8 !last connector
9 number of bending angles
1 2 3 1 2 0.000 7.39E-14 !1st angle
5 6 7 1 2 2.356 7.39E-14 !middle angle
9 10 11 1 2 0.000 7.39E-14 !last angle
0 !number of torsions
0 number of nonbonded interactions

Figure 2. Examples of two of the user-supplied input data
files for BROWFLEX: (A) main input file and (B,C) molecular
input files for the 12 base pairs double-helical DNA model
and for the 471 base pairs bent DNA model (point lines
indicate that content is larger but it was omitted to save
space).
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Actually, ANAFLEX analyzes the Brownian trajectories
in a number of ways:

¢ One of the analysis modes consists of the evaluation, as
averages over a trajectory of a molecule simulated at
equilibrium (steady-state) conditions, of overall properties,
either conformational, like the radius of gyration, or hydro-
dynamic coefficients, in the above-mentioned rigid-body
Monte Carlo approach (RBMC),?*"?%%7 such as intrinsic
viscosity or diffusion coefficient.

e In another mode, the trajectories of a number of
molecules can be analyzed obtaining the averages, over the
sample, of the properties as a function of time, thus predicting
the time evolution of bulk solution properties upon the
cessation of external agents (e.g., electrical or flow fields).
Of course, it is possible to follow the evolution of each single
molecule in order to characterize molecular individualism
in single-molecule properties.-!:0%:6?

¢ The equilibrium BD trajectories can be also analyzed to
study the translational, rotational, and internal dynamics of
rigid and flexible particles through the calculation of various
time correlation functions, C(r) = {(F(fo,to + 1)), Where F(to,ty
+ ) is a quantity that depends on macromolecular conforma-
tion at time 7, and at a later time #, + #, averaging over all
possible choices of the initial time #,. Some relevant
correlation functions computed by ANAFLEX are as follows:

Translational Correlation.

Crmns(t) = <[rcm(t0) - I.cm(tO + t)]2>to (11)

That is the Einstein equation for the center of mass (cm)
mean-squared displacement, where the quantity r,, is the
position vector of the center of mass. From a linear fit of
Crans(1), the translational diffusion coefficient can be obtained.

Correlation of Any Interelement Vector, Including
the End-to-End Vector for Linear Topology.

C,'j(t) = <rij(t0) : rij(to + t))zo (12)

In this case, the correlated quantity is the scalar product
of the value of some characteristic vector, ry, defined between
elements i and j of the macromolecular model, at time ¢,
times its value at time #, + . Similar correlations can be
carried out for linear combinations of the r;’s, such as those
involved in the Rouse modes'*"'* of flexible polymer chains.
Thus, the longest relaxation time of the chain can be
computed from the decay of the correlation function of the
first Rouse mode.?®”° For the specific case of a linear chain,
the information on the relaxation time is also contained in
the correlation function of the end-to-end vector ryy.

P, Function of Some Characteristic Vector. The internal
dynamics of a flexible macromolecule can be characterized
by the Brownian reorientation of some unitary vector defined
inside the molecule, u. In such a case, the correlated quantity
will be the angle 0 (indeed its cosine) formed by two
successive orientations of the vector when a time ¢ has
elapsed, i.e. the scalar product of u at two times separated
by r. The correlation functions so defined are the Legendre
polynomials. Particularly, a quite common correlation func-
tion, involved in the time-dependence of various observable
properties (transient electric or flow birefringence and

J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2611

deformation, NMR relaxation, etc.)30’7l

endre polynomial, P,

is the second Leg-

3 ‘u(r, + 1) — 1
(P = ([u(ty) “(Z‘; 01 _

Hcos 01y, 1, + D), — 1
2

13)

P, decay is usually fitted to a multiexponential in order to
obtain relaxation times associated with macromolecular
internal dynamics. In the case of P,-related electro-optic
properties (birefringence, dichroism...) of rigid macromol-
ecules, theory predicts that a set of up to five reorientational
relaxation times can be found.”*””

DDLS Correlation Function. Another interesting function
based on a second Legendre polynomial is the depolarized
dynamic light scattering correlation function, Cppis 7 (also
related to the electric birefringence decay that is proportional
to the birefringence decay),”®’” from which information on
rigid-body rotation and internal dynamics can be extracted

N—1 N—1
Cpprs(t) = ;2 z 2 <P2[llj(l0) . llj'(to + t)]>’o
N—=1 =1 j=1

(14)

As observed, Cppys is related to P, and the scalar product
u;(to) *uy(fy + ) that is the cosine of the angle subtended by
the connector vector j at instant 7, and the connector vector
J at instant f + f.

DLS Correlation Function. The (polarized) dynamic light
scattering correlation function, Cprg, may allow the simul-
taneous determination of the translational diffusion coefficient
and quantities related to the internal dynamics of flexible

parti cles®®7*7> and the macromolecular global size
1S &
Cprs(t,q) = = 2 z e 1 [rilto) =t (15)
NVist j=1 o

where the modulus of the scattering vector, Iql = (47/4)sin(6/
2), is determined by the wavelength of light, A, and the
scattering angle, 6.

Thus, dynamic coefficients (as translational diffusion
coefficient) and time properties (as relaxation times) can be
obtained by linear, polynomial, or multiexponential fits of
different time correlation functions. Those fits are also carried
out by ANAFLEX. In particular, ANAFLEX uses routines
adapted from the program DISCRETE”®® to make multi-
exponential fits. It is well-known that fitting multiexponential
functions with three or more components is an ill-posed
problem. Simpler situations are those of rigid and symmetric
particles or weakly bending rods. In any case one can hope
to extract the longest or a mean relaxation time.””

As BROWFLEX, the ANAFLEX program is driven by
simple data files. Figure 3 is an example of the only and
simple input file for ANAFLEX. The three first lines are
the names of different output files, then it comes a sequence
of numeric codes or “flags” to inform ANAFLEX about the
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bentDNA471bp-res. txt
bentDNA471bp-log.txt
bentDNA471bp-sum. txt

'results file
'log file
!'summary file

10 !'sampling frequency

2 'topology (linear case)
0 instant prop. (1-yes)

1 fanalysis mode (steady)
1,6 'number of properties

18,21,0,0,0
bentDNA471bp-tra.txt

!code for properties
'trajectory file

Figure 3. Example of the user-supplied input data file for
ANAFLEX.

properties to be calculated and the type of analysis to be
performed, and finally the name of the trajectory file is
supplied.

5. High-Performance Simulation in Multicore
Platforms

In many instances, BD simulation problems are suitable for
high-performance computing in multicore servers or clusters,
because they may involve somehow independent simulations.
The case is trivial when simulation is carried out for each
of a sample of many molecules, as in the above-mentioned
studies of time-dependency of bulk properties or single
molecule behavior. Steady-state averages can be calculated
either from a very long trajectory of one molecule or as mean
values of the averages of the values computed for a number
of molecules, and something similar happens when comput-
ing correlation functions C(¢). One can either obtain C(f) from
a single, very long simulation or determine the function for
a number of independent trajectories, averaging C(¢) for each
time . The multiple trajectories can be made practically
independent, if they are sufficiently long, by changing the
sequence of random numbers - in practice, changing the seed
of the sequential generator. Truly independent trajectories
are those starting from different, initial conformations that
would be generated a priori, for instance by Monte Carlo
procedures, or even with an inexpensive BD simulation
without HI.

In order to take advantage of multicore computers and
clusters (even a computer with two Quad processor has eight
cores), we have set up a scheme to run such multimolecule
simulations, based on two ancillary tools. First, Multi-
BROWFLEX “clones” what would be the files for a single
simulation, producing multiple copies changing either the
seed of the random numbers or the file containing the initial
coordinates. It also generates a batch file for all the execution
that is submitted to a load-balancing manager such as Sun
Grid Engine. The outcome consists of multiple results files,
one for each trajectory. Then, there is another tool, Multi-
ANAFLEX, which is in charge of collecting and reading all
those files, producing the final results as the proper averages
over those of each molecule.

6. Examples: Multiscale Simulations of DNA

In order to demonstrate the usefulness and versatility of the
mechanical model, BD algorithms and other methodologies
implemented in the BROWFLEX suite, we have chosen a
well-known and most relevant macromolecule, DNA, in sizes
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ranging from ~10 through ~10° base pairs. With a conve-
nient, more or less coarse-grained bead-and-connector model,
simulations of the dynamics in such multiple scales are
possible employing the same methodology. Next, we show
how BROWFLEX works by applying it to study the
dynamics of several DNA models, always in experimentally
observable situations.

6.1. A Double-Helical Model. There are macromolecular
solution properties related to the local dynamics and structure
of the molecule. In case of B-DNA this implies the
convenience of modeling the double-helix properly. It is clear
that atomic level simulations are quite expensive in CPU
time. Then a suitable mesoscale model is built by considering
the nucleotides in each strand as repetitive units. That model,
proposed years ago by Horta and Garcia de la Torre,*®!
contains the characteristic double-helix parameters: number
of base pairs, pitch, phase angle, helix diameter, etc. This is
a highly valuable model to represent short fragments of DNA.
Our group has already employed that model, where for
simplicity beads lie only on the outside, in order to study
hydrodynamic properties of double-helical DNA®® (later, in
the spirit of this kind of mesoscale simulations, similar
models have been employed by other workers).®*** If larger
DNA fragments were to be simulated, possible interpenetra-
tion of double helices can be avoided by using the hard-
sphere excluded volume included in our program or alter-
natively some other DNA mode] 5**

In this model, nucleotides are modeled by beads all of
them with the same hydrodynamic radius, o. Then, the
number of beads will be N = 2N,,, where N, is the number
of base pairs (bp). In addition, some degree of flexibility is
incorporated by using hard Hookean, elastic connectors
(Fraenkel springs, defined in paragraph after eq 2). For the
sake of minimizing the amount of interactions but keeping
the double-helical shape and the stiffness at short scale, we
found it adequate to connect each bead i to

1. its first neighbors along its strand (beads i £ 1), which
keeps connectivity and bond equilibrium length.

2. its second neighbors along its strand (beads i & 2),
which accounts for bending interactions.

3. its third neighbors along its strand (beads i £ 3), which
accounts for torsional interactions.

4. its counterpart in the other strand (bead i + N,,), which
accounts for interactions between nucleotides forming the
base pair.

5. the first neighbors of its counterpart in the other strand
(beads i + (N, £ 1)), which is necessary in order to keep
the strands together.

Figure 4 shows this model (in the straight, equilibrium
conformation) displaying all the connectors involving one
of the innermost beads (indeed, these are the connectors
whose data have been kept in Figure 2B).

As described in ref 86, we performed BD simulations by
using program BROWFLEX for double-helical DNA models
representing oligonucleotides with a different number of base
pairs Ny, all of them with the following features: helix radius,
r =10 A, pitch = 3.4 A, phase angle either ¢ = 180° (a
symmetrical helix, Figure 4) or ¢ = 120° (a nonsymmetrical
helix, more akin to the Watson—Crick structure), H =
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Figure 4. Double-helical model for DNA (A) showing the
connectors supported by one bead and (B) showing only the
connectors between neighbors in each strand.

Table 2. Diffusion Coefficients and Orientational
Relaxation Times of DNA Oligonucleotides Obtained via
Brownian Dynamics Simulations?®

Nip simul. ¢ = 180° simul. ¢ = 120° exptl
Dy x 107(cm? s71)
8 16.3 +1.8 16.7 £ 1.6 15.3
12 1832+ 04 134 +£1.2 13.4
20 10.6 £ 0.3 10.8 £ 0.5 10.9
Tee (NS)
8 3.3+0.2 3.9+0.5 3.2
12 6.1 +£0.7 7.8+0.8 6.4
20 16.7 £ 1.7 19.0+1.3 16.2

2 Comparison to experimental values obtained by Eimer and
Pecora.?”

200ksT/b1, where b, is the equilibrium length of the connector
binding bead i to its first neighbor in its own strand, 7 =
293 K, 5, = 0.01 poise, hydrodynamic bead radius o = 3.5
A, and equilibrium spring length b, = 7.0 A. The trajectories
generated by the Brownian dynamics simulation were
analyzed with program ANAFLEX in order to compute the
translational diffusion coefficient, D,, and the rotational
relaxation time of the end-to-end vector, 7,.. Within the
statistical uncertainty of the simulations, the results for the
two choices of ¢ are identical. Table 2 shows a comparison
between the values of those dynamic properties obtained by
simulation and the experimental values obtained by Eimer
and Pecora.®” As appreciated, the agreement is quite good.
It is noteworthy that D, and 7., are indeed quite close to the
predictions of a rigid-body hydrodynamic calculation, using
the HYDRO-++ program® for the straight equilibrium
conformation, demonstrating, thanks to BD simulations, the
validity of the RBMC treatment for overall properties of quite
stiff molecules. However, the relaxation time for the (P(¢))
function for a vector perpendicular to the helical axis differs
remarkably from the rigid-body prediction. While bending
is scarcely noticeable in such short oligonucleotides, torsion
of the helix, which influences the diffusivity of such
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Figure 5. Sketch of a nearly touching beads model where
each bead embraces a piece of the DNA double helix.

transversal vector, is much more influential (for more details,
see refs 63 and 86).

Mesoscale models, with one, two, or a few elements per
amino acid residue'>®® are now being considered as an
alternative to atomistic simulation to predict dynamics of
natively unfolded (intrinsically disordered) proteins or that
of the folding process. Such models, and the important,
recently demonstrated,® HI effects in protein dynamics, can
be very adequately covered with our methodology.

6.2. A String of Touching Beads. A higher level in the
coarse-graining procedure results from considering the mac-
romolecular chain from a global perspective for which the
precise local structure is not relevant and assuming that its
flexibility is more or less uniformly distributed along its
backbone. These assumptions give rise to the well-known
wormlike chain model (or Kratky—Porod chain). In such a
model, the double-helical structure of B-DNA is not explic-
itly considered. The wormlike chain can be represented with
the generalized bead-and-spring model by setting constant
the connector lengths, as in the case of a freely jointed chain,
and allowing for the bond angles to fluctuate around their
equilibrium values (0° for an actual wormlike chain) with
an amplitude that depends on the flexibility of the chain.
Thus, the model can be used to represent from rigid to
flexible structures just by playing with the bond angle
parameters. In the same way, the model can be used to
represent structures with local bents just by setting the bond
angle located at the bent position to its characteristic value.

A limiting case of the wormlike chain model would be a
string of nearly touching beads each embracing a piece of the
double helix (see Figure 5). This macromolecular representation,
which could be termed as a “fine-grained” model, was initially
suggested by Schellman,”® implemented in Monte Carlo
simulations by Hagerman and Zimm?®* and in Brownian
dynamics simulation by Allison and McCammon,**°" and is
useful in representing short fragments of DNA of a few
hundreds of base pairs. The bead diameter, which is the same
as the connector length, is set to b = 24.5 A. In that way, the
diffusion coefficients of a straight string of beads are practically
identical to those of a cylinder with a diameter of 20 A, which
is the hydrated diameter of DNA deduced from cylindrical
models.”? Then, the contour length of a model chain with N
beads would be L = Nb = 24.5N A. On the other hand, the
length of a double-helical B-DNA related to the number of base
pairs is L = 3.4N,, A so that the relationship between N and
Ny is N = 0.14N},. In the Schellman-Hagerman-Zimm model,
the flexibility of the chain is represented by a bending potential
quadratic in the bending angle, o, subtended by two successive
links between neighbor beads. The bending force constant is
related to the persistence length, P, by Q = kzTP/b. Therefore,
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Figure 6. Nearly touching beads model for a DNA of 207
base pairs.

for a typical P =500 A and a T=293 K, Q0 = 8.24 x 107"
erg. The connector length is kept more or less constant (~10%
in length fluctuation) by using stiff Fraenkel springs with a
spring constant H = 100kzT/b* = 67.4 erg/cm?.

According to the above specifications and values of the
model parameters, a DNA of 207 bp was modeled by 29
touching beads as illustrated in Figure 6. We simulated two
variants of such a DNA molecule: a) an unbent DNA, with
the equilibrium value of all the bond angles equal to zero,
and b) a bent DNA, with the equilibrium value of the bond
angles zero except for the central one that was set to 40°.

This comparison is intended to analyze the effect of such
sharp bents, induced by some special base sequences, in the
diffusivity of short DNA molecules.”**® For both model
chain, BD simulations with HI were carried out by using
BROWFLEX. From the generated trajectories, the transla-
tional diffusion coefficient and the orientational longest
relaxation time of the end-to-end vector coming from both
the correlation function based on depolarized dynamic light
scattering (applicable to electric birefringence decay) and the
correlation function based on the second Legendre polyno-
mial P, were computed by using ANAFLEX. As noted
above, Hagerman and Zimm?? anticipated, other works®7-%4
confirmed that the RBMC treatment (implemented in MON-
TEHYDRO)'? works well for quite stiff semiflexible mac-
romolecules in the prediction of not only translational
diffusion but also overall rotational diffusion. Table 3
demonstrates that the RBMC results are in very good
agreement with those of the BD simulations.

de la Torre et al.

Table 3. Diffusion Coefficients and Orientational
Relaxation Times of Bent and Unbent DNA Obtained via
Brownian Dynamics and Monte Carlo Simulations

bent unbent
D; x 107 (cm? s™') (RBMC) 2.35 2.33
D; x 107 (cm? s7') (BD) 2.34 2.32
Tee (us) (BD-Py) 2.8 3.2
Tee (us) (BD-DDLS) 25 3.1

6.3. Coarse-Grained Model of the Wormlike Chain. A
cruder coarse-grained representation of the wormlike chain
mentioned above consists of a string of nontouching beads
connected by stiff springs, including a bending potential
between successive connectors that determines the persis-
tence length of the chain (see Figure 7). BD simulations on
this kind of model were presented years ago by Allison and
co-workers?!-76-91:93

The only free parameter of this model is the number of
beads, N. As long as N is large enough the results are
independent of its exact value. Thus, we can assign values
to the parameters of our bead-and-spring chain by previously
choosing a value for N (it is remarkable that a DNA molecule
with 2311 base pairs can be modeled as a chain of only 10
beads).” Then, the connector length is fixed by the relation-
ship b = L/(N — 1). The constant of the stiff springs is set
to H = 100kzT/b?, and the equilibrium bending angle is set
to oy = 0. Finally, the constant of the bending potential, Q,
is chosen to adjust the persistence length, P, or the radius of
gyration, R,, of the real macromolecular chain, and the bead
radius, o, is chosen to adjust its translational diffusion
coefficient, D,. Using the just described parametrization
procedure, we modeled an unbent DNA of 471 bp with N =
21 beads and a bent DNA of 471 bp with both N = 11 and
N = 21 beads. The central bent was set to 45° in order to
reproduce the kind DNA worked out by Stellwagen and co-
workers.”? Figure 8 shows the evolution of the depolarized
dynamic light scattering correlation function for the three
simulated DNA model chains. Those correlation functions
were obtained after analyzing with ANAFLEX the corre-
sponding Brownian trajectories with a duration r = 2000 us
(much longer than the longest relaxation time) generated with
BROWFLEX. As observed, the value of N does not influence
the results. On the other hand, the difference in dynamics of
bent and unbent DNA is easily characterized. That figure is
in agreement with Figure 2(b) in ref 93.

6.4. Single-Molecule Stretching of Long DNA in a
Flow Field. It is well-known that flexible polymer chains
subjected to extensional flows with a rate of strain greater
than a certain critical value experience the so-called “coil-

Figure 7. Bead-and-connector model for a wormlike chain.
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e N=11 bent
e N=21bent
® N=21unbent
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Figure 8. Evolution of the DDLS correlation function for the
three DNA molecules modeled as wormlike chains.

stretch” transition.”® This phenomenon consists of the abrupt
unraveling of the random coil to a stretched conformation.
In an already classical series of single-molecule experiments
carried out with DNA, Chu and co-workers showed that the
coil—stretch transition occurs in a particular manner for each
chain in a given sample.*"*”*® This is called molecular
individualism.®® Brownian dynamics simulation has been
revealed to be an adequate technique to reproduce such a
behavior.' 3240

We show that BROWFLEX is able to reproduce the
experimental results of a sample of DNA molecules as those
employed in one of the pioneering experiments by Chu et
al.*! In that experiment a circular A-DNA with 48.5 x 103
base pairs was converted into a linear chain by thermal
treatment. Then, each macromolecular chain was stained
fluorescently, subjected to elongational flow, and its stretch-
ing behavior was monitored by means of fluorescence
microscopy. According to the authors of that work the stained
DNA employed had a contour length L = 22 um and a radius
of gyration (s*!> = (.73 um (as estimated from the measured
translational diffusion coefficient, D, = 0.47 um?/s). Thus,
assuming a characteristic persistence length for DNA of P
= 0.05 um, the ratio L/P = 440 ensures that DNA is a
flexible chain with random coil equilibrium conformation.
Finally authors inform that the solvent viscosity is 7, = 41
cP and the working temperature is 7 = 22.7 °C. Since we
are interested in reproducing the global conformation and
dynamics of a quite large and flexible DNA chain, we can
use a rough coarse-grained model. The model consists of a
linear chain of N = 20 beads connected by N — 1 = 19
FENE springs that are able to capture both the Gaussian
statistic that appears at low strain rate and the finite
extensibility that plays a role at high strain rate. Thus, each
bead represents a large DNA segment. Taking into account
that L = [,,,,(N — 1), we get a maximum spring length /,,,,
= 1.16 um. Then, by using the experimental radius of
gyration, we get a value for the equilibrium spring length
that, after some fitting refinements, turns out to be b = 0.448
um.

We performed BD simulations of that FENE chain under
elongational flow without EV interactions, which implies
theta conditions, and including fluctuating HI, with a value
of the hydrodynamic parameter h* = 0.25, which corre-
sponds to a hydrodynamic bead radius o = 0.257b.
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Figure 9. Time evolution of the extension of individual DNA
molecules subjected to elongational flow. Comparison of
experimental (left graph adapted from ref 41) and simulation
(right graph) results.
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Figure 10. Time evolution of the distribution of the extension
of a sample of DNA molecules. Comparison of experimental
(left graph adapted from ref 41) and simulation (right graph)
results.

One of the optional input files, intended to describe steady
or time-dependent flows (see BROWFLEX user guide), is
used to specify a steady elongational rate £ = 0.86 s~!. That
is the maximum elongational rate employed in ref 41, a value
for which the molecular individualism is more clearly
appreciated. The property monitored in the experiments by
Chu and co-workers was the chain extension along the flow
direction; therefore, we studied also the time evolution of
that chain property. In order to get a good ensemble, we
simulated 1500 molecules. In this study, ANAFLEX works
in the multimolecule mode, supplying the time evolution of
the sample-average and single-molecule properties (the
extension as measured by Chu and co-workers is among the
numerous properties that the program can analyze).

Figure 9 is a comparison of the evolution of the molecular
extension computed from our simulations to that obtained
experimentally.*' The molecular individualism is appreciated
as the particular paths followed by the time evolution of the
chain extension: different chains experience coil—stretch
transition at different times and reach different amount of
extension. As observed, simulation results are in agreement
with experiments as well as with other computer simula-
tions.”” Furthermore, in Figure 10 we compare the time
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evolution of the histogram representing the probability
distribution of the molecular extension obtained from simula-
tions with that reported by Perkins et al. (Figure 1(B) in ref
41). Both histograms series are in excellent agreement.
Initially, when the Hencky strain is small & = 2.5, most of
the chains are close to their coil conformation although some
of them can be stretched, and therefore both histograms are
slightly broad and present a maximum at low extension (~5
um). As time goes by and strain increases, histograms start
to get broader and eventually a peak at a extension corre-
sponding to the fully stretched conformation starts to develop
owing to the increase number of chains that become
stretched. That peak occurs at the same strain value in both
experiment and simulation. Interestingly, at a higher strain
a second peak at half the maximum extension arises. That
second peak corresponds to folded “hairpin” conformations,
which have an extension approximately half of the contour
length. Again, the simulation was able to reproduce the
experimental evidence.

7. Concluding Remarks

We provide a useful tool for the Brownian dynamics
simulation and analysis of flexible and semiflexible bead-
and-spring macromolecular chain models, SIMUFLEX,
which consists of two programs, BROWFLEX and ANAFLEX.
The programs are easy to use and were designed to be quite
general. Thus, BROWFLEX can handle macromolecular
models with any topology and include a number of common
interaction potentials that can be easily extended in future
versions. A key feature of this BD simulation tool is
the inclusion of fluctuating HI, that allows to perform more
realistic simulations. On the other hand, ANAFLEX is quite
simple to employ and contemplates the analysis of a number
of solution properties (in both steady-state and time-
dependent conditions) and time correlation functions, which
can also be extended in future versions. The examples
employed in this paper have tried to show how the programs
work and have in common to correspond to simulations of
DNA dynamics in different scales. Thus, it was shown how
SIMUFLEX is able to produce results comparable to
experiments for different DNA problems that require to
model the DNA chain with a different coarse-grain level.

8. Computer Methods

The SIMUFLEX suite that includes the BROWFLEX and
ANAFLEX programs, as well as MONTEHYDRO and other
related public-domain software, can be freely downloaded
from our Web site at http://leonardo.inf.um.es/macromol.
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Abstract: We demonstrate that a video gaming machine containing two consumer graphical
cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than
180x in Hartree—Fock energy + gradient calculations. Such performance makes it possible to
run large scale Hartree—Fock and Density Functional Theory calculations, which typically require
hundreds of traditional processor cores, on a single workstation. Benchmark Born—Oppenheimer
molecular dynamics simulations are performed on two molecular systems using the 3-21G basis
set - a hydronium ion solvated by 30 waters (94 atoms, 405 basis functions) and an aspartic
acid molecule solvated by 147 waters (457 atoms, 2014 basis functions). Our GPU implementa-
tion can perform 27 ps/day and 0.7 ps/day of ab initio molecular dynamics simulation on a single

desktop computer for these systems.

Introduction

The idea of using graphical hardware for general purpose
computing goes back over a decade.' > Nevertheless, early
attempts to use GPUs for scientific calculations were largely
stymied by lack of programmability and low precision of
the hardware. The recent introduction of the Compute Unified
Device Architecture (CUDA) programming interface* and
hardware capable of performing double precision arithmetic
operations by Nvidia significantly simplified GPU program-
ming and has triggered an increasing number of publications
in different fields, such as classical molecular dynamics5 -9
and quantum chemistry.'°™'> Our initial implementation of
two-electron repulsion integral evaluation algorithms'? and
the entire direct self-consistent field procedure on the
GPU'*!5 demonstrated the large potential of graphical
hardware for quantum chemistry calculations. In this article,
we continue exploring the use of GPUs for quantum
chemistry, including the calculation of analytical gradients
for self-consistent field wave functions and the implementa-
tion of ab initio Born—Oppenheimer (BO) molecular dy-
namics. We compare the GPU performance results to the
GAMESS** quantum chemistry package running on an Intel
Core2 quad-core 2.66 GHz CPU workstation, a state-of-the-

* Corresponding author e-mail: todd.martinez @stanford.edu.

art desktop computing system. Our “machine to machine”
rather than “GPU to CPU core” comparison provides a
realistic estimate of the actual speedup that can be obtained
in real calculations. Comparison of the total time required
to calculate energies and gradients on these two platforms
shows that the GPU workstation is 2 orders of magnitude
faster than the CPU workstation. This allows us to carry out
ab initio molecular dynamics of large systems at more than
a thousand MD steps per day on a desktop computer.

Analytical Energy Gradient Implementation. The gen-
eral formula for nuclear gradients follows directly from the
expression for the Hartree—Fock energy including a term
accounting for the basis set dependence on molecular
geometry'®

VAEHF = ZD,MV(VAHMV) - Z Wuv(vAS‘uv) +
uv w

Y, (PuDis = 3PP IVa@licl (1

uvio

where A labels an atomic center, W, is the energy weighted
density matrix, S, is the overlap matrix, D,, is the density
matrix, and [uvIA0] are two-electron repulsion integrals over
primitive basis functions

10.1021/ct9003004 CCC: $40.75 © 2009 American Chemical Society
Published on Web 08/25/2009
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wliol = [f x,u(71)xv(71)im(7z)xg(7z)d7fd7§
(@)
2(F) = ¢,(x = X)) = ¥,)"(z — Z,)" x
exp(— o, (7 — T?ﬂ)z) (3)
where 7 = {x,y,z} is the electronic coordinate, Ru =

{X..Y..Z,} is the position of the atomic center associated
with the uth basis function, and o, determines the width of
this basis function. The total angular momentum of y, is
given by the sum of the three integer parameters | = n, + n,
+ n, and is equal to 0, 1, 2, for s-, p-, d-type functions, etc.
Our program currently supports only s- and p-functions,
although we are working on implementation of higher orbital
momentum functions. The first two sums in eq 1 require little
work compared to the last one and are calculated on the CPU
in our implementation. All calculations on the CPU are
carried out in full double precision, while calculations on
the GPU are carried out in single precision unless otherwise
indicated. The last sum, which is evaluated on the GPU,
combines Coulomb and exchange contributions and runs over
only those uv pairs where at least one of u or v is centered
on atom A. As in our implementation of direct SCF,'*!> we
treat the Coulomb and exchange terms separately, generating
all required two-electron integrals and gradients from scratch
using the McMurchie-Davidson algorithm'’

[uviio) = Y EVENIA A, “
Pq

where A, (A,) is a Hermite Gaussian product centered on
R,w (R,u,) and Ej)” (E’l") are the expansion coefficients of the
Cartesian Gaussian product uv (Ao) over the Hermite
functions, i.e.

2.(F = Ry (F —R) = X E"R)AF — R})
P

&)

P = aﬂRﬂ + o,R, ©
[ a, +a,

R;V =R, R, 7N

The nuclear gradients V, and V can now be represented in
the new variables R}, v and R/w

o
v, = %T#%VR* +V, (8)
Vy=Ve =V, ©9)

where A and B label the atomic centers of the functions y,
and y,, respectively. In the following, we will use the notation
[plg] as a shorthand to indicate the integral over Hermite
functions in eq 4, i.e. [A,IA,]. Thus, the indices p and g are
pair indices corresponding to uv or Ao, respectively. This
notation follows that introduced earlier in a comprehensive
article by Gill on two-electron integral generation.'®
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A. Coulomb Contribution. The Coulomb contribution
to V4E is generally given by

Coul
V HF

2 DuVDIIU[V (AMV)MU] (10)

uvio

Following established practice, we expand the Cartesian
Gaussian primitive pair products over Hermite Gaussian basis
functions and preprocess the density matrix elements
accordingly'®*°

vnig = VA( >Dn,> Dq[ApIAq]) (11)
14 q

= Y E"D,.D,= Y, E“D, (12)

uvep Aoeq

Substituting eq 8 into eq 11 leads to the final result for
Vi Epp

08
Coul — uPp) ’
Vi By = 2 ——P—0,D, + 20, D,
p o HD) v(p) (13)
J,= 2.D,lplq] (14)
q

I, =Y D,[Veplgl =

q

— DIV, plgl (15
q

In the cases under consideration here (s and p basis functions
and no special treatment of sp-superblocks), there is only
one pair of indices uv for a given p, and we indicate this
with the notation u(p) in eq 13. This dependence is
suppressed for notational convenience in the following. We
calculate J, and J°, on the GPU, while the preprocessing of
eq 12 and the postprocessing of eq 13 are carried out on the
CPU.

Evaluation of J, and J', is performed in a way very similar
to our GPU implementation of the Coulomb matrix formation
algorithm."” Here we use the so-called 1TIPI mapping
scheme where one GPU thread calculates one primitive
integral (or a batch of integrals if higher than s angular
momentum functions are involved). This has proved to be
the best choice if all required quantities are calculated directly
from primitive integrals.'® The fundamental data organization
used for calculating J, and J', is represented in Figure 1,
using the same notation as in our previous article.'” The left
and upper triangles represent the index-symmetry pruned lists
of the ([pl, [Vpl), and lq] pairwise quantities (PQs) with
doubled off-diagonal terms. The PQs are first organized into
three groups according to the total angular momentum of
the pair products, ss, sp, or pp. Furthermore, the [pl and Iq]
lists within each angular momentum grouping are sorted
according to their Schwartz upper bounds

[plSchwartz = lD/,wlmax[plp] 2 (16)

lq]S(?hwartz = |D10|max[q|q]1/2 (17)

where we also use the maximum Cartesian density matrix
elements among all angular momentum functions in a batch.
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Presorted ket- pairwise quantities |q]

Presorted bra- pairwise quantities [p| and [grad(p)|

Block 2, calculates 1(3) and J(4)
final row-wise reduction

{[plal, [grad(p)|ql} integral grid
Each row leads to one Jpjand J'[p) element

Figure 1. J,and J’, calculation algorithm. Each blue-green-bordered square represents four sets of primitive Hermitian integrals
([plq] and [vplq]), which need to be contracted with density matrix elements along a p-row in order to obtain J, and J',. The
upper and left triangles denote the bra- and ket-pair quantities, sorted according to their Schwartz upper bound (represented by
the pink-blue coloration). A GPU 2 x 2 thread block is delineated by a large orange-bordered square comprised of four smaller
yellow-bordered squares (GPU threads). The yellow arrows labeled “memory loads” represent elements of the [pl and Iq] linear
arrays loaded into local memory by the corresponding GPU threads. The blue arrows show the direction along which the block
scans the two neighboring rows, leading to two {J,, J';} pairs of elements. The scan is aborted once each thread in a block
encounters a [plq] integral whose Schwartz upper bound is smaller than 107" au.

Following the usual practice,'® we calculate the Schwartz
upper bound in eqs 16 and 17 assuming p and g have zero
angular momentum. The grouping and sorting of the lists of
PQs as well as the calculation of the relevant quantities is
carried out on the CPU.

When combined, ([pl, [Vpl), and lg] lead to the ([plg],
[Vplg]) integrals required by eqs 14 and 15. These are
depicted by blue-green bordered squares in Figure 1 with
one square denoting all ([plg], [Vplg]) integrals computed
simultaneously by one GPU thread. For example, there are
4 x Ng such integrals ([Aolgl, [AJgl, [A)lg], and [A lg]) if
both ¢ and v functions have zero angular momentum, and
the lg] batch has Ny PQs (Nq = 1, 4, 10 for ss-, sp-, pp-type
batches, respectively). Because of the grouping by angular
momentum, the resulting [plg] integral grid consists of nine
rectangular segments of different integral types ([sslss],
[sslsp], and so on, up to [pplpp]). Each of these integral grids
is handled by a different GPU kernel, optimized for the
specific angular momentum. For simplicity, only one such
grid segment is presented in Figure 1. The pink-blue
coloration in Figure 1 represents the density-weighted
magnitude of the Schwartz bounds for the pair-quantities and
the resulting [plg] integrals.

It can be easily seen from eqs 14 and 15 that J, and J*,
can be computed by summing all integral contributions in
one row p. Because we use the 1T1PI mapping, each blue-
green bordered square in Figure 1 is mapped to a GPU thread
depicted as a small orange square. For simplicity, four such
GPU threads are depicted, organized into a 2 x 2 thread
block. In practice, we use 8 x 8 thread blocks in the

implementation. One such block then processes two rows
of the integral matrix in column-by-column fashion, ac-
cumulating partial results in the corresponding GPU threads
with double precision accuracy. Thus, the integrals and
integral derivatives are computed in single precision, but the
accumulation is done in double precision (on the GPU). As
shown previously,'” this procedure avoids unnecessary
precision loss with minimal cost. After the block reaches
integrals with a Schwartz upper bound smaller than 107!
au, the scan is aborted, and subsequent intrablock row-wise
sum reduction leads to two J, and J’, elements. The PQ
presorting step guarantees that integrals omitted during the
scan are even smaller than 107! au and thus can be safely
disregarded. Because J, is exactly the same quantity calcu-
lated in our previously described Coulomb matrix formation
algorithm,'> while J’, merely adds some additional terms to
be calculated, we simply modified the J-matrix GPU kernels
to incorporate these additional terms.

B. Exchange Contribution. The exchange contribution

XCl 1
VB = 5 D DD, [Viunlial  (18)
uvio

does not allow easy splitting of the work into the D,[pl and
lg]1D, product representation and thus requires different data
organization. Therefore, we generate all required PQs and
integrals from scratch without reusing any data from the
Coulomb step. In addition, we do not preprocess the density
matrix elements on CPU. Instead, the density matrix is
preprocessed “on the fly” for each integral
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Exch _ 1 v ’
VEIE,, = —EVA(ZEg Zqu[AplAq]) (19)
P q

D,, = E’D,D,, (20)

Substituting eq 8 into eq 19 leads to the final result for the
exchange contribution to the energy gradient

Exch — _1 a/l n v
K P A A

2n

K,= Y. D, IplglK,=— > DIV, plgl  (22)
q q

Unlike in the Coulomb energy gradient calculation, here only
the [uvl pair list is pruned according to uv <> vu symmetry
(doubling off-diagonal pairs as appropriate), while the 110]
list contains all O(N?) pairs, where N is the total number of
primitive Gaussian-type basis functions. This organization
is dictated by the need to carry out prescreening of small
integrals in a way that is commensurate with memory access
and load balancing requirements on the GPU. Because the
IAo] list is not pruned by index-symmetry, there are four
rather than three different angular momentum type Ao pairs
— ss, sp, ps, and pp. Thus, the final integral grid contains
twelve segments of different integral types (and requires
twelve GPU kernels to handle them). Figure 2 provides more
details on the GPU implementation of the exchange contri-
bution to energy gradients. For simplicity, only one segment,
e.g. sslss, is represented. Other segments are treated in the
same way. We group [uvl and |Ao] pairs according to the
first index (u or A, respectively). This procedure leads to N
blocks, each with fixed [u;. . . | and I4;. . .]. Because the I10]
list is not index-symmetry pruned, all I4,. . .] blocks contain
N Gaussian pairs. The number of pairs in the [u«;. . .| blocks
varies (with a maximum of N) because the [uv!l list is index-
symmetry pruned. All [g;. ..l and I4,...] blocks are sorted
according to the Schwartz upper bound of corresponding [uv!
and I14,0] pairs. Note that no density matrix information is
used in this sorting step. These presorted [uvl and I1,0] PQs
are delineated by left and upper triangles in Figure 2, where
the pink-blue coloration represents the Schwartz upper bound
magnitude (as in Figure 1). After the PQs are sorted, K, and
K’, are calculated on the GPU by a series of twelve
subsequent GPU kernel calls (one for each angular momen-
tum segment). Figure 2 provides details on the GPU
implementation. Here, a 2 x 2 GPU thread block (we use 8
x 8 blocks in our program) is tasked to calculate two K,
and K’, quantities by scanning two nearby rows of the
integral grid and accumulating (in double precision, as in
the Coulomb algorithm) the partial results in the GPU
registers. During the scan, each thread monitors the product
of Schwartz integral upper bound and the maximum Carte-
sian density matrix elements among all angular momentum
functions in a batch, i.e.

([plpllglq)) 1D, ™™ (23)

When this product becomes smaller than 107! au, a GPU
thread aborts processing of the I4;. . .] row and resumes from
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segment IA;4. . .]. The fact that [pl and lg] pairs are organized
into ;. . .] and I4;. . .] blocks guarantees that for all threads
in a GPU block the maximum density matrix element IDMJ.Irmlx
is the same. Thus, all threads in a GPU block will abort the
scan of the I4;. . .] segment simultaneously, avoiding potential
problems due to load misbalancing. After the scan is
complete, the final result is obtained by intrablock sum
reduction.

C. Multi-GPU Parallelization. The energy gradient code
is parallelized using POSIX threads in order to use all
available GPUs in a workstation. For both Coulomb and
exchange contributions, the work is split into 8-row segments
and mapped to the devices cyclically. Each GPU thus
computes its portion of J,, J’,, K,, and K’, and sends the
results back to the host CPU, where they are postprocessed
and the final energy gradient is calculated. This model also
seems well suited for implementation on a multiple GPU
node cluster (using the MPI framework,! for example) since
the work is distributed in such a way that each node has
all the data required to calculate its portion of the integrals
from the very beginning, avoiding expensive internode
communication. Preliminary implementations support this
conjecture, and work along these lines is in progress.

A series of tests performed on a system with two GeForce
295GTX cards, each having two GPU processors, demon-
strated reasonable speedup of 3.0—3.5x, relative to a single
GPU processor. Reported timings include the time required
to calculate and sort the pair-quantities, which is currently
performed on a single CPU core, as well as the data transfer
time required to copy the PQs to the GPU and then copy
the results back to the CPU.

Results and Discussion

To assess the performance of the GPU code, we carried out
a series of benchmarks on a representative set of test
molecules and compared the results to GAMESS?®? ver. 11
Apr 2008 (R1). The GAMESS code was executed on an Intel
Core2 quad-core 2.66 GHz CPU with 8GB main memory,
which represents a state-of-the-art desktop computing system.
All four CPU cores were used in parallel in order to obtain
maximum CPU performance. The GAMESS program was
compiled with the GNU Fortran compiler and linked with
Intel MKL ver. 10.0.3. Our GPU code ran on the same
workstation with two Nvidia GeForce 295GTX cards operat-
ing in parallel. All performance results in this article
correspond to this “workstation to workstation” comparison
rather than “a single GPU to a single CPU core” comparison.
This provides a realistic assessment of the real performance
gain one can obtain from a GPU system. For brevity, this
quad-core CPU machine and the dual-GPU machine are
referred to as “CPU” and “GPU”, respectively.

Table 1 presents the time required to calculate the
Hartree—Fock energy gradient vector for -caffeine
(CgN4H,¢0,), cholesterol (C,;H460), buckyball (Cgp), taxol
(C45NH490;5), valinomycin (Cs54NgHg9O;g), and olestra
(C156H278019) molecules using the 3-21G basis set. Among
these test systems, the largest has 2131 basis functions.
One can see that even for a small molecule such as
caffeine, the GPU outperforms the CPU by a factor of
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Presorted ket- pairwise quantities | \c]

{[pvIio], [grad(uv)|2c]}
primitive integral grid
Each row leads to one
Kuv and K’uv element

Presorted bra- pairwise quantities [Llv]| and [grad([lV)]

Block 2, calculates K3) and Ki4)
final row-wise reduction

Figure 2. K,, and K, calculation algorithm. Similar to the J calculation shown in Figure 1, but in this case all ket-pairs are
grouped into N segments according to the 1; index. Two such segments are represented. The GPU thread block scans all the
segments sequentially. Once integrals which make contributions smaller than 10~'" au are reached, the scan of the particular
segment is aborted, and the block proceeds from the next segment.

Table 1. Analytical Energy Gradient Accuracy and
Calculation Time for Different Test Molecules Using the
3-21G Basis Set

molecule caffeine cholesterol Cg taxol valinomycin olestra

CPU, sec? 0.7 7.6 385 28.9 66.3 785.1

GPU, sec®? 0.1 0.4 1.9 14 2.6 7.3

Speedup 5.8 19 20 21 26 108

MSerrorl 1.28 0.61 279 1.49 1.24 0.67
1075 au®

2 GAMESS on Intel Core2 quad-core 2.66 GHz CPU. ?2 Nvidia
GeForce 295GTX cards. € Error in the gradient (atomic units) as
defined by eq 24.

Table 2. Total Energy and Gradient Computation Time
Using the 3-21G Basis Set?®

molecule caffeine cholesterol buckyball taxol valinomycin olestra

CPU, sec? 7.4 81.8 364 435 1112 22863
GPU, sec® 2.0 4.8 116 157 25.5 125
Iterations 13 11 10 14 13 14
Speedup 3.7 17 31 28 44 182

2The number of SCF iterations performed to converge the
wave function was exactly the same for GPU and CPU. » CPU
and GPU are the same machines as in Table 1.
6x. For medium-size molecules the speedup ranges
between 20x and 25x, while for large molecules it
exceeds 100x. In addition, in Table 2 we present the total
program execution time, energy + gradient, for the same
set of molecules. In both CPU and GPU calculations the
total number of SCF iterations required to converge the
wave function was exactly the same, although it differed
among the molecules. The resulting speedups range from
4x for small-, 30x —40x for medium-, and up to almost
200x for the largest molecules. Clearly, these results
represent a mixture of different coding styles, compiler

efficiencies, and hardware architectures. However, it is
also obvious that such speedups would never be achievable
without the impressive performance gain provided by the
GPU, which enables desktop calculation of ab initio
geometry optimization and molecular dynamics (MD)
simulations that were previously only possible on comput-
ing clusters with more than a hundred CPUs.

The increased performance of the GPU code clearly
improves the quality of molecular dynamics simulation
results by allowing longer runs and thus better statistics.
However, accuracy is another aspect that needs to be
considered, especially when part of the energy and atomic
force calculations are performed with single precision. To
assess the error introduced by the use of single precision for
integral evaluation, we performed three independent tests.

First, we directly calculated the root mean squared error
for all components of corresponding single precision (GPU)
and double precision (CPU) gradient vectors

3N4toms

RMS,,,, = x| X (£Y = roYP3N (24)
i=1

error Atoms

for all the benchmark molecules. All molecular geometries
along with corresponding energies and gradients, calculated
on CPU and GPU, are provided in the Supporting Informa-
tion. The results, presented in Table 1, demonstrate that the
mean error is distributed around 107> au, which is close to
the typical convergence thresholds used in geometry opti-
mization algorithms. It is also important that there is no
obvious correlation between the mean error and the size of
a molecule, i.e. the error does not increase with the number
of atoms.
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Figure 3. Evolution of the (ALA); helix SCF energy during
geometry optimization on the CPU (blue) and GPU (red) using
3-21G basis set. Both curves follow each other very closely,
demonstrating that the GPU accuracy is sufficient for solving
geometry optimization problems. The final energy difference
is 0.50 kcal/mol, of which 0.08 kcal/mol is due to lower
accuracy of single point energy calculations on GPU and 0.42
kcal/mol is due to different atomic positions. The inset portrays
the two optimized structures overlaid on top of each other
(orange: CPU, multicolored: GPU).

Second, we carried out geometry optimization of a helical
hepta-alanine, i.e. (ALA),, peptide on the CPU and GPU using
the 3-21G basis set. The corresponding SCF energy evolution
and resulting structures from GAMESS and our GPU code are
compared in Figure 3. In both cases, the same initial geometry
and energy minimization algorithm was used (trust region
method with BFGS Hessian update), although our implementa-
tion was written from scratch and therefore the codes are not
necessarily identical. However, we did employ exactly the same
trust radius update protocol as implemented in GAMESS. It
can be easily seen that the curves follow each other very closely
throughout the whole optimization procedure, slightly diverging
at the very end. This is a good indicator that GPU can be
efficiently used for solving molecular geometry optimization
problems. The final energy discrepancy is 0.50 kcal/mol, of
which 0.42 kcal/mol is due to different atomic configurations
and the rest is due to lower accuracy of single point energy
calculations on GPU. In addition, the optimized structures
overlap almost perfectly, as shown in the inset of Figure 3,
where the CPU-optimized and GPU-optimized structures are
portrayed in orange and multicolored representations, respectively.

Finally, conservation of total energy is a common metric
for assessing the energy gradient accuracy in a dynamics
algorithm. Therefore, we performed time-reversible®?
Hartree—Fock Born—Oppenheimer molecular dynamics
simulation of an H3;0"(H,0)s, cluster using the 6-31G
basis set and microcanonical ensemble. The Newtonian
equations of motions were integrated using the velocity
Verlet algorithm with a 0.5 fs time step for a total
simulation time of 20 ps. Figure 4 shows the resulting
time evolution of the kinetic (red), potential (blue), and
total (green) energies. Energy is conserved quite well, with
a small 0.022 kcal/mol-ps~! total energy drift. Consider-
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Figure 4. The SCF (blue), kinetic (red), and total (green)
energies of the HzO*(H,0)30 cluster during microcanonical
(<Exin> 301 K) Born—Oppenheimer Hartree—Fock molecular
dynamics simulation using the 3-21G basis set on two Nvidia
GeForce 295GTX GPUs. Two electron integrals and their
derivatives are calculated on the GPU in single precision, and
their contributions are accumulated in double precision. The
total energy drift is 0.022 kcal/mol-ps~1, which corresponds
to a 0.039 K-ps™' averaged temperature drift.

ing, for example, an upper limit of 5% of the initial kinetic
energy as a maximum acceptable total energy drift over
the entire simulation, this system can be simulated for
200 ps. Even longer time scales can be accessed if one
introduces Langevin thermostats and careful adjustment
of the damping parameter,* although care needs to be
taken in this case to ensure that the dynamics is not
significantly modified by the damping parameter. To
further demonstrate that GPU-based ab initio molecular
dynamics can treat important phenomena of widespread
chemical interest such as proton transfer, we performed
AIMD simulations of two systems: a H;O"(H,0)s cluster
and a neutral aspartic acid molecule solvated by 147 water
molecules.

A. Protonated Water Cluster. A 20-ps long NVT (T =
300 K) molecular dynamics simulation was performed on
the H;O0*(H,0)3 cluster at the RHF/6-31G, BLYP/6-31G,
and B3LYP/6-31G levels using a 0.5 fs integration time step.
The density functional theory calculations (energy and
nuclear energy gradient), which run entirely on GPU and
use all available GPU processors in parallel, were recently
incorporated into TeraChem, the general purpose GPU-based
quantum chemistry package being developed in our group.
All three simulations started from an initial cluster geometry
where the hydronium ion was located on the cluster surface.

Figure 5 shows the time evolution of the distance
between the hydronium ion and the cluster center along
with the mean cluster radii represented by dashed lines.
The cluster radius was defined as the maximum distance
between any of the O-atoms and the cluster center. In all
three cases, the ion stayed close to the surface throughout
the entire simulation, as previously reported.”>*® Some-
what larger oscillations of the distance in the RHF
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Figure 5. Time evolution of the H;O" ion distance from the
cluster center. Each point on the plot is averaged over 100
successive MD steps. The dashed lines represent the cluster
radius, averaged over the whole MD simulation run. The
radius is defined as the maximum distance between an
O-atom and the center of the cluster.
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Figure 6. The hydronium-water oxygen—oxygen radial dis-
tribution function for the HzO*(H.0)30 cluster, using various
levels of theory and the 6-31G basis set.

simulation, compared to the DFT results, show that at the
HF level of theory the structure of the cluster surface is
subject to higher fluctuations. In addition, RHF and BLYP
provide similar structures of the first H;O" solvation shell,
as can be seen from the oxygen—oxygen radial distribution
functions presented in Figure 6 (red and blue lines,
respectively). In both cases, the first peak is centered at
2.50 A, which is smaller than the same value for bulk
water (2.8 A) and is an expected signature of stronger
H-bonds. The B3LYP simulation (green line in Figure 6)
predicts a somewhat more diffuse first solvation shell, with
the first peak centered at 2.46 A.In addition, the B3LYP
RDF reveals stronger bimodal character around the
maximum due to continuous interplay between Eigen and
Zundel structures. In all three simulations there was an
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average of three water molecules in the first solvation shell
of the hydronium ion.

B. Solvated Aspartic Acid. We also performed a 7-ps
simulation of a single neutral aspartic acid molecule
solvated by a cluster of 147 water molecules using the
3-21G basis set. The total number of atoms and basis
functions in this system was 457 and 2014, respectively.
The C4;NH;0, molecule was first solvated in a cube of
water and equilibrated for 100 ps using the CHARMM
force field”’ and periodic boundary conditions. Then, a
10 A-sphere was sketched around the C, atom, and those
waters whose O-atoms were located inside this sphere (147
molecules) were selected for further modeling with AIMD.
The resulting system was equilibrated for 1 ps using
AIMD. In both classical and ab initio equilibration MD
simulations, a 0.5 fs integration time step and the Langevin
thermostat®® (T = 300 K, Tgamp = 1 ps) were used, and
the atoms in the aspartic acid molecule were fixed in order
to prevent deprotonation of the carboxylic groups. Finally,
a 7-ps production AIMD run was performed on the system
in the NVT ensemble using a 0.5 fs integration time step.
Figure 7 portrays a snapshot of the system (left panel)
along with its highest occupied molecular orbital (HOMO,
right panel). The orbitals were calculated by the GPU-
accelerated Orbital plugin implemented in VMD.*’

The aspartic acid molecule has two carboxylic acid
functional groups - backbone and side chain, referred to
as COOHbb and COOHsc in the following. Because both
the groups have low pK,, one might expect them to
deprotonate quickly in aqueous solution. The AIMD
simulation mostly confirms the expectations. Figure 8
displays the time evolution of the O—H distance for both
COOH groups. One of these (COOHsc, blue line in Figure
8) quickly deprotonates in approximately 400 fs through
formation of a short-lived (7 ~ 50 fs) transient Zundel-
like structure. The resulting hydronium ion then quickly
(within 50 fs) shuttles to the surface of the cluster via
two subsequent proton transfer events and stays at the
surface for the rest of the simulation. The second
deprotonation event (of the COOHbb group) does not
occur until significantly later (t = 5.5 ps) in the simulation,
presumably because of the high proton affinity of the
resulting doubly negatively charged amino acid ion. An
aborted attempt at deprotonation of COOHbb by forming
a quasi-stable COO™ ++-H;0" complex is observed after
3.1 ps of simulation (green line in Figure 8). The presence
of positive counterions near the molecule (not accounted
for in our simulation) would be expected to facilitate faster
deprotonation of all carboxylic groups. The carboxyl-water
Ocarboxyi-Ow (including both oxygen atoms of each of the
COOHsc and COOHbb groups) and amino-water Nypino-
O,, radial distribution functions, which are proportional
to the local water density around these groups, are
presented in Figure 9 and provide details on the solvent
structure around these functional groups. The Ocarpoxyi-Ow
RDF (red line in Figure 9) has its first maximum centered
at 2.69 A, and integration to the first minimum of the RDF
reveals that on average 2.5 water molecules are present
in the first solvation shell of each carboxyl oxygen. In
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Figure 7. Left: snapshot of the AIMD simulation of the aspartic acid molecule solvated by 147 waters. Right: HOMO along with
nearby water molecules among which the orbital is mostly delocalized. The isosurfaces correspond to ¢ = +0.01 au .
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Figure 8. The O—H distance in backbone (COOHbb, green)
and side chain (COOHSsc, blue) carboxylic acid functional
groups. The dashed line represents the O—H distance cor-
responding to the COO™---H;O" complex.

contrast, the Nyyino-Ow RDF (blue line in Figure 9) indicates a
rather hydrophobic character of the amino group, although the
group periodically accepts and donates weak H-bonds. In many
cases, however, the solvent water forms a hydrophobic cage
around NH,, where waters prefer to donate/accept H-bonds to/
from neighboring waters. Those water molecules that sometimes
do accept an H-bond from the amino group, in most cases
become 5-coordinated. Because such a water solvation structure
is less energetically favorable than the 4-coordinated tetrahedral
configuration, these water molecules tend to break such H-
bonds. Quantitative analysis of the trajectory demonstrates that
the amino group donates 0, 1, and 2 H-bonds for 54%, 45%,
and 1% of the simulation time, respectively. Similarly, it accepts
0 and 1 H-bonds for 81% and 19% of the simulation time. An
H-bond was defined using 3.2 A O—O distance and 30° (O/
N)OH,, angle cutoffs. The character of the distribution of
H-bonds donated by NH, does not vary much during the
simulation which accesses three different charge states of the
aspartic acid (0, —1, and —2). However, the amino group reveals
stronger hydrophilic properties at the —2 charge state by
stabilizing the accepted H-bond and reducing the mean N—O,,

2.0 T T T T L T L) Ll

1.5+

1.04

g(R)

0.5

0.0 " S , —————r
2.0 3.0 4.0 5.0 6.0 7.0

R(R)
Figure 9. The aspartic acid oxygen (red) and nitrogen (blue)
- water oxygen radial distribution functions. The neutral amino
group reveals prominent hydrophobic character.

distance to the nearest water molecule from 3.1 A (charge state
0and —1) to 2.8 A (charge state —2). Figure 10 shows the
time evolution of the N—O,, distance, where the COOH group
deprotonation events (for COOHsc and COOHbb) are marked
by red vertical lines. The black dashed line denotes the mean
N—O,, distance for all (0, —1, and —2) charge states of the
aspartic acid molecule before and after the deprotonation of
COOHDb. For both neutral and singly negative charge states
the distance oscillates around 3.1 A, but it drops to 2.8 A after
COOHDb is deprotonated and the molecule becomes doubly
negatively charged. The hydrophobic-like behavior of the amino
group in the partially deprotonated aspartic acid molecule does
not seem to preclude protonation. In a preliminary simulation
(not shown), the NH, residue is rapidly protonated if there is a
hydronium ion in its first solvation shell. However, we leave
detailed analysis of this for future, more extensive, studies.

Conclusions

We have demonstrated that it is possible to achieve up to
200x speedup in energy + gradient calculations by
redesigning quantum chemistry algorithms for the GPU.
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Figure 10. Time evolution of the NO,, distance between
the amino nitrogen and the nearest water molecule. Depro-
tonation events of the carboxylic acid group are marked
by red vertical lines. The horizontal dashed lines represent
the mean NO,, distance for all (0, —1, and —2) charge states
of the aspartic acid molecule. The mean distance is
essentially the same (~3.1 A) for 0 and —1 charge states
but suddenly drops to 2.8 A as the backbone carboxylic
acid group is deprotonated.

The performance gain was assessed by comparing a state-
of-the-art Intel Core2 quad-core 2.66 GHz CPU worksta-
tion with the same workstation containing two Nvidia
GeForce 295GTX graphical cards. Both Hartree—Fock and
density functional theory (including generalized gradient
and hybrid functionals with exact exchange) electronic
structure methods can be used in AIMD simulations with
our implementation. The remarkable speedups attained by
executing all computationally intensive parts of the code
on the GPU rather than on the CPU make it possible to
carry out ab initio molecular dynamics simulation of large
systems containing more than 2000 basis functions at 1400
MD steps/day speed on a single desktop computer.

We show in an example H;O"(H,0)3 cluster MD simula-
tion that total energy drift due to limited hardware precision
is minor and 100 ps MD simulations can be performed with
total energy conservation errors of less than a few percent
of the initial kinetic energy. Furthermore, even this minor
drift can be compensated by employing a Langevin thermo-
stat and properly adjusting the damping parameter,>* meaning
that even longer ab initio MD runs can be performed on the
GPU.

We have presented results for preliminary AIMD simula-
tions of proton transfer and transport in solvated clusters that
were facilitated by the developments described here. Further
study of these phenomena, collecting significant statistics,
is underway.
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Abstract: The energy landscape of protonated water clusters H*(H,0), is thoroughly explored
at the first-principle level using a hierarchical search methodology. In particular, the distinct
configurational isomers of OSS2 empirical potential for n = 5—9 are uncovered and archived
systematically using an asynchronous genetic algorithm and are subsequently refined with first-
principle calculations. Using the OSS2 model, quantitative agreements in the thermal properties
between Monte Carlo and harmonic superposition approximation (HSA) highlighted the reliability
of the latter approach for the study of small- to medium-sized protonated water clusters. From
the large sets of collected isomers, finite temperature behavior of the clusters can be efficiently
examined at first-principle accuracy with the use of HSA. From the results obtained, evidence
of structural changes from single-ring to treelike (n = 5—7) and multi-ring to single-ring structures
(n = 7-9) is observed, as expected for the empirical model. Finally, the relevance of these
findings to recent experimental data is discussed.

2629

l. Introduction

Protonated water clusters have attracted much study for a
long period of time because of their important roles in ionic
media and chemical reactions.' '® To date, significant
progress has been made in experiments®”*"'*!3 and theoreti-
cal simulations.> 2814719 [ the latter, one of the core
focuses is studying the dynamic structural transitions to
reveal the complicated thermal behavior of water clusters.
Using Monte Carlo (MC) simulations, Singer and co-
workers® identified the topological transitions of H*(H,0)g
and H"(H,0) to treelike structures at high temperatures,
using the OSS2 model.”> On the other hand, Christie and
Jordan,' with the use of the MSEVB model,?° identified two
sharp transitions of H"(H,O)g, whereas that of H"(H,O)s was

* Corresponding author fax: + 886-223620200, e-mail: jlkuo@
pub.iams.sinica.edu.tw.

"School of Physical and Mathematical Sciences, Nanyang
Technological University.

#School of Computer Engineering, Nanyang Technological
University.

¥ Academia Sinica.

devoid of sharp structures. Kuo and Klein* carried out basin
hopping'®?'*? and a parallel tempering algorithm>-* to
systematically examine the low-energy structures and struc-
tural transitions of H"(H,0), for n up to 21. In a similar
work, James and Wales> employed a modified empirical
valence bond potential to study the properties of selected
small- to medium-sized clusters. With the advance of
computation power and methodology, several studies have
been conducted in an attempt to study water clusters at ab
initio levels.'>1%20728 [yengar and co-workers proposed the
ab initio atom-centered density matrix propagation method
to investigate systematically the structures, dynamics, and
vibrational properties of H*(H,0), for the magic size of n
= 21,">'% a5 well as other systems.”’ Recently, Nakayama
et al.?® considered the use of an approximate potential to
speed up the ab initio MC simulation on small protonated
water clusters (HY(H,0),=12).

Most of the existing theoretical simulations have engaged
either molecular dynamics (MD) or MC-based algorithms
in predicting the structural transitions of H*(HZO)H.I""&17
Even though some techniques such as J-walk®>?® and parallel

10.1021/ct900123d CCC: $40.75 © 2009 American Chemical Society
Published on Web 09/01/2009
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Figure 1. Sketch of hierarchical approach. A; and B, refer to
the local minima of the empirical model (black curve) and ab
initio calculations (red curve), respectively. The local minima
B;have been identified with the genetic algorithm to serve as
appropriate starting points for further refinement or locally
optimized using the ab initio calculations to arrive at the
respective A,

al192 b)3.739 ¢) 6.624

Figure 2. Several new isomers of H"(H,O)s. The numbers
are denoted as relative energies in kcal/mol.

tempering are established as useful for resolving the issue
of quasi-ergodicity, they remain to be plagued with problems
of slow convergence, high energy barrier crossing, and poor
sampling of the potential energy landscape, especially in
large-scale or large-sized systems. An alternative approach
to MD and MC is superposition approximation (SA), where
the observed quantities of the system are approximated from
a statistical set of basins instead of performing sampling and
averaging of the entire potential energy surface (PES). To
date, SA has been used widely in a variety of systems, from
liquids to solids, glasses, clusters, and so forth. It was first
considered by Stillinger et al. for studying hidden structures
in liquids*® and subsequently also liquid—solid transitions.*’
Wales examined the coexistence of solid-like and liquid-
like forms in a finite atomic cluster, with harmonic ap-
proximation employed in SA for the first time.>* Calvo et
al.* also used SA to calculate the physical and chemical
properties of several atomic clusters and highlighted the close
agreement between SA and MC simulations. Generally, SA
is established to yield higher efficiency than conventional
MC simulations in predicting thermal properties,* > thus
making SA feasible and practical for studying the thermo-
dynamics of molecular systems at the quantum chemistry
level. Since the accuracy and success of SA depends strongly
on how well the PES is explored and how many isomers
are taken into account for the approximation, a sampling
algorithm for the effective and efficient discovery of true
distinct isomers is crucial. Note that this is not a trivial task
due to the large numbers of isomers that exist and the high
computational costs of ab initio calculations.

Nguyen et al.

Recently, Ohno and co-workers™'! proposed the “anhar-
monic downward distortion following” (ADD) algorithm, a
full first-principle-based approach, to explore the PES and
then examined the thermodynamics of H*(H,0), for n up
to 7 via harmonic superposition approximation (HSA). The
sets of 9, 24, and 131 isomers collected for n = 5, 6, and 7,
respectively, at B3LYP/6-314+G** level were reasonably
large. However, the requirement on second-order derivative
calculations and the serial searching regime limits the ADD
from sampling widely for high-energy isomers on the
quantum chemistry PES, especially for larger-sized systems.

In the present work, instead of a complete reliance on ab
initio calculations, we employ a hierarchical methodology
with the OSS2 model employed as a prescreening process
to construct the archive of potential distinct isomers for n =
5—9 to be subsequently examined and refined by first-
principles calculations at the B3LYP/6-31+G* level. The
synergy between the empirical model and first-principles
method permits extensive and efficient exploration of the
PES, dealing with large-sized systems (up to n = 9), and
studying the systems at multiple distinctive levels of theory
simultaneously. To deal with the issue of exponential growth
of the number of isomers, a parallel asynchronous genetic
algorithm is deployed for the searching and archiving of
distinct configurational isomers in H*(H,0),. The archive
of isomers is then analyzed to investigate the thermodynamic
properties and structural transitions of H"(H,0),, n = 5—10,
for both the OSS2 model and ab initio calculations. From
our obtained results, HSA is shown to be reliable in small-
sized systems since it reproduces well the feature of heat
capacity curves and structural transition of H"(H,0), in MC
simulations of the OSS2 model. The structural transition
trends of protonated water clusters in ab initio calculations
also revealed close agreement with that of the OSS2 model.
The vibrational spectra are derived from the results of HSA
and compared with recent experimental study. The details
of our computational methodology are described in section
II, followed by the results and discussion in section III.

Il. Methodology

1. A Hierarchical Approach for Exploration of PES.
Our hierarchical approach has been previously explored and
applied to the study of pure water clusters.*® Here, we briefly
discuss the main ideas of our methodology as depicted in
Figure 1. Instead of searching directly on the PES of ab initio
calculations (red curve), which is computationally very
expensive, we locate the isomers, denoted here as B;, of the
empirical model (black curve), which serves as a “prescreen-
ing” stage. All distinct isomers B; are subsequently refined
to the nearest isomers A; via ab initio optimizations. The
low computational cost of the empirical model allows
possible extensive coverage and exploration of the PES for
unique isomers. To speed up the entire isomer search process,
the ab initio refinements representing the most time-consum-
ing tasks are parallelized on multiple computed clusters.

2. Empirical Models. In this work, the OSS2 model is
chosen as the first level of exploration. OSS2 is one of three
versions of the OSS family developed by Ojamée and co-
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Figure 3. The 10 lowest-energetic isomers of H*(H.O),, n = 5—9, found in B3LYP/6-31+G*, sorted by increasing order of

binding energies (in kcal/mol).

workers? to simulate water as a participant in ionic chemistry.
It was established from the interaction between polarizable
O? anions and protons, with pairwise and three-body terms,
and is suitable for studying H*(H,0), system since it permits
the disassociation of water molecules. The potential was
parametrized by fitting to ab initio MP2 calculations, and it
can reproduce well the structures and binding energies of
small-sized protonated water clusters, including neutral ones.
For details on the functional forms and thermodynamic
simulations of OSS2, the reader is referred to refs 2 and 4.

3. Asynchronous Genetic Algorithm. Archiving isomers
is a nontrivial task due to the exponentially increasing
number of isomers with increasing cluster sizes. To deal with
this issue, we conducted a steady-state genetic algorithm
(GA) with an asynchronous scheme for locating isomers,
which we have previously used to study the PES of water
clusters.*®

The basic workflow of our GA is outlined as follows: After
initialization, parent structures are selected from the popula-
tion according to their ranks and undergo the genetic
operators (crossover and/or mutation) to generate new
offspring, which are sent to a slave node for local optimiza-
tion. The locally optimized structure is then sent back to the
master node, which is then updated into the GA population
with the spirit of Lamarckian Learning®’~*® and also archived
for further analysis. This entire process repeats until a
maximum number of iterations is reached. More specifically,
the search algorithm is commonly known as a memetic
algorithm, hybrid evolutionary algorithm, Lamarckian evo-
lutionary algorithm, cultural algorithm, or genetic local
search.””

Throughout the archiving process, a significant number
of structures, including the low-energetic isomers, may be
archived more than once. These duplicate structures not only
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Figure 4. The 10 lowest-energetic isomers of H*(H.0O),, n = 5—9, found in B3LYP/6-31+G*, sorted by increasing order of
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enlarge the archive unnecessarily but also make the simula-
tion results unreliable since the contribution by some isomers
could be artificially amplified. To ensure that only unique
structures are archived, the ultrafast structure recognition
(USR) algorithm® is used to sieve out potential duplicate
structures. The similarity of two structures is computed and
represented by an index of values ranging from 0 to 1. A
value of 0 indicates that two structures are totally dissimilar,
whereas the other extreme represent a perfect match. In our
study, a newly discovered structure is deemed as a duplicate
if the similarity index to existing structures in the archive
exceeds a threshold of 0.96.

4. Ab Initio Calculation. All archived distinct isomers
of the OSS2 model then undergo geometrical optimization
using Becke’s three-parameter hybrid method*' with the Lee,
Yang, and Parr (B3LYP) functional** and the 6-31-+G* basis
set. The convergence criteria are defined as a root-mean

square and a maximum component of gradient lower than
0.0003 and 0.00045 hartree/A, respectively. To ensure that
the optimized structures are true isomers, vibration analysis
is subsequently performed, and only those having nonimagi-
nary frequencies are accepted for harmonic superposition
approximation. Note that all calculations have been com-
pleted using the Gaussian 03 package.*’

lll. Results and Discussions

1. Isomers of Protonated Water Clusters. It is worth
highlighting that our GA has reproduced successfully all of
the most stable structures of H"(H,0),, n = 5—9, that were
found by the basin-hopping algorithm reported in previous
related works.* In addition to that, we have uncovered and
archived large numbers of distinct isomers which are
summarized in Table 1. Since a threshold value of 0.96 was
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unit (Nkg).

employed in the USR technique to remove duplicate isomers
automatically, an overelimination of unique isomers may
happen. The resultant archive therefore may not represent
the complete set of isomers on the PES. However, from our
results, the number of distinct isomers, Nisomers» 1S Observed
to increase exponentially with the number of atoms, N, in
the range of n = 5—9, as expected in both theoretical and
numerical studies.>*** Niomers can be approximated as A X
exp(oN), where both A and a are constants depending on
the system considered. From the database of Lennard-Jones
clusters, A and o have been approximated as 0.00397 and
0.9897, respectively, for N < 16.4°° In the present work, A
and o are approximated as 0.5849 and 0.3918, respectively.
The significantly larger A for H*(H,0), might arise from
the fact that the water cluster system is less symmetric than
atomic counterparts. This explains the larger number of
isomers identified in the small-sized water clusters and,
hence, a larger “A” value. Thus, A might represent the
measure of asymmetry in the system. In contrast, the smaller
value of o of the water cluster system would imply its smaller
degree of freedom due to the bonds.

The uncovered sets of archived OSS2 isomers subse-
quently serve as input structures that are optimized at the

B3LYP/6-31+G* level. At the end of each successful
optimization, the local optima at B3ALYP/6-31+G* undergo
vibrational analysis, which is performed to retrieve the
vibrational frequencies. For HY(H,0)s, HT(H,0)s, and
H*"(H,0),, a total of 21, 135, and 707 isomers have been
uncovered and archived, respectively. For H*(H,0)s and
H"(H,0), because the numbers of isomers found using the
OSS2 model are large, a stricter similarity threshold of 0.85
is used to filter out a greater number of potentially duplicated
OSS2 isomers before undergoing DFT optimization. On the
basis of the given criterion, resultant sets of 422 and 877
isomers for H(H,0)s and H*(H,0)o, respectively, have been
identified. In comparison to other recent works reported in
the literature from similar studies,>'" the archives represent
the largest sets of isomers reported at the quantum chemistry
level to date. For instance, several isomers of HT(H,0O)s that
are missing in the recent reported work'' are depicted in
Figure 2.

The 10 lowest-energetic isomers of each cluster size have
been sorted according to their binding energies and are
depicted in Figure 3. As observed, the ground-state structures
of both H"(H,0)s and H(H,0), belong to the family of four-
membered rings, as observed in the OSS2 model. In
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Figure 6. Canonical heat capacity C, (upper panel) and population (lower panel) of five topologies of H"(H,0),, n = 5-9,
calculated using C-HSA with B3LYP/6-31+G* calculation. The full details have been described in Figure 5.
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Figure 7. Population plot of the five lowest-energetic isomers
of H*(H.O)g calculated using C-HSA with B3LYP/6-31+G*
isomers. The transition from the lowest-energetic isomer
(W9+).1 to the next lowest-energetic ones resulted in the first
heat capacity peak of Figure 6e.

H"(H,0)s, several other families of isomer shapes are also
found to exist, as depicted in Figure 3. These include five-
membered ring isomers and tree-like or cage isomers which
are well separated at the energy level (~1 kcal/mol). On the
other hand, the family of four-membered ring isomers is
observed to dominate, with near iso-energetic vakues at a
small energy gap of less than 0.2 kcal/mol. For H"(H,0);
and large-sized clusters, the structures tend to be more
compact, and all ground-state and low-energetic structures
are of multi-ring shapes. The cubic isomers of H"(H,0)s

are also relatively stable with a small energy gap of
approximately 0.9 kcal/mol to the ground-state counterpart.
Note that this is in line with the observation reported by
James and Wales*> where the lowest cubic-like minimum
of the modified MSEVB potential is approximately 0.8 kcal/
mol higher than the most stable structure.

Figure 4 depicts the structures of H*(H,0), sorted ac-
cording to the energy after zero-point energy correction. It
is worth noting that the resultant structures of all sizes are
observed to be more open. For HT(H,0)s and H*(H,0)s, tree-
like isomers have the lowest energy instead of single-ring
isomers, whereas for H*(H,0),, the single-ring structures
dominate. For H*(H,O)g and H"(H,0)o, the lowest-energetic
isomers are no longer cages, and few single-ring isomers
are found. Besides the fact that open isomers are more
favored, they are also more iso-energetic since the energy
gaps between them are smaller (<1 kcal/mol) than those
without zero-point energy.

2. Thermodynamic Transitions. a. Harmonic Superpo-
sition Approximation. HS A represents an effective approach
for acquiring the diverse physical properties of a system
from a collection of isomers instead of directly exploring
the potential energy landscape. In HSA, each local
minimum is treated as a harmonic and infinite basin, which
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Figure 8. Canonical heat capacity C, (upper panel) and population (lower panel) of five topologies of H"(H,0),, n = 5-9,
calculated using quantum HSA (Q-HSA) with B3LYP/6-31+G* calculation. The full details have been described in Figure 5.

is characterized only by its vibrational frequencies and
relative energy. From that, observable quantities are
subsequently calculated by summing up the contributions
of all isomers.

The total partition function Z(f3) of an N-atom system at
temperature 7 is given by

ZB) = X,nZ,p)

where 8 = 1/(kgT) and kg is the Boltzmann constant. The
degeneracy factors n, in the case of H*(H,0), (consisting
of two kinds of atomic elements, O and H) are derived as
2No!Ny!/m;, where m; is the point group order of symmetry.
In classical superposition theory (classical harmonic super-
position approximation, C-HSA), the harmonic approxima-
tion associated with local minima a, Z,(B), is given by>***

Z(B) = exp(—BE)(Bha )"

where w, = (I1;% )" denotes the mean geometrical
vibration frequencies of local minimum a and Ny = 3N — 6,
representing the number of normal modes. In quantum
superposition theory (quantum harmonic superposition ap-
proximation, Q-HSA), where the contributions of the vibra-

tion modes are treated in quantum mechanical footing, Z,(f3)
assumes the following form:

exp(—fian,/2)
— exp(—fhw,)

228) = exp(—BE) [ | I

To observe the structural transformations, isomers of
H"(H,0), are classified into five categories of topological
families, namely, multi-ring, double-ring, single-ring, tree-
like, and linear. The population or the canonical probability
of the system to fall under topology A is calculated as Pa(T)
= Xuea ZAP)/(Z(B)). Other observables including specific
heat capacity and free energy can also be easily derived on
the basis of the details available in refs 34 and 46.

b. Comparison with Parallel Tempering Monte Carlo
(PTMC) Simulation. In Figure 5, the temperature depend-
ences of heat capacity and the populations of five topological
families obtained for H*(H,0),, n = 5—10, are depicted.
For possible comparison, the heat capacity trends obtained
by the parallel tempering Monte Carlo (PTMC) simulations
as reported in ref 4 are reproduced in Figure 5 with the use
of cubic-spline smoothing.

From Figure 5, HSA is observed to reproduce the transition
peaks of the heat capacity trace well, on both sizes 5 and 6.
Both methods predicted similar transition temperatures in
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Figure 9. Vibrational spectra of free OH-stretching bands for H*(H,0),, n = 5—9, calculated using classical (C-HSA) and quantum
(Q-HSA) theories of harmonic superposition approximation. The experimental results of ref 7 are also plotted as a solid-red

curve for the purpose of comparison.

Table 1. Number of Distinct Isomers in OSS2 Potential for
H*(H,0),, n=5-10

n 0SS2

218

1192

4700

11820

24693

0 32469

- O ~NO U

the proximity of 100 K and 150 K for H"(H,0)s and
H"(H,0)s, respectively. An analysis of the populations of
topologies also indicated the domination by single-ring
structures dominating at low temperatures and their trans-
formations to tree-like forms. On the other hand, linear
structures significantly populating the archive appear only
at high temperatures with low probability. A similar observa-
tion was also recognized in PTMC simulations.

For n = 7, where multi-ring structures pose as the most
stable, there are two maxima corresponding to two structural
transitions: an exceptionally sharp peak for the rapid changes
of multi-ring to single-ring structures and a broad and shorter
peak for the gradual changes of single-ring to tree-like
structures. In the case of H*(H,0),, the transition tempera-
tures predicted by HSA are again in close agreement with
those obtained by PTMC; that is, a significant rise at a low
temperature of 40 K and a bump at a higher temperature of
~230 K is observed in both. For H"(H,0)g, HSA produces
slight difference in the prediction of transition temperatures;
that is, the first peak (60 K) is lower in PTMC (70 K), as
expected, while the second peak shifts to a higher temper-

ature. Nevertheless, the overall feature and trend of the
population and heat capacity obtained using HSA correlates
well with that using PTMC.

For sizes 9 and 10, the transition temperatures become
more difficult to predict accurately since both PTMC and
HSA fail to converge well. Note that the increase in transition
temperatures due to cluster size in HSA matches that
predicted by PTMC previously. These results also revealed
transitions from single-ring to tree-like structures happening
for all of the cluster sizes investigated and the transition
temperature shifting higher with growing cluster size. It is
also worth noting the absence of double-ring structures for
n =15,6, 7, and 8 in the population plots, even though
double-ring structures significantly populate the archive.

In most cases, except the first peaks of HY(H,O)s and
H"(H,O)o, HSA seems to have overestimated the transition
peak when compared to PTMC, and the shapes of these peaks
are noted to be somewhat sharper. However, the overestima-
tion is relatively small and regarded as acceptable for n <
8, although there is a slight increase for n > 9. We believe
one of the core reasons is related to the underestimations of
contributions made by the high-energy local minima, since
our exploration of the PES for OSS2 using GA has placed
greater emphasis on the low-energy region than the high-
energy counterpart. Hence, the entropy of high-energy
topologies in the form of tree and linear shapes has generally
been underestimated. The resultant impact is a broadening
and shifting of the high-temperature transition peak to higher
temperatures, while it is a sharpening and swing in the low-
temperature transition peak to lower temperatures.



¢. DFT Calculation. Employing conventional Monte Carlo
methods to simulate thermodynamics in DFT calculations
is impractical, even for small-sized systems, due to the high
computational cost involved. The use of HSA, on the other
hand, serves to be more appropriate due to its higher
efficiency compared to conventional MC approaches. Fur-
thermore, HSA has also been shown to yield good quantita-
tive agreement with Monte Carlo simulation on small-sized
systems, as demonstrated in the previous sections for the
0OSS2 model. In what follows, we discuss the use of HSA
to study protonated water clusters with DFT calculation in
both classical (C-HSA) and quantum (Q-HSA) theory.

i. In Classical Theory. Using the archive of local minima,
we applied classical HSA to simulate the thermodynamic
transitions. It can be observed in Figure 6 that the heat
capacity trend obtained using DFT calculations correlates
well with those produced on the basis of the OSS2 model
for n = 5—7. In the cases of H"(H,0)s and H"(H,0)s, a
small maximum representing the transition from single-ring
to tree-like structures can be observed. The DFT results show
a higher transition temperature with a phase change that is
more gradual, as reflected by a flat and shorter peak. For
H"(H,0); and H'(H,0)s, on the other hand, the two
transition points found on DFT are similar to those of OSS2,
except with the first occurring at a higher temperature than
that in the OSS2 model and the other at a lower temperature.
Further, the two peaks of H"(H,0); are relatively close and
appear to merge as single peak in the case of H*(H,O)o.
Note also the small peak in the heat capacity trend of
H"(H,0), at ~60 K, which corresponds to the transition of
the lowest-energetic isomer (denoted as W9+.1 in Figure 3)
to the second (W9 1I), third (W9+1II), and fourth (W9+.IV)
lowest energetic isomers, as depicted in Figure 7. Double-
ring isomers appear to start from H*(H,0O), but only survive
within a small range of temperature (around 150 K). The
overall trend of the structural transitions agrees very well
with the OSS2 model, except on the precise positions of the
transition temperatures. The size dependency of structural
transitions is also consistent with the OSS2 model. The shift
to higher temperatures from single-ring to tree-like structures
with increasing size is also observed for 7. = 120, 135, 170,
240, and 275 K for H*(H;0),, n = 5, 6, 7, 8, and 9,
respectively.

ii. In Quantum Theory. The key difference between
quantum HSA and its classical counterpart lies in the
involvement of zero-point energy. As mentioned in section
III.2.c.i, the inclusion of zero-point energy changes the
relative stability of the structures, making open structures
such as tree-like and linear forms more favorable. In this
section, we discuss their impacts on thermodynamic properties.

The population and canonical heat capacity plots of
quantum HSA are depicted in Figure 8. For H(H,0)s and
H"(H,0)s, tree-like structures predominate the population
in the range of 0—400 K instead of single-ring forms. As a
result, there is almost no structural transition, as reflected in
the heat capacity plots. For H"(H,0);, only one maximum
of the transformation from single-ring to tree-like structures
arises at around 150 K, and in contrast to classical HSA,
there is zero contribution by multi-ring structures. It is worth
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noting that the observations made are consistent with the
recent work reported by Luo and Ohno."!

For H"(H,0)s and HT(H,0)o, the transition characteristics
are similar to classical HSA. Two main transitions, namely,
from multi-ring to single-ring and from single-ring to tree-
like structures, displayed small contributions of double-ring
structures at around 150 K. In addition, the transitions seem
to occur at lower temperatures than classical HSA. This
makes sense since the zero-point energy correction has the
effect of decreasing the entropy of compact structures. As
explained earlier in section III.2.b, this causes the shift in
transitions to lower temperatures.

3. Vibrational Spectra in Free OH-Stretching
Region. From the results of vibrational analysis, the IR
spectrum /,(w) of each isomer a is approximated using the
Lorentz line shape. The total IR spectrum /o, (w,7) is then
calculated as the weighted sum of /,(w) with the canonical
probability p,(T) of each isomer a derived from thermody-
namic simulations, which is given by

Itotal(w’ T) = 2 Ia(w)l’a(w, T)

In Figure 9, the IR spectra calculated using both C-HSA
and Q-HSA in the free OH-stretching region are plotted
together with the experimental results, which are reproduced
from the work of Lin and co-workers.” For consistency and
fair comparison, the spectra are simulated at temperature 7
= 170 K, which lies within the range of cluster temperatures
used in Lin and co-workers’ work,” as deduced from the
Arrhenius equation.*’ In addition, several relevant works™"!
have typically considered a temperature of 170 K in their
investigations on protonated water clusters. Note that all
calculated frequencies are also scaled by a factor of 0.973,
as suggested in a recent related work.*®

Four groups of peaks in the free-OH stretching region are
highlighted in Figure 9, namely, symmetric free-OH, asym-
metric free-OH of one-coordinate H,O, free-OH of three-
coordinate H,O, and free-OH of two-coordinate H,O, which
are denoted as I, I,, II, and III, respectively. As inferred
from the figure, the theoretical spectra derived from both
C-HSA and Q-HSA also indicated size dependency, as
observed in experimental research. The intensities of peaks
I, (around 3650 cm™!) and peaks I, (around 3750 cm™!)
decrease with increasing cluster size. Nevertheless, our results
underestimated the relative decrease of peaks I, especially
for H*(H,O)o, with C-HSA showing better approximation
accuracy than Q-HSA, even though the prediction is gener-
ally higher than in experimental research. The calculated
spectra also agree with the experimental observation that
peaks II associated to the free-OH stretching band of three-
coordinate H,O appeared at n = 7, and the intensity continues
to rise consistently when n increases. As mentioned in the
study of Lin et al., this trend can serve as evidence of a
structural transition to ring isomers. Note that this agrees
with the thermodynamic results discussed in the previous
section where the ring isomers started to predominate the
population at n = 7. The blue-shift of the whole free-OH
stretching bands witnessed in the experiment is also observed
in our calculated spectra.
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IV. Conclusions

In this work, we have considered a hierarchical approach to
thoroughly explore the PES of H*(H,0),, n = 5—10, with
the OSS2 potential model and n = 5—9 at the B3LYP/6-
31+G* level. The distinct isomer set uncovered using our
hierarchical methodology is the largest-ever archive found
to date. The archive is subsequently used for the investigating
the thermodynamic and structural transitions of H"(H,0),
at two theoretical levels, namely, the OSS2 model and the
B3LYP/6-31+G* level using the harmonic superposition
approximation approach. In comparison with the PTMC
simulation involving the OSS2 model, our results revealed
good quantitative agreement between HSA and PTMC. The
consistency with PTMC results in structural transition and
features of the capacity curve are good indications of HSA’s
reliability. Further, the simulations with the ab initio method
also revealed the size dependency of H(H,0), in both
thermal behavior and vibrational spectra. The calculated
vibrational spectra in the free-OH stretching band when
compared to recent experimental results also arrived at good
agreement.
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Abstract: Generalized-ensemble algorithms in temperature space have become popular tools
to enhance conformational sampling in biomolecular simulations. A random walk in temperature
leads to a corresponding random walk in potential energy, which can be used to cross over
energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce
two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica
exchange (VREX). These methods are designed to address the practical issues inherent in the
replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM)
algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function
efficiently when applied to complex systems. ST and SREM both have the drawback of requiring
extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential
energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations,
and for synchronization and extensive communication between replicas. Both methods are
therefore suitable for distributed or heterogeneous computing platforms. We perform an objective
comparison of all five algorithms in terms of both implementation issues and sampling efficiency.
We use disordered peptides in explicit water as test systems, for a total simulation time of over
42 us. Efficiency is defined in terms of both structural convergence and temperature diffusion,
and we show that these definitions of efficiency are in fact correlated. Importantly, we find that
ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence
of structural properties compared to RE-based methods. Within the RE-based methods, VREX
is superior to both SREM and RE. On the basis of our observations, we conclude that ST is
ideal for simple systems, while STDR is well-suited for complex systems.

Introduction

Achieving complete (or even adequate) conformational
sampling is one of the key challenges in biomolecular
simulations.! The energy landscape of most biomolecules is
“rugged”, and the source of this ruggedness is two-fold. The
energetic barriers separating accessible states are often larger

* Corresponding author e-mail: pomes@sickkids.ca.
" Hospital for Sick Children.
* University of Toronto.

than the available thermal energy, and there are typically a
large number of states to be sampled. The time scales of
many biomolecular processes, such as protein folding, are
still far beyond the reach of our current computational
capability, which is generally limited to the 1078 to 1077 s
time scale for continuous simulations. For example, even
the folding of small domains or secondary structure elements,
such as $-hairpins and mini-proteins, occur on the 1—10 us
time scale.! Consequently, conventional or “brute force”
molecular dynamics (MD) alone is often insufficient to

10.1021/ct900302n CCC: $40.75 © 2009 American Chemical Society
Published on Web 09/16/2009
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achieve complete Boltzmann sampling of the important states
of many biologically relevant systems. For this reason,
generalized-ensemble algorithms have become popular tools
for conformational sampling.

A variety of generalized-ensemble algorithms have been
developed with the common intention of overcoming ener-
getic barriers in order to enhance sampling of conformational
space. These methods use a generalized Hamiltonian for the
purpose of achieving uniform sampling along a reaction
coordinate of interest. Practically, one is faced with choosing
the most appropriate method and reaction coordinate for a
particular application. While the optimal reaction coordinate
is not known a priori, it may be possible to make generaliza-
tions regarding the optimal methodology. To this end, we
consider the following important question: given limited
computational resources, which algorithm is most efficient
at sampling a complex energy landscape? Some generalized-
ensemble methods employ a random walk in potential
energy, while others use different parameters which are
relevant to the system of interest.” In this article, we compare
the efficiency of a set of algorithms which make use of a
random walk in temperature to enhance conformational
sampling of biomolecules. We focus on the following five
methods: simulated tempering (ST),>* replica exchange
(RE),”? the serial replica exchange method (SREM),'® and
two novel methods, virtual replica exchange (VREX) and
simulated tempering distributed replica sampling (STDR),
which is a combination of ST and distributed replica
sampling (DR)."' ™12

The generalized-ensemble algorithms compared in this
paper all rely on the fact that the free energy surface becomes
less rugged at high temperatures, increasing the frequency
of interconversion between conformational states.'* Simula-
tions performed at low temperatures often require a relatively
long time to cross the energetic barriers between states and
appear to be trapped. Transitions between regions separated
by barriers may not be observed over time scales accessible
to simulation. In this case, multiple simulations initiated in
different conformational basins may sample different subsets
of phase space. The result is that an ergodic system appears
nonergodic, a phenomenon known as quasi-nonergodicity.'
Utilizing generalized-ensemble algorithms that induce a
random walk in temperature may alleviate this source of
error.

The sampling enhancement of generalized-ensemble meth-
ods relative to canonical MD or Monte Carlo (MC) simula-
tions has been demonstrated for several systems,3 7,16,17
including peptides.®'*'872* Conversely, there have also been
studies that question the relative sampling efficiency of RE
compared to brute force MD,?* highlighting the importance
of a rigorous definition of efficiency which accounts for the
total computer time required for all temperatures.”®2® It is
important to note that data obtained at multiple temperatures
in generalized-ensemble simulations may be of interest in
some studies, such as protein folding.?"** In general,
however, the data at high temperatures are not useful.
Furthermore, the observed speedup also strongly depends
on the lowest temperature.?® It is essential to assess the
convergence of both the conventional MD simulations as
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well as the generalized-ensemble simulations in order to
perform a meaningful comparison, in addition to identifying
a meaningful quantity on which to base the comparison. Any
evaluation of sampling enhancement compared to single-
temperature MD is also likely to depend heavily on the
molecular system under study (depending on the number of
basins in the landscape and the heights of barriers). It is
therefore quite difficult to accurately quantify the sampling
enhancement due to the introduction of a random walk in
temperature.

We begin with a brief introduction of each of the
generalized-ensemble methods, including the presentation of
our two novel methods, STDR and VREX. We then perform
a thorough comparison of the algorithms in terms of both
practical implementation limitations and sampling efficiency
for a disordered octapeptide in explicit water, a molecular
system combining high relevance to protein folding and
moderate complexity. In addition to providing a comparison
between generalized-ensemble algorithms, we also provide
a comparison to conventional MD. We discuss efficiency in
terms of both convergence of structural properties and
temperature diffusion, and we show that these definitions of
efficiency are correlated. Finally, we compare the efficiency
of STDR and conventional MD for a 35-residue peptide with
a complex conformational landscape.

Theory and Methods

Simulated Tempering (ST). Simulated tempering was
originally introduced to enhance sampling of a random field
Ising model.? This system has a rough energy landscape for
which spin-flips from the state favored by the magnetic field
to the opposite state are statistically rare events. ST facilitates
exchanges between these states, whereas the MC algorithm
remains trapped.® ST has also been shown to be effective in
exploring the energy landscapes of biomolecules, which
similarly have multiple energy minima separated by barri-
ers.”

In the ST algorithm, temperature becomes a dynamic
variable®* that can take on discrete values labeled by an
index m (m = 1, ..., M). ST makes use of a generalized
Hamiltonian, H(X,m), which depends on all configurational
degrees of freedom (X), in addition to temperature:

HX,m) = ,HX) — a, e))

where 3, is the inverse temperature, H(X) is the system’s
original Hamiltonian, and a,, is a constant which depends
on temperature.” The generalized ensemble has a corre-
sponding generalized partition function, Z, given by:

7 = 2 f dX[e—H(X,m)] — z f dX[e—ﬁ,,,H(X)+am] —

Y7, e" (2)

where Z, is the partition function corresponding to the
temperature 7,,.°° The partition function of the generalized
ensemble, Z, is the weighted sum of the partition functions
of the canonical ensembles at each temperature, Z,. We
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therefore refer to the constants, a,,, as “weight factors”.>®

The probability of sampling a given temperature, 7, is’
P(T,) o< e "™ =7 e 3)

which depends on the generalized Hamiltonian, H, and
therefore depends on the weight factor, a,,. The goal in ST
is to perform a random walk in temperature such that all
temperatures are visited uniformly, that is, to choose weight
factors such that for any two temperatures (labeled i and j)

Ze"=2Z¢e" 4)

Since the partition function in the canonical ensemble, Z,,,
is related to the Helmholtz free energy, A,, the optimal
weight factors are dimensionless Helmholtz free energies (the
Helmholtz free energy multiplied by the inverse temperature,

ﬁ):30,31

7 = e*/J)mAm — e*ﬂm
" )

a,=—InZ,

The use of accurate dimensionless Helmholtz free energies
as weight factors leads to sampling all temperatures with
equal probability. In principle, the weight factors may take
any value without resulting in biased, non-Boltzmann
sampling at the individual temperatures. However, inaccuracy
in the weight factors leads to corresponding differences in
the probabilities of sampling at each temperature.*>?

An ST simulation consists of a short canonical MD (or
MC) simulation at temperature 7; followed by an exchange
attempt to a neighboring temperature, 7;. The probability of
this exchange occurring is given by:

. 1
T, —T) = mln{e—(ﬁf—ﬁi)E-O-(a,-—a,-) (6)

where E is the potential energy of the system at the end of
the previous simulation at temperature 7;, and f3; and f3; are
the inverse temperatures.” The weight factors need only be
accurate up to an additive constant, since only differences
in weight factors are required to determine the acceptance
probability.*® Through many repetitions of these alternating
simulation and exchange steps, a random walk in temperature
is realized, corresponding to a random walk in potential
energy and efficient exploration of the energy landscape.’’
In fact, ST has been shown to be as effective as the
multicanonical algorithm, which employs a random walk in
potential energy.*>

The underlying challenge in ST is accurately obtaining
the dimensionless Helmholtz free energies, a,,. There have
been two general approaches to their calculation. The first
method involves making use of the weighted histogram
analysis method (WHAM)*~3° to obtain the density of states
and the weight factors. The second method, which we utilize
in this paper, was recently proposed as a fast and efficient
scheme to obtain an accurate estimate of the weight factors
based on average energies.’’’ The average potential energy
at each temperature, (E), is obtained from initial simulations,
and the differences in weight factors are calculated as
follows:
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(E); + <E>,-+|)

Ay — a;= By — :81‘)( B (7

The weight factor for the lowest temperature can be set
to zero since only differences in weight factors are needed
in the exchange probability. The replica exchange simulated
tempering method (REST) may also be used to obtain weight
factors. In this method, an initial RE simulation is run for
the purpose of obtaining accurate weight factors, which are
then used in a ST simulation.*®*® REST may be used with
either WHAM or the method outlined in eq 7. Weight factors
may be updated throughout the ST simulation if required."*
Adaptive determination of weights using schemes like the
one developed by Zhang and Ma* based on the Wang—Landau
algorithm®® were shown to be useful for a square lattice Ising
model, a bead model of a protein and a Lennard-Jones fluid.*®
Biomolecular systems containing thousands of atoms rep-
resent a completely different level of complexity. Conver-
gence of weights is nontrivial'**%*!-** and can be slow even
with adaptive approaches.? Calculating weight factors has
been the main impediment to the widespread use of the
simulated tempering method.*°

The accuracy of the weight factors (that is, how close the
differences in weight factors are to accurate dimensionless
Helmbholtz free energy differences) can be assessed by
computing the deviation from sampling all temperatures
homogeneously in a sufficiently long ST simulation. In the
extreme case for which all weight factors are equal and all
differences in weight factors are zero, only the lowest
temperature is significantly sampled. This is because the first
term in the exponent of the exchange probability (eq 6)
depends on the potential energy, which is generally a large,
negative number for biomolecular systems. When multiplied
by the difference in inverse temperatures, the resulting
exchange probability dictates that moves to lower temper-
atures are accepted, while moves to higher temperatures are
rejected. Conversely, if the differences in weight factors are
equal to the differences in dimensionless Helmholtz free
energies, the temperatures in the ST simulation are sampled
uniformly, which is the optimal situation. In practice, weight
factors obtained for ST result in temperature sampling
inhomogeneity somewhere between these two extremes.
Calculating the dimensionless Helmholtz free energies for a
complex system such as a peptide in explicit water is
computationally expensive since it requires an accurate
estimate of the partition function. These calculations can
require tens of nanoseconds per temperature or more, and
the computational expense increases with both system size
and complexity.'*

Replica Exchange (RE). Replica exchange has been the
most widely used of the methods we discuss in this paper to
enhance sampling of biomolecular simulations. It can be
thought of as a parallel version of ST, and it is also known
as parallel tempering® or multiple Markov chains.® In fact,
parallel tempering was applied to proteins even before ST.*!
An RE simulation consists of M identical copies of the
system (replicas) which sample M canonical ensembles at
different temperatures. Exchanges are performed between
neighboring temperatures, 7; and 7;. The probability of
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making an exchange depends on the potential energies, E;
and Ej, and the inverse temperatures, 3; and f3;:

. 1
P(T, < T) = mln{e—(ﬂ,—ﬂi)(Ei_Ef) ®

RE is analogous to ST, but instead of using weight factors
in the exchange probability, the upward move of one replica
is coupled to the downward move of another. RE therefore
has the critical advantage of not requiring any initial
simulation for the calculation of weight factors. Importantly,
it also satisfies detailed balance.”

One drawback of the RE method is its significant
computational requirements. There is a one-to-one cor-
respondence between the number of replicas (M) and the
number of temperatures (M). The number of replicas needed
for a RE simulation is related to the number of degrees of
freedom, N, as O(N'?).%7*?> Systems with many particles
therefore require many replicas. Although it is not a specific
requirement of the RE algorithm, in its typical implementa-
tion, each replica is run on a dedicated central processing
unit (CPU). This setup minimizes the amount of information
that must be passed between nodes.>' Thus, M CPUs are
running simultaneously throughout the course of the RE
simulation. The use of M CPUs in RE can be overcome by
running multiple replicas per CPU. However, using one CPU
for multiple replicas does not effectively take advantage of
the parallelization inherent in the RE method.

The RE algorithm requires the synchronization of at-
tempted moves, which results in wasted CPU time if any
replica waits for other replicas to perform exchanges.
Inhomogeneity of CPU speeds affects the amount of wasted
time, since the speed of the calculation depends on the speed
of the slowest processor. Modified versions of RE have been
developed in an effort to minimize wasted CPU time,
including the multiplexed replica exchange method
(MREM)> and asynchronous replica exchange.> MREM
makes use of multiplexed layers of replicas (n layers, each
with M temperatures), with exchanges occurring both within
and between layers.”> MREM is even more computationally
demanding than RE, using n times as many processors.
MREM does not offer a significant advantage if there is a
shortage of CPUs, but it does offer a way of using more
CPUs without adding more temperatures. In asynchronous
replica exchange, only the replicas undergoing exchange are
synchronized, therefore increasing efficiency on heteroge-
neous computing platforms.*> More complex replica man-
agement schemes have also been proposed to increase the
efficiency of RE.*** However, modified RE algorithms do
not completely alleviate the need for synchronization and
frequent communication between replicas.'* This is espe-
cially important to users of distributed computing, such as
the massively parallel Folding@Home project,*® who must
contend with inhomogeneity of processor speeds.'*

Serial Replica Exchange (SREM). The serial replica
exchange method'® was recently developed to address the
main practical limitations inherent in the RE method, namely,
the need for synchronization and a large number of proces-
sors. The exchange probability in SREM has an identical
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form to that of RE (eq 8) for a replica at temperature 7;
attempting to move to a neighboring temperature 7}:

‘ 1
PT—T) = mm{e—(/f;—/fi><Ei—Ef,pEDF> ®)

Unlike RE, the attempted move from 7; to 7; does not
simultaneously involve another replica moving from 7; to
T;. In SREM, the potential energy, E;pgpr, does not come
from another replica at temperature 7; but rather is selected
at random from a potential energy distribution function
(PEDF) for that temperature. The PEDFs are determined
through initial simulations at each temperature, which may
use either constant-temperature MD or RE. These initial
simulations can be very computationally demanding for
biomolecular systems. For example, to obtain converged
PEDFs for a small RNA hairpin, approximately 100 ns per
temperature was required.”’” PEDFs may also need to be
updated throughout the course of the SREM simulation.'**
SREM also cannot be applied to temperature-dependent force
fields.*®*°

In terms of practical implementation, SREM offers the
same advantages as ST. In both methods, there is absolutely
no communication required between independent simula-
tions. Neither method requires a fixed number of CPUs, and
there is no wasted CPU time in the synchronization of
attempted exchanges. In principle, both ST and SREM can
be run on a single CPU. SREM also presents the same critical
challenge as ST: an initial simulation is needed to determine
PEDFs, the length of which is highly dependent on system
complexity. The significant computational cost of calculating
accurate PEDFs is a key drawback of SREM, since an SREM
simulation is not strictly correct if unconverged or incorrect
PEDFs are used.'®'* In contrast, the weight factors of ST
can deviate from the accurate dimensionless Helmholtz free
energies and still yield correct results.>' 4

Virtual Replica Exchange (VREX). The first novel
method we propose, virtual replica exchange, is based on
the principles of both RE and SREM. A replica at temper-
ature T; attempts a move to temperature 7j, with the
probability of exchange given by the following equation:

. 1
T, —T)= mm{e—(ﬂj—ﬁ,v><E,-—E,-,vi.ml> (10)

Here, the potential energy, Ejyira, comes from a list of
stored energy values obtained at temperature 7;. This is
analogous to exchanging with a potential energy value
selected from a PEDF in SREM, or the current potential
energy of a replica at temperature 7; in RE. Like SREM,
only a move from temperature 7; to temperature 7; occurs,
with no simultaneous reverse move. In VREX, an energy
value that occurred at temperature 7; in the past is used, and
following the attempted exchange, the occurrence of this
energy value is removed from the potential energy list. This
constitutes a “virtual exchange”.

VREX is derived to obey detailed balance in a similar
manner to RE.*'* Consider a state A in which a replica with
configuration X is at temperature 7; and a virtual replica with
configuration Xy, is at temperature 7;. An exchange is
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attempted to a state B in which the replica with configuration
X is at temperature 7; and the virtual replica is at temperature
T;. The detailed balance criterion is written

P(A) P(A — B) = P(B) P(B — A) (11

Transition probabilities that satisfy this criterion can then
be derived as follows:

e*ﬁjl‘l (X) e*ﬂiH (Xyir)

PA—B) _ % Zi BB E )
P(B—A) ¢ PHO) o BHO
Z, Z.

t J

(12)

This transition probability is satisfied by the Metropolis
criterion in eq 10. It also resembles the transition probability
for RE (eq 8). The VREX algorithm is completely analogous
to RE, except that one replica undergoes a virtual reverse
move. Similarly, SREM also involves a virtual reverse move,
in this case, by a replica whose energy distribution is
represented by the PEDF. In contrast, the RE algorithm
involves two real replicas undergoing temperature moves.

In practice, VREX requires very short initial simulations
in order to generate a preliminary list of energies for each
temperature. These lists are then updated as the simulation
progresses, with values being added from each short MD
simulation between exchange attempts and values being
removed as they are used in virtual exchanges. It is possible
to run out of potential energy values in the primary lists if
temperatures are sampled heterogeneously. In order to
address this possibility, implementations of VREX may
include the use of secondary lists, to which potential energies
from the primary lists are moved after a single use. Potential
energies from a secondary list may be used in the rare case
that the primary list for that temperature is completely used.
Further, recent values can be prioritized in the primary lists,
and relatively short and continually overwritten secondary
lists can be maintained in order to reduce the likelihood of
using pre-equilibration potential energies in post-equilibration
virtual exchanges.

The main advantage of VREX is that it avoids the need
to calculate converged PEDFs (like SREM) or weight factors
(like ST) and only requires a short list of potential energies
to begin sampling. It also addresses the main shortcoming
of RE because it completely eliminates the synchronization
between replicas, as well as the need for a fixed number of
replicas. It is theoretically very similar to RE, with the
addition of a variable time delay between the time when a
potential energy is produced and when it is used for an
exchange.

Distributed Replica Sampling (DR). Distributed replica
sampling'' is a general scheme for Boltzmann sampling of
conformational space in which multiple replicas undergo a
random walk in a reaction coordinate of interest. Individual
replicas are coupled through a generalized Hamiltonian
containing a potential energy term that depends on the
distribution of all replicas, which acts to enforce a desired
sampling distribution of the reaction coordinate. DR can
therefore be used to enforce uniform sampling along a
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reaction coordinate of interest. This may be, for instance, a
nonphysical spatial “fourth” dimension'? or a dihedral
angle.!> We briefly summarize the DR algorithm with
temperature as the coordinate.'' The implementation of DR
in other coordinates has also been previously outlined.'' ~'?

The generalized Hamiltonian of DR in temperature
contains a pseudoenergy term and depends on the current
inverse temperature and current configuration (g) of all
replicas:

M
H(q1 B1s s Bos woos s Br) = 2, B E(@,) +

m=1

DRPEB,, 5,, ..., By (13)

where E is the potential energy. There are M replicas in total,
each labeled by an index m = 1, ..., M. The distributed replica
potential energy (DRPE) can take any functional form that
depends on the distribution of replicas and fulfills the purpose
of enforcing homogeneous sampling of the temperature
coordinate. Importantly, although the DRPE is a pseudoen-
ergetic penalty, it is not a function of system complexity.''
The probability of a replica currently at temperature T7;
jumping to a temperature 7; is

) 1
PTG —T) = mm{ o—(6-PoEq)-ORPE-DRPE)  (14)

which depends on the difference between the DRPE with
the replica at temperature 7; (DRPE;) and that at temperature
T; (DRPE,)."" DR can be analogously used to achieve a
random walk in a parameter of the Hamiltonian, &, with an
exchange probability:

. 1
p&— &) = mm{e—ﬁl(H(q,éj)—H(q,E,-))Jr(DRPE,-—DRPEi)J

15)

DR was designed specifically to suit shared or distributed
computing platforms.'! In contrast to RE, in which pairwise
exchanges of replicas are attempted, DR considers stochastic
moves of individual replicas one at a time. The stochastic
move of one replica is coupled to the distribution of all other
replicas through the DRPE, and no direct communication
between replicas is required. In DR, synchronization of
exchange attempts is therefore completely eliminated, which
results in 100% CPU utilization."' The algorithm also readily
accommodates fluctuations in CPU availability."' DR in
combination with thermodynamic integration (TT) was shown
to sample conformational space more effectively than TI
alone in the calculation of the binding free energy of benzene
to T4 lysozyme, while simultaneously optimizing the use of
available computational resources.'? This approach was also
successfully employed to compute partial water occupancy
in the pathway of proton uptake in cytochrome ¢ oxidase.>
In addition, DR has been combined with umbrella sampling
(DRUS) to allow equilibrium exchange between different
umbrella biasing potentials.'*>° When applied to alanine
dipeptide, umbrella sampling alone exhibited quasi-noner-
godic behavior, while DRUS alleviated this systematic
error."?
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Application of the DRPE restores sampling homogeneity
of temperature only when the DRPE contribution is large
enough to balance the preference for sampling the lowest
temperature. When ST is conducted with all weight factors
equal, as outlined in eq 14, all replicas migrate with a strong
preference for the lowest temperature (as described above).
In this case, a very strong DRPE is required to achieve
sampling homogeneity. However, it has been demonstrated
that, as the energetic penalty of the DRPE becomes stronger,
replica mobility (as measured by acceptance ratio) de-
creases,'! and therefore some modification to the DR
exchange probability is necessary. This issue can be ad-
dressed by simply adding weight factors to the exchange
probability, analogous to the weight factors, f, in the DRUS
exchange probability:'?

) 1
P& &) =:n“n{e—maﬂ%§r4ﬂ¢&»—m—ﬁH«DRPa—DRP&H

(16)

This form of the exchange probability results in good
replica mobility and nearly perfect sampling homogeneity
of the reaction coordinate.'® The efficiency and practical
advantages of DR in other coordinates have been well
established."' '3 It is therefore a central objective of this
study to develop and test an implementation of DR which
functions optimally in temperature space.

Simulated Tempering Distributed Replica Sampling
(STDR). Building on the success of the both the ST
method** and DR sampling,'' ~'** we have developed a
new algorithm, STDR, which combines the two approaches.
STDR is essentially DR implemented rigorously in temper-
ature. The combination of these two methods was originally
suggested when DR was developed.'' In STDR, approxi-
mately homogeneous sampling of a set of temperatures is
enforced. The probability of accepting a move from a
temperature 7; to a neighboring temperature 7; is

) 1
p(T,—T) = mln{e—(/i_,v—ﬁ,v)E+(a,-—a,-)—(DRPE,-—DRPE,)

7)

This is the same as the exchange probability from ST, with
the addition of the difference in DRPE between the states
for which the replica is at temperature 7; (DRPE;) and
temperature 7; (DRPE;). The calculation of the DRPE is
straightforward. Its functional form depends upon the current
temperatures of all replicas as follows:'?

M M
DRPE = Cl Z 2 [(lm,linear - in,linear) - w(m - n)]z +

m=1 n=1
M M 2
) Z j’m,linear - w z m (18)
m=1 m=1

Replicas are labeled by indices m and n, where M is the
number of replicas. The values of A, jimear refer to a linearly
spaced temperature coordinate. In this coordinate, the lowest
temperature has A, jinear = 1, and the highest temperature has
Amlinear €qual to the number of temperatures. This procedure
transforms the exponentially spaced temperatures into a
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uniformly spaced coordinate. The factor w, which we
introduce to the DRPE in this work, is the ratio of the number
of temperatures to the number of replicas. This factor allows
DR to be used with an arbitrary number of replicas. The
first term in eq 18 introduces an energetic penalty for two
replicas sampling the same temperature, while the second
term introduces a penalty for an overall drift of the replicas
toward high or low temperatures. The second term is not
essential when using DR in temperature. The constants c)
and ¢, control the influence of the DRPE and can be tuned
to enforce homogeneous temperature sampling as required."’
In the case of accurate weight factors, the influence of the
DRPE only needs to be small such that values of ¢; and c;
near zero can be used. With increasingly inaccurate weight
factors, larger DRPE values are required to maintain
homogeneous temperature sampling, and this reduces the
acceptance ratio to some degree. An example calculation of
the DRPE using the temperature as the reaction coordinate
is provided as Supporting Information.

If the weight factors, a,, are inaccurate, ST results in
uneven sampling of the temperature coordinate. As we will
demonstrate, introducing the DRPE recovers homogeneous
sampling. The STDR method is therefore more generally
applicable than ST because it can make use of a poor estimate
of the dimensionless Helmholtz free energies and still yield
uniform sampling of the canonical ensembles at each
temperature. STDR is equivalent to ST in the limit of one
replica and is compatible with adaptive schemes for comput-
ing weight factors. Below, we show that STDR is the
preferred method for systems with a complex energy
landscape for which limitations on computational resources
preclude obtaining sufficiently accurate estimates of Helm-
holtz free energies for a ST simulation.

Test System. For the purpose of comparing different
generalized-ensemble methods, we use two related test
systems, the peptides GVGVPGVG and (GVPGV);. These
peptides are both based on the pentapeptide GVPGV, which
is found as a repeat motif in the protein elastin.>' In our
previous study of (GVPGV); and other related elastin-like
peptides, we observed that this peptide is intrinsically
disordered, having many conformations and no extended
secondary structure in the form of a-helices or S-sheets.>
Understanding the structural heterogeneity of elastin-like
peptides is required to elucidate the structure—function
relationship of elastin, for which experimental characteriza-
tion is notoriously difficult due to its flexibility and insolubil-
ity. The peptide GVGVPGVG has also been studied previ-
ously and was suggested to exhibit an “inverse temperature
transition” with an increased probability of “closed” con-
formations (in which the N and C termini are closer than 8
A) at higher temperatures.>® On the basis of this work, the
octamer is a simple yet appropriate peptide to study in the
aim of understanding the temperature-dependent behavior
of elastin. Because the main focus of this paper is the
thorough comparison of generalized-ensemble methods using
these peptides as test systems, we do not elaborate fully on
the structural details of either the octapeptide or the 35-
residue peptide in this paper. A full characterization of the
conformational landscape of these peptides will be the subject
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Figure 1. Conformational landscape and hydrogen-bonding
contact map of GVGVPGVG. (A) A selection of 35 random
conformations from the STDR simulation at 280 K, with glycine
in red, valine in yellow, and proline in blue. (B) Hydrogen-
bonding contact map at 280 K, with corresponding snapshots
showing the presence of significantly populated contacts. N—H
groups are on the horizontal axis, and C=0O groups are on
the vertical axis. Each square in the matrix (i,j) corresponds
to a contact between the N—H group of residue jand the C=0
group of residue j. The color scheme of the legend indicates
the relationship between color and probability of contact
formation.

of future work. Both GVGVPGVG and (GVPGV), are
valuable test systems because of their structural complexity
and the fact that they represent a real scientific problem in
the sense that they are not well understood or characterized
a priori. Simple test systems are often used for comparison
purposes, such as alanine dipeptide,'*'? although general-
ized-ensemble methods are typically applied to systems
which are much larger and more complex. While simple test
systems are useful for the sake of demonstration and for the
elucidation of major problems, they are less likely to detect
the subtleties and practical issues experienced when studying
systems of biologically relevant complexity.

The conformational landscape of the octapeptide is
complex, with many energetically accessible states that must
be sampled in order to accurately compute free energies. A
representative selection of these conformations is shown in
Figure 1A, with “closed” states in which the N and C termini
are in close proximity, “hairpin”-like states, and extended
structures. Although it is a short peptide, GVGVPGVG
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represents a challenging sampling problem due to the large
number of thermally accessible conformations. In Figure 1B,
we show the hydrogen-bonding contact map for this peptide
obtained using STDR. The only secondary structure consists
of hydrogen-bonded turns, with no o-helix or $-sheet. The
most populated turn is the VPGV f turn, with a hydrogen
bond between the C=0 group of valine 4 and the N—H
group of valine 7. Several other turns form with lower
populations. As we will show, single-temperature MD, if run
for a sufficiently long time, provides a converged description
of the conformational landscape. This makes it an ideal test
system because we can verify that the generalized-ensemble
algorithms, given sufficient sampling, lead to correct Boltz-
mann-weighted sampling of conformational space, in addition
to an assessment of their relative efficiency.

The 35-residue peptide, (GVPGV),, is used as a more
complex test system to demonstrate the sampling enhance-
ment provided by STDR for a landscape which not only has
many populated states but also has significant energetic
barriers between those states. The larger system is only
simulated using constant temperature MD, ST, and STDR
because of the extensive amount of computational resources
required. Of the methods we consider, STDR is better suited
to this particular application on the basis of its performance
for the octapeptide. It is as efficient and accurate as the other
methods, while offering the most practical advantages for a
large and complex system (see below).

Simulation Details. For all five methods (ST, STDR,
SREM, RE, and VREX), the same exponentially spaced
temperature list was used. This list is provided as Supporting
Information Table S1. The simulation system consists of the
GVGVPGVG octapeptide, capped with an acetyl group at
the N terminus and an NH, group at the C terminus, in a 3
x 3 x 3 nm3 box with 872 water molecules. The same fully
extended starting structure was used for all temperatures and
all methods. Simulations were performed using the GRO-
MACS MD simulation package, version 3.3.1,>*°> with the
OPLS-AA/L force field*>”’ for the solute and the TIP3P
model for water.’® Periodic boundary conditions were
applied. The switch function of GROMACS was used for
Lennard-Jones interactions, which corresponds to the usual
Lennard-Jones function until 1.3 nm is reached, after which
it is switched to reach zero at 1.4 nm. Covalent bonds
involving hydrogen atoms were constrained with the SHAKE
algorithm.>® Calculations of electrostatic forces utilized the
particle mesh Ewald summation method®*®' with a Fourier
spacing of 0.15 nm and a fourth-order interpolation. The real-
space Coulombic cutoff was 1.49 nm. All MD simulations
were performed in the canonical ensemble. Peptide and
solvent were coupled to the same reference temperature bath
with a time constant of 2 ps using the Nosé—Hoover
method.®*®* An integration step size of 2 fs was used, and
coordinates were stored every 1 ps.

In order to compare the generalized-ensemble methods,
the simulations were conducted as similarly as possible.
To this end, the same total amount of simulation time
(summed over all replicas) was performed. This amount
was 4.75 us, with an average of approximately 144 ns
per replica. This time was used because it was sufficient
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for all methods to achieve statistical convergence, as
shown in the results. Stochastic exchanges using the
Metropolis Monte Carlo algorithm® were attempted every
25 ps. Exchange probabilities were calculated using eqs
6, 8,9, 10, and 17, as appropriate for the method. Details
of the calculation of weight factors and PEDFs are
discussed below. The constants ¢; and ¢, for the DRPE
in eq 18 were both 0.005. These values were found to
achieve an appropriate balance between homogeneity of
temperature sampling and replica mobility.'' The value
of the factor w was 1.0, since the number of replicas
equaled the number of temperatures. The generalized-
ensemble algorithms were implemented using an in-house
bash script. Software for distributed replica sampling is
also available online at www.pomeslab.com.

The same simulation protocol was used for the simulation
of (GVPGV),, which was simulated in a 4.5 x 4.5 x 4.5
nm® box with 2856 water molecules using both ST and
STDR. Starting conformations and weight factors for each
temperature were generated using canonical MD for 15 ns
per temperature (storing 250 energy values per picosecond).
A total of 70 temperatures were used for each generalized-
ensemble simulation. The list of temperatures is provided
in Supporting Information Table S1. Temperatures were
spaced more closely than those of the octapeptide. This is
because it is a larger system, resulting in less overlap between
potential energy distributions of adjacent temperatures for a
given temperature separation. This system was simulated for
a total of 8.2 us (117.6 ns per replica on average) using the
STDR algorithm. An ST simulation using the same weight
factors was also performed for 420 ns (6 ns per replica
on average). ST and STDR simulations were also per-
formed using weight factors calculated using the first 500
ps of continuous MD at each temperature for a total of
280 ns.

A conventional MD simulation of the 35-residue peptide
system in the isothermal—isobaric ensemble was also
performed using GROMACS, version 4.0.2.%° In this simula-
tion, a 4 fs time step was used, and constraints on bonds
and angles involving hydrogen were imposed using the
LINCS algorithm.®® This simulation was run for 200 ns at
261 K, which corresponds to the lowest temperature in the
STDR simulation. The pressure was kept constant at 1.0 bar
using the Parrinello—Rahman algorithm.®”

The analysis of the data accumulated in the trajectories
was performed using an in-house script based on a modified
version of the Dictionary of Secondary Structure in Proteins
(DSSP).® For each snapshot, possible backbone hydrogen
bonds were evaluated using both (a) the energetic criterion
of DSSP and (b) the following geometric criteria: (i)
donor—acceptor and hydrogen-acceptor distances are less
than 3.5 and 2.5 A, respectively, and (ii) the value of the
acceptor—donor-hydrogen angle is less than 60°. Definitions
of turns and bends are the same as those in DSSP.®® End-
to-end distance (EED) is calculated as the distance between
the o carbons of the first and last residue. Root mean square
deviation (rmsd) was calculated using the g_rms program
in GROMACS.® All molecular visualizations in the manu-
script were produced using VMD.%
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Calculations of Weight Factors for ST and STDR,
PEDFs for SREM, and Potential Energy Lists for
VREX. The calculation of weight factors for eqs 6 and 17
required initial simulations of the octapeptide in the canonical
ensemble for each of the temperatures listed in Supporting
Information Table S1. These simulations were performed
using conventional MD for 19.5 ns (for a total simulation
time of 643.5 ns). Although obtaining these accurate weight
factors was resource-intensive, it involved a straightforward
procedure. The weight factors were computed using the
average potential energy at each temperature according to
eq 7.>° The accuracy of these weight factors was assessed
by using them in an ST simulation and observing the
temperature sampling uniformity, as shown in the results.
Since all temperatures were sampled with nearly equal
probability, as expected from eqs 3 and 5 for accurate
dimensionless Helmholtz free energies, these weight factors
were deemed to be sufficiently converged and correct.

Using the same data from the conventional MD simula-
tions, PEDFs were computed as described in the original
SREM paper.'® The convergence of the PEDFs was assessed
by calculating the x> measure suggested by Hagen et al.:'”

Nbins

Xz(t) = 2 (Pz(t) - Pi,reference)2 (19)

n=1

This measure computes the deviation of each bin in the
current distribution, P,(f), from a reference distribution,
P reference- The current distribution is cumulative, using the
data up to time f. For the reference distributions, we used
PEDFs computed using all of the data at each temperature.
By this assessment, the PEDFs appeared to be stationary, as
shown in Figure 2A. When x? was plotted individually for
each temperature, we also observed that each PEDF was
stationary. However, an initial SREM simulation using these
PEDFs resulted in nonuniform sampling of temperatures. We
therefore proceeded to calculate the PEDFs using a different
data set. We used the first 25 ns at each temperature of the
RE simulation (for a total time of 825 ns), and these were
the PEDFs used for the SREM simulation. While this
procedure is similar to what would likely be done in practice
with SREM, we emphasize that making this selection of
PEDFs gave SREM somewhat of an advantage over ST,
since more data were used in the initial simulation. The use
of RE in the calculation of PEDFs is similar to REST.?***
Although REST results in faster convergence of the weight
factors compared to conventional MD, it may be difficult or
impossible to obtain access to the required number of
homogeneous and dedicated CPUs for the initial RE simula-
tion. Thus, we did not use REST to obtain the weight factors
for ST to better represent the general case where it may not
be convenient to do so. In contrast, it was necessary to use
RE to obtain PEDFs for SREM in a reasonable amount of
time.

Figure 2B shows the error in the exchange probability for
both SREM and ST using the data from 19.5 ns of
conventional MD at each temperature. The method for
computing the error in exchange probabilities is provided in
Appendix 1. The weight factors of ST produce an average
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Figure 2. Assessing convergence of weight factors and PEDFs. (A) The convergence of the PEDFs for SREM is quantified
using the ¥ measure defined in eq 19. Using this measure, the PEDFs obtained using 19.5 ns of conventional MD at each
temperature appear to be stationary. (B) Convergence of the PEDFs and weight factors using data from 19.5 ns of conventional
MD per temperature, using the data from the complete RE simulation as a reference. (C) Similarly, data from the RE simulation,
using only the first 25 ns per temperature, with the data from the complete RE simulation as a reference. (D) Similarly, using all
of the data from the RE simulation (4.75 us). Error in the acceptance ratio is shown in B, C, and D for both ST in yellow (computed
using eqgs 25 and 29) and SREM in purple (computed using eqgs 24 and 27).

error in the exchange probability of less than 2% after 19.5
ns per temperature. Using the same amount of data, the
PEDFs produce a significantly higher error in the exchange
probability (more than 5%), which is why the weight factors
used in ST from conventional MD produced more homo-
geneous sampling than the PEDFs. In Figure 2C, the error
in the exchange probability for both ST and SREM is shown
using the data from the first 25 ns at each temperature of
RE. This data set was used to calculate the PEDFs for the
SREM simulation, producing an error in the exchange
probability of less than 4%. The convergence of the PEDFs
estimated using all of the data from RE is shown in Figure
2D. The error in the exchange probability had only decreased
to less than 2% after approximately 60 ns per temperature.
That is, SREM would have required preliminary simulations
which were half as computationally expensive as the entire
RE simulation in order to produce error in the exchange
probability equivalent to that of ST. The slow convergence
of PEDFs is likely why they have been updated throughout

the course of the simulation in other studies.'%!'**’ However,
an SREM simulation is strictly correct only with accurate
PEDFs.'*

Figure 2 demonstrates that the error in the weight factors
of ST leads to smaller error in the exchange probability than
the error in the average energy of PEDFs. This finding is in
qualitative agreement with a previous study comparing
SREM and ST for a helical peptide.'* The PEDFs of SREM
were observed to converge more slowly than the weight
factors of ST when starting from a coil conformation, but
not when both ST and SREM were started with a helical
conformation.'* In the original SREM paper, it was hypoth-
esized, but not shown, that the calculation of PEDFs should
be significantly easier than the calculation of weight factors
for ST.'® In fact, we observe that the opposite is true for
this system. The weight factors converge significantly faster
than PEDFs and lead to more homogeneous sampling of the
temperature. The difference in errors is likely because the
exchange probability in ST uses a difference in dimensionless
free energies, whereas the absolute value of the potential
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energy is used in the exchange probability of SREM.
Additionally, the method for computing the weight factors
uses only the average potential energy at each temperature.*”
It is harder to converge a distribution of potential energies
than the average of the distribution. Since weight factors are
computed using average potential energies, they converge
more quickly than PEDFs. The accuracy of the potential
energy value selected from the discrete PEDF in SREM is
also affected by the number of bins and the bin width.'® The
accuracy is decreased by having too few bins, whereas the
convergence of the distribution is slower with a larger
number of bins. These errors must therefore be balanced.
Even if the PEDFs and weight factors converged at the same
rate, ST has the advantage of convenience, since it entails
storing a short list of weight factors rather than a distribution
of energy values for each temperature.

We also tested the effects of using a poor estimate of the
weight factors in ST. In order to generate suboptimal weight
factors, we used the data from the first 750 ps of the RE
simulation. This required a total of 24.75 ns summed over
all temperatures, compared to 643.5 ns used to generate
accurate weight factors. These weight factors produced
inhomogeneous sampling of the temperature, confirming that
they were inaccurate estimates of the dimensionless Helm-
holtz free energies (as is demonstrated in the results below).
The purpose of this exercise was to emulate the more general
case of a complex system for which one may not be able to
accurately calculate weight factors due to the prohibitive
computational cost. ST and STDR simulations carried out
with these inaccurate weight factors will hereafter be referred
to as STb and STDRD, respectively.

Potential energy lists for the VREX simulation were also
generated using the RE data. A list of 1000 energy values
from the first 1 ns was used for each temperature. We did
not run out of potential energy values in the primary lists
and therefore no secondary lists were used. However,
secondary potential energy lists may be necessary in the
application of this method to other systems. In summary,
we highlight the varying costs of the initial simulations for
each of the methods in terms of the simulations times: RE
(0 ns), VREX (33 ns), SREM (825 ns), STDR (643.5 ns),
STDRD (24.75 ns), ST (643.5 ns), and STb (24.75 ns).

Results and Discussion

Practical Implementation Issues. Before we begin a
detailed comparison of the efficiency of the temperature-
based generalized-ensemble methods, we briefly compare
them with regard to the practical issues encountered in their
implementation. A summary of this comparative discussion
is provided in Table 1. Prior to beginning an enhanced
sampling simulation, it is necessary to assess the available
computational resources, including the number of processors
available, the heterogeneity of their speeds, and their failure
rate (frequency of “crashes”).

In terms of the number of CPUs required, the RE algorithm
specifies that the number of replicas equal the number of
temperatures, which grows with system size. In the typical
implementation of RE, the number of processors equals the
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Table 1. Practical Advantages and Disadvantages of
Generalized-Ensemble Algorithms®

Implementation Issue RE SREM | VREX | STDR | ST

Scalable to any number of CPU’s (even one
cpPU)?

Algorithm readily accommodates a fluctuating
number of CPU’s?

Efficiency impaired by inhomogeneity of CPU’s?

Performance severely affected by CPU failure?

Initial calculation of weight factors, potential
energy distribution functions or potential
energy lists required?

Initial simulation times (ns) 0 825 33 6435 643.5
(STDR) (51

2475 | 2475

(STDRb) | (STh)

21f a method is not affected by an implementation issue, the
corresponding square is colored in green. Yellow indicates that the
issue is somewhat of a concern, and red indicates that it is
potentially a major pitfall. The only major issues for SREM and ST
are the calculation of PEDFs and weight factors, respectively.
STDR and VREX are not severely affected by any implementation
issue. However, they do require very short initial simulations to
obtain weight factors and potential energy lists and, ideally, would
not be run with only one replica. RE, in its typical implementation
in which each replica is run on a dedicated CPU, is hindered by all
of the issues listed, except that it does not require any initial
simulation.

number of replicas. If it is not possible to obtain access to
the required number of processors, an alternative method or
a more advanced RE implementation must be sought.
Another possible scenario is that extra processors are
available, which could be utilized to speed up the calculation,
but the RE algorithm does not allow the possibility of having
more replicas than temperatures. This particular issue is
addressed by the MREM algorithm, which utilizes multiple
layers of replicas.”> However, there is no general mechanism
to adapt RE to use available resources most efficiently. In
contrast, both ST and SREM completely eliminate the need
for a specific number of replicas. Multiple ST or SREM
simulations can be run independently to take advantage of a
computing cluster or distributed computing. The benefit of
utilizing several processors simultaneously, each running an
independent ST or SREM simulation, is simply reaching
convergence more quickly in terms of wall clock time.
Similarly, STDR and VREX algorithms do not require a fixed
number of replicas. However, the aim of the DRPE is to
enforce homogeneous sampling of temperatures for multiple
replicas. Using only one replica is therefore not optimal, and
ideally one would use a number of replicas comparable to
the number of temperatures, though there is no specific
requirement. A VREX simulation can in principle have any
number of replicas. However, there is likely some benefit to
having multiple replicas sampling different regions of
conformational space in the updating of the potential energy
lists (that is, running more than one replica at a time).

Of the generalized-ensemble methods we consider, only RE
prevents the number of replicas from fluctuating during the
course of the simulation. This may be a drawback in distributed



2650 J. Chem. Theory Comput., Vol. 5, No. 10, 2009

computing platforms and shared computing clusters, for which
there is no way to predict the number of available processors
in advance. Furthermore, the efficiency of RE is significantly
affected by inhomogeneity of CPU speeds. Each exchange step
can only occur when all of the replicas have completed their
MD calculation. Any inhomogeneity in the computing environ-
ment results in a waste of computational resources, as some
replicas must wait for the replica with the slowest processor to
finish its calculation. This issue has been partly addressed by
the asynchronous replica exchange method, although some
degree of synchronization is still required for the replicas
undergoing exchange.*® Since none of the other methods require
any direct communication between replicas, they do not suffer
from this inefficiency. Another key drawback of the typical
implementation of RE is its sensitivity to CPU failure.'*'" If
one of the replicas is running on a processor that crashes, the
entire RE simulation is stalled until this replica can be restarted
on a functioning processor. The time wasted due to CPU failure
depends on the failure rate of the cluster and can be quite
significant. Failure rates also rise with the number of replicas,
and therefore the failure rate of RE is equal to the number of
replicas times the failure rate of either SREM or ST."°

In contrast to RE, the other four methods all have the
advantage of not requiring a fixed and synchronized cluster
of CPUs to function optimally. From a practical point of
view, these methods are all superior to RE, except in one
regard. Only RE does not require initial simulations at
multiple temperatures to obtain weight factors, PEDFs, or
potential energy lists. In particular, ST and SREM appear
to only be suited to systems for which accurate weight factors
or PEDFs can be calculated in a reasonable amount of
simulation time. For the test system in the present study,
accurate weight factors for ST were computed using single-
temperature MD, whereas SREM required more simulation
time and the use of RE in order to obtain sufficiently accurate
PEDFs (see methods section). We will demonstrate that
STDR can function with less accurate weight factors and
therefore requires less initial simulation time than ST. Finally,
VREX requires significantly less initial simulation than
SREM, STDR, or ST. Only short lists of potential energies
at each temperature are needed to begin a VREX simulation.

An ideal temperature-based generalized-ensemble method
would not require a significant initial simulation (as do ST
and SREM) but also would not involve the use of a large
cluster of homogeneous CPUs (as is common for RE). STDR
and VREX address both of these issues, and are the most
flexible algorithms in terms of practical concerns. These
issues are particularly important if one is using a distributed
computing platform with fluctuating numbers of heteroge-
neous CPUs in many different locations, or a shared
computing cluster, which may present similar limitations.

Diffusion in Temperature. We characterize the efficiency
of the temperature diffusion of each method using several
different metrics, which are summarized in Table 2. First,
we calculate the average acceptance ratio, which is a metric
commonly reported for RE simulations.”” The methods
separate into two categories based on their acceptance ratios:
the RE-based methods (RE, VREX, and SREM) and the ST-
based methods (ST, STb, STDR, and STDRb). ST has a
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Table 2. Evaluating Temperature Diffusion

Property RE VREX | SREM | STDR | STDRb ST STh
Acceptance Ratio 0.237 | 0241 0248 | 0378 | 0376 | 0.463 0.404
7 6 5 3 4 1 2
Replica Speed 0.058 0.050 0.051 0.058 0.059 0.065 0.065
(distance/time)
4 7 6 4 3 il 1
Mean Free Path 0322 | 0245 | 0.255 | 0402 | 0.402 | 0431 | 0445
5 7 6 3 3 2] i
Diffusion Coefficient 0.208 | 0.181 | 0.156 | 0.195 0.196 | 0.246 0.249
l 6 7 5 4 2 il
Average Deviation from 0 6.62 12.61 2.50 2.98 3.81 17.40
Sampling Homogeneity
(%) 1 5 6 2 3 4 7
Composite Score 0.79 0.70 0.68 0.87 0.88 0.98 0.94
(a normalized linear
combination) 8 & u 4 3 ¥ 2

The quality of the random walk in temperature for each
generalized-ensemble method is assessed using five criteria, and
an overall score is obtained by taking the normalized linear
combination. Normalization is performed by dividing each value by
the maximum value of that measure. The fifth measure was
included in the normalized linear combination as 1.0 — (average
deviation from sampling homogeneity)/100% for consistency with
the other measures of temperature diffusion. The overall scores
for each property are ranked from 1 to 7, representing decreasing
performance. Scores are colored as follows: 1 and 2 (green), 3—5
(yellow), and 6 and 7 (red).

higher acceptance ratio than RE for the same set of
temperatures, in agreement with a previous comparison
of the methods.*® Similarly, ST has a higher acceptance ratio
than SREM.'* Zhang and Ma also observed that the rate
of traversing temperatures is faster in ST, and that this effect
becomes especially apparent if separations between adjacent
temperatures are large, or if exchanges are attempted less
frequently.*” Park proved that this is generally true for a
given set of temperatures®’ and concluded with a question
as to whether the enhanced acceptance ratio affects the rate
of sampling different microstates, and therefore structural
convergence. We investigate whether the higher acceptance
ratios in serial tempering algorithms (both ST and STDR)
compared to those in parallel tempering (RE, VREX, and
SREM) do in fact lead to faster structural convergence in
the next section. It should be noted that the DRPE in STDR
decreases the acceptance ratio relative to ST, since it
increases the probability of rejecting moves that result in
inhomogeneous temperature sampling. The extent of this
effect depends on the constants ¢; and ¢, in eq 18."!

Next, we consider a quantity which we call “replica
speed”. Back exchanges can occur in which a replica accepts
a move to an adjacent temperature and at the next exchange
returns to its previous position. These back exchanges
contribute to the acceptance ratio, but they result in no net
change in temperature, and typically no crossing of signifi-
cant energetic barriers. In order to account for these
“unproductive” moves, we calculate the replica speed as the
average distance traveled after 50 exchange attempts. Values
of replica speed are reported in Table 2. All of the methods
have similar values for the replica speed, with SREM and
VREX being slightly slower. The higher acceptance ratios
of the ST-based methods do not correspond to significantly
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faster replica speeds. That is to say, the higher acceptance
ratios for the ST-based methods are partly due to an increased
frequency of unproductive moves.

Making an analogy with the replicas traveling in temper-
ature space as a type of diffusion in a one-dimensional
coordinate, we calculate the mean free path and diffusion
coefficient for each method. Mean free path is defined as
the average distance traveled between successive rejected
moves (“collisions”). The diffusion coefficient is defined as
the rate of change of the mean squared deviation of distance
over time. We notice that ST, both with accurate and
inaccurate weight factors, has the highest mean free path
and diffusion coefficient. Both STDR simulations behave
remarkably similarly and are slightly slower at diffusion in
temperature compared to ST. RE has a higher diffusion
coefficient than STDR, but a lower mean free path. It is also
slightly more efficient at temperature diffusion than VREX
or SREM.

Another important criterion is the deviation from sampling
homogeneity, which indicates the amount of deviation from
uniform sampling averaged over all of the temperatures:

— (NI
average deviation from homogeneity = 1 2 < Ny
m 1

(20)

where the number of samples at temperature m is N, the
average number of samples per temperature is (N,,), and M
is the number of temperatures. We report the deviation from
sampling homogeneity for each temperature in Supporting
Information Figure S1. The coupling of upward and down-
ward moves in the RE algorithm results in perfectly uniform
sampling of all temperatures. STDR produces nearly uniform
sampling, with deviations from uniformity of 2.50% and
2.98% for accurate (STDR) and inaccurate (STDRb) weight
factors, respectively. This is expected because the application
of the DRPE favors uniform sampling of the temperature
coordinate.'' Even with inaccurate weight factors, the
temperature sampling is still uniform, and the diffusion
coefficient is still approximately the same. This indicates that
STDR in the general case (i.e., with inaccurate weight
factors) still successfully produces uniform sampling and
good mobility in temperature. Our ST simulation also results
in nearly uniform sampling, confirming the accuracy of the
weight factors. ST with inaccurate weight factors (STb)
produces the least uniform sampling, by design (17.40%).
We intentionally selected weight factors to produce uneven
sampling to represent a more complex system for which
calculating weight factors accurately would be computation-
ally expensive. VREX produces relatively uniform sampling,
with an average deviation of 6.62%. Most of the inhomo-
geneous sampling in VREX occurs early in the simulation
when the potential energy lists were based on a small amount
of sampling, and the sampling is increasingly homogeneous
with time. In contrast, SREM does not produce uniform
sampling, with less sampling at the lowest temperatures and
an average deviation of 12.61%.

Temperature sampling efficiency is characterized by an
overall score. The five measures of efficiency defined in this
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Figure 3. Assessing the accuracy of the EED distribution.
The EED probability distribution is shown for each method
with colors indicated in the legend using data from 280 K.
The average distribution is computed as the average of all
seven methods and is shown in purple (dashed line). The error
of the distribution of each generalized-ensemble algorithm,
Oeeds 1S Shown next to the legend and was computed using
eq 21 with the average distribution as the reference.

section are combined by averaging their normalized values.
The overall score for each method is reported in the last row
of Table 2. ST with accurate weight factors performs the
best overall, and all of the ST-based methods perform better
than the RE-based methods (especially SREM, which has
the lowest overall temperature diffusion score).

Convergence of Structural Properties. The octamer
GVGVPGVG is a disordered peptide with many thermally
accessible conformations, as shown in Figure 1. A useful
descriptor of the conformation of such a short and flexible
peptide is the end-to-end distance, EED. The EED probability
distributions obtained using each of the generalized-ensemble
methods at 280 K (the lowest temperature) are shown in
Figure 3. Also shown is the average distribution, which is
obtained by taking the average of all of the methods. There
is no systematic bias of either ST-based or RE-based methods
toward sampling particular conformations. For example, for
the peak at 5 A, RE, STDRb, and SREM are above the
average while STDR, VREX, and STb are below. On the
basis of this observation and of the large amount of sampling
in the combined data set of all seven methods (nearly 35
us), we take the average to be the “gold standard” for
comparison throughout the analysis of structural convergence
(it is hereafter referred to as the “reference”). We quantify
the deviation 0.4, of the EED distribution of each method
P..q(n), from the reference EED distribution Peed reference(72),
by computing

Nbins

Oeed = 2, (Peg(m) —

n=1

Peed,reference(n))2 (2 1 )

where the index n labels bins, and there are Ny, in total.
The values of 0. are reported in Figure 3. STDR exhib-
its the best agreement with the average distribution. In
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Figure 4. EED distributions at different temperatures. The EED probability distributions are shown for the lowest 10 temperatures
for each generalized-ensemble method, as well as the average of all seven methods. The average error of the distributions of
each generalized-ensemble algorithm, o, is also shown. This was computed for each of the 10 temperatures using eq 21 with
the average distribution as the reference, and the average of these errors is shown on each plot. The RE-based methods are
shown in the top row and have larger errors than the ST-based methods, shown in the second and third rows. The average over

all methods is shown in the central plot.

general, the ST-based methods have lower values for Oeeq,
corresponding to more accurate EED distributions than the
RE-based methods.

In order to confirm that the ST-based methods produce
more accurate EED distributions when compared to the RE-
based methods, EED distributions for the lowest 10 tem-
peratures for each generalized-ensemble method are also
computed and compared to the reference using eq 21. The
EED distributions for each method and each temperature are
displayed in Figure 4, along with the 0.q value which is the
average of the 10 temperatures. The ST-based methods
produce EED distributions which are quantitatively more
accurate than the RE-based methods at all temperatures.
STDR shows the best overall agreement with the reference
data set, with an average O.q value of only 0.006, and
distributions which clearly show the same temperature trend
as the reference distributions.

For a systematic comparison of the generalized-ensemble
methods, the convergence of several structural properties in

addition to the EED distribution is considered. A useful
ergodic measure is the 1,4 pair distance metric,”""”* which
quantifies the convergence of the distance between 1,4
residue pairs (residues with indices i and i + 3) over time.
We extend this metric to include all residue pairs and
therefore quantify the convergence of the o-carbon distance
matrix as follows:

Nresidues Nresidues

1

_ - — 2
ddC(xmatrix(t) - (N (7 ij(z) rij,reference)

— |
residues 1) =1 =1

(22)

where the indices i and j correspond to residue number and
the number of residues iS Nysiques: The difference between
each average pairwise distance r; and the same average
pairwise distance from the reference a-carbon distance matrix
(7jreference) 18 computed. In this equation, ¢ refers to simulation
time accumulated at the temperature considered, and r;(t) is
a cumulative average. As with EED, the average of all seven
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Figure 5. Assessing structural convergence using multiple criteria. The data for A, B, and C are from ST at 280 K. The trajectory
is separated into 50 time intervals, and the quantities reported are calculated cumulatively. Time intervals are used to compare
all methods fairly, since each method results in a different amount of sampling time at the lowest temperature. (A) Structural
convergence is assessed USing Oeed (€9 21), deontactmap (€9 23), and dycamatrix (€q 22, plotted on the secondary axis). (B) The
probability per residue of a y-turn, -turn, and a-turn are shown, as well as the population of the VPGV S-turn. The probability
of a hydrogen bond per residue and a bend per residue (plotted on the secondary axis) are also shown. (C) For each of the
structural properties shown in A and B, the time intervals at which they reached and remained within one and two standard
deviations of the reference data set are shown. The average of these times is also shown, corresponding to the average structural
convergence time, (t.). One standard deviation is calculated on the basis of the values of each of the seven generalized-
ensemble methods at the end of the simulation and their standard deviation from the reference value. (D) The average structural
convergence times for one and two standard deviations are shown for all seven methods at 280 K in yellow and purple,
respectively. These times are provided for temperatures 288, 296, 305, 314, 323, and 332 K in Supporting Information

Figure S2.

generalized-ensemble methods is used as the reference. We
compute an analogous measure of convergence for the
hydrogen-bonding contact map, depicted in Figure 1b:

Nresidues Nresidues

z (Plfi(t) - P zfi,reference)2

residues =1 J=1

d 1

contaclmap(t ) = 2

(23)

where Pj; is the probability of a hydrogen bond forming
between the C=O0 group of residue i and the N—H group of
residue j, and Py(?) is a cumulative average of all of the data.
The elements of the reference contact map, P eferences are
computed using the data from all seven methods. We also
directly compute the probability of forming certain turns (y,
B, and a turns, defined by hydrogen bonds between residues
iand i + 2,7+ 3, and i + 4, respectively) as well as the
VPGV fS-turn (shown in Figure 1, the most probable turn).
In addition, the average probabilities of forming a hydrogen

bond and a “bend” (as defined in the DSSP algorithm®®) on
a per-residue basis are computed. The convergence of each
of these structural properties is considered individually and
compared to the reference data. Taken as a set, these
structural properties provide a detailed description of the
octapeptide’s complex conformational ensemble.

A representative example of how these structural properties
measure convergence is shown in Figure 5 for ST at 280 K.
The convergence of the o-carbon distance matrix, the
hydrogen-bonding contact map, and the EED distribution are
displayed in Figure 5A. The cumulative averages for the
different types of turns, as well as hydrogen bonds and bends,
are shown in Figure 5B. It is apparent from both of these
plots that selecting a particular time at which the simulation
has converged is ambiguous. Each structural property appears
converged at a slightly different time. This ambiguity
highlights the importance of considering multiple metrics
when discussing the convergence of a simulation. In order
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to define convergence quantitatively, we consider the time
taken to reach the reference value of the structural property
of interest and remain within both one and two standard
deviations, shown in Figure 5C. Taking the average of these
times provides a composite measure of when structural
convergence is reached, and this average is a “structural
convergence time”, t,.. By comparing to the reference data,
both convergence and accuracy are simultaneously assessed.
The time at which each structural metric reaches the reference
value is significantly different. For example, the EED
distribution reaches the reference distribution faster than any
of the other structural metrics, while the population of o-turns
requires nearly the entire ST simulation to reach the reference
value to within one standard deviation. The structural
convergence times are provided in Figure 5D for each of
the generalized-ensemble methods at 280 K. At this tem-
perature, STDR converges fastest to the reference data,
closely followed by ST and STDRb.

For a systematic ranking of the structural convergence
times, 7 is also calculated for the lowest seven temperatures.
These times are provided in Supporting Information Figure
S2. While STDR converges faster than the other methods at
280 K, this is not a general trend for all temperatures. Each
temperature has a different 7, for each method. The ranking
of the methods varies between temperatures. For example,
at 305 K, RE reaches convergence faster than STDR. This
highlights the importance of evaluating more than the lowest
temperature when comparing the performance of the meth-
ods, in addition to considering several structural metrics. It
also suggests a way of quantifying the error in the measure-
ment of #,.. An average structural convergence time, (f.),
for each method is obtained by averaging #,. for the lowest
seven temperatures, for both one and two standard deviations.
The error in () is then the standard error of these
measurements. Figure 6A shows a two-dimensional plot of
(t) to within two standard deviations versus {f,.) to within
one standard deviation. Lower values for (z..) indicate faster
structural convergence. A clear trend emerges: ST-based
methods reach structural convergence more quickly than RE-
based methods. The method that reaches convergence the
fastest is ST with accurate weight factors, while the method
slowest to converge is SREM. It is not possible to conclu-
sively rank the other methods due to error in {z,.). However,
it is important to note that both VREX and RE converge
faster than SREM. VREX is therefore not only a more
convenient method for removing the synchronization from
the RE algorithm than SREM, but is also faster at confor-
mational sampling.

We can now answer a key question: does faster diffusion
in temperature lead to a corresponding speedup in confor-
mational sampling? Figure 6B demonstrates that this is in
fact the case. The combined average structural convergence
time, obtained by taking the sum of (t.) for one and two
standard deviations, is plotted versus the composite temper-
ature diffusion score from Table 2. The ST-based methods,
which have higher acceptance ratios and diffusion coef-
ficients, also exhibit faster structural convergence. This key
observation indicates that, in general, it is preferable to use
a ST-based method because it provides enhanced efficiency
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Figure 6. Correlation between structural convergence and
temperature diffusion. (A) Average structural convergence
times, (fs), obtained using the lowest seven temperatures are
shown. The () to reach two standard deviations is plotted
against the (&) to reach one standard deviation for each
method. Error bars represent the standard error of () for
the seven temperatures. Another version of this plot is
provided as Supporting Information Figure S3, with the ()
for each temperature shown. (B) The (t) times for one and
two standard deviations from A are added together to create
a structural convergence score, which is plotted against the
temperature diffusion score from Table 2 for each method. A
correlation is observed between structural convergence and
temperature diffusion. ST-based methods (in yellow) have
superior temperature diffusion, which leads to faster structural
convergence compared to RE-based methods (in purple).

in terms of conformational sampling. ST with accurate weight
factors is clearly superior in both temperature diffusion and
structural convergence, while SREM is the least efficient
method in terms of both of these metrics. In the case of a
simple system for which weight factors can be obtained
accurately with relatively little computational expense, ST
is the method of choice. In the case of a more complex
system for which sufficiently accurate weight factors might
be expensive to obtain, the best choice would be to compute
an initial estimate for the weight factors and use ST or STDR
(corresponding to STb and STDRD here). Using the octapep-
tide as a test system, it is not possible to conclude which of
these options is preferable. Inaccurate weight factors for this
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system yield comparable temperature diffusion and structural
convergence for both STb and STDRb. To investigate this
issue further, a more complex system, (GVPGV),, is also
studied below.

Finally, another important question is whether inaccurate
weight factors or PEDFs still lead to accurate, Boltzmann-
weighted sampling at each temperature. It has been suggested
that simulations with incorrect weight factors still yield
correct statistics, only with suboptimal sampling of the
temperature.* Analysis of the effect of suboptimal Helmholtz
free energies on the accuracy of the data demonstrates that
the resulting conformational populations are not biased by
the use of inaccurate free energies (Figures 3 and 6a). Both
ST and STDR with inaccurate weight factors (STb and
STDRD) converge to the reference data set, which indicates
that they achieve accurate, Boltzmann-weighted conforma-
tional sampling. Figure 6A shows that, even with inaccurate
PEDFs, SREM still leads to Boltzmann-weighted sampling
of conformational space (within one standard deviation) for
this system. However, it converges more slowly than RE
and all of the other generalized-ensemble algorithms con-
sidered in this study.

It has been pointed out that SREM is not rigorously correct
when employing PEDFs that are not representative of the
potential energies sampled during the simulation.'®'* In other
words, SREM is correct only when stationary potential
energy distributions are used, which may in the general case
require adaptation of the PEDFs. In contrast, VREX is
inherently adaptive due to the update of the potential energy
lists. All RE-based methods, including VREX and SREM,
require an initial equilibration phase to reach stationary
potential energy distributions. Quasi-nonergodicity due to
finite run length is a potential issue for any of the generalized-
ensemble algorithms but is most significant for SREM.
Systematic error associated with selecting potential energies
from unrepresentative conformations can be minimized in
VREX by maintaining short, frequently updated potential
energy lists. Reducing the size of the potential energy list in
the VREX approach decreases the equilibration lag. Both
VREX and RE use recent potential energy values for
attempted moves. In addition, another inherent advantage of
VREX over SREM is that, in VREX, potential energy values
utilized in the virtual temperature transitions are drawn from
the same ensemble as those utilized in the evaluation of
actual transitions, albeit with a stochastic time delay.

Comparison of STDR and Conventional MD. The
relative sampling enhancement of RE compared to conven-
tional MD has been the subject of significant controversy.?’
For example, one study found that RE produced a speedup
of 71.5 times at 275 K for a 21-residue helical peptide with
implicit solvent, based on the autocorrelation function of
helicity.]9 In another work, an RE simulation of met-
enkephalin in explicit solvent sampled 5 times more con-
formational space than a conventional MD simulation of the
same duration.'® It has also been shown analytically that the
expected speedup of RE is directly related to the activation
enthalpy for two-state protein folding. The efficiency of RE
is optimal when the maximum temperature is chosen just
slightly above the temperature at which the folding activation
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enthalpy is zero.” There are several key issues that emerge
when reviewing comparative studies of RE and conventional
MD. First, the observed sampling enhancement, or lack
thereof, is heavily system-dependent, as well as dependent
on the structural or thermodynamic parameter on which the
comparison is based. Second, an evaluation of convergence
for either the RE simulation or the MD simulation is often
neglected. Comparisons of other generalized-ensemble meth-
ods, including ST and SREM, and conventional MD have
also been performed.'*

Here, we attempt to provide a rigorous comparison
between STDR and conventional MD for the octapeptide
(Figure 7). Figure 7A and B show a superposition of 200
structures obtained using STDR and MD, respectively, at
280 K. The amount of simulation time is the same for both
methods (144 ns for conventional MD and 144 ns in total
for all temperatures for STDR, corresponding to 4.4 ns at
280 K). The root-mean-square deviations (rmsd) of these two
collections of structures, 3.52 A for STDR and 3.88 A for
conventional MD, are comparable. By this measure, both
STDR and conventional MD produce a similar amount of
conformational sampling using the same amount of CPU
time.

We also show the convergence of the structural properties
described in the previous section for both STDR (in Figure
8C and E) and conventional MD (in Figure 7D and F). STDR
converges more quickly, approximately by a factor of 2—3
at 280 K. However, given that STDR requires sampling 33
temperatures for the same amount of time, it is much less
computationally efficient. Specifically, the STDR simulation
was 4.75 us, compared to 200 ns for conventional MD.
Overall, for this particular system, there is no computational
advantage in using STDR over conventional MD when the
total cost of simulating all temperatures is considered.

However, in the present case, we are interested in the
conformational ensemble at both low and high temperatures
because of the predicted temperature transition of the
octapeptide GVGVPGVG.>*"*"* It is therefore still beneficial
to use STDR because it enhances sampling at the individual
temperatures. It is of key importance to note that we only
know that conventional MD is able to satisfactorily reproduce
the conformational ensemble of the octamer by simulta-
neously using generalized-ensemble algorithms. It is only
by comparing to STDR, as well as the combined data set of
all the generalized-ensemble methods, that we are able to
verify the convergence of the conventional MD simulation.
Pseudoconvergence can be observed for a structural ensemble
generated by conventional MD which is energetically
trapped.'? In this way, it is possible to achieve convergence
without simultaneously achieving accuracy. Using a general-
ized-ensemble method and allowing a random walk in
temperature allows the system to overcome energetic barriers.
Without knowledge of the energy landscape of the system
of interest, it is hard to predict the expected sampling
enhancement of a generalized-ensemble method. Similarly,
it is hard to assess the accuracy of an apparently converged
value, which is also expected to depend on the topology of
the energy landscape.
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Figure 7. Comparing STDR and conventional MD for GVGVPGVG. (A) A total of 200 structures in ribbon representation obtained
using the first 4.4 ns at 280 K for STDR are shown, and (B) for 144 ns of conventional MD, along with the corresponding rmsd.
Glycine is in purple, proline is in yellow, and valine is in gray. C and D Show geeq (€9 21), Ocontactmap (€0 23), and dicomarix (€9 22,
plotted on the secondary axis) for STDR and conventional MD, respectively. The trajectories are separated into 50 time intervals,
and the quantities reported are calculated cumulatively, as in Figure 5. E and F show the probability per residue of a y-turn,
p-turn, and a-turn, as well as the population of the VPGV S-turn. The probabilities of observing an intramolecular hydrogen bond
per residue and a bend per residue (plotted on the secondary axis) are also shown.

Choosing Between ST and STDR. For relatively small
and simple systems, such as the octapeptide used in this study
or a short polyalanine peptide in water,’ the calculation of
dimensionless Helmholtz free energies is possible, although
computationally intensive. For these cases, ST is an ideal
method, since it alleviates the need for communication
between processors in parallel tempering and the subsequent
waste of computational resources. However, calculation of
the Helmholtz free energies increases in difficulty as system
size and complexity increase. When the system is sufficiently
large and complex, as is often the case for biomolecular
systems of interest, limited computational resources may
preclude the calculation of sufficiently accurate weight
factors. That is, it is only possible to obtain dimensionless
Helmbholtz free energies which result in an acceptable level

of sampling uniformity with very extensive initial simula-
tions. Even with near optimal weight factors updated
throughout the simulation, Park and Pande still observed an
average deviation from sampling homogeneity of 4.9% for
a short peptide (calculated on the basis of the data in Table
1 of ref 30).%° With very inaccurate weight factors, sampling
of temperatures may be far from uniform. That is, there may
be too little sampling at certain temperatures to obtain a
reasonable estimate of the weight factors to facilitate
adaptation. ST may therefore not be an appropriate method,
even with adaptation of the weight factors throughout the
simulation. This may be the case for many biomolecular
systems of interest, which are larger than the small peptides
or peptides in implicit solvent commonly used to test



Generalized-Ensemble Methods
80
60
a0
20

0 ——STDR

—=-ST

]

]

!
,

-20

Deviation from Homogeneity (%)

-
.
-

-40
-60

-80
265 295 325 355 385 415 445 475 505 535 565 595 625 655 685

Temperature (K)

Figure 8. Deviation from sampling homogeneity for the ST
simulation of (GVPGV);. For each temperature, the devia-
tion from sampling homogeneity is computed as %deviation
from homogeneity = (N — (Np)/{Nm) x 100%, where N, is
the number of samples at temperature T, and (N, is the
average number of samples per temperature. The ST simula-
tion used the same weight factors as the STDR simulation,
with 6 ns of sampling per replica (each started at a different
temperature), for a total of 420 ns of simulation. A decrease
in sampling between 410 and 460 K results in poor mobility
of the replicas between high and low temperatures in the ST
simulation.

generalized-ensemble methods. We now describe a complex
system for which STDR is better suited than ST.

In addition to studying the octapeptide, GVGVPGVG, we
also studied a longer peptide based on the same motif,
(GVPGYV);. Accurate weight factors for this system could
not be obtained using a reasonable investment of computa-
tional resources (15 ns per temperature for 70 temperatures,
for a total of 1.05 us). Even with this large amount of data,
the sampling of temperature in a ST simulation using these
weight factors is heterogeneous. The average deviation from
sampling homogeneity is 21.3% (computed using eq 20). In
contrast, when STDR and the same weight factors are used,
the average deviation from sampling homogeneity is only
3.4%. In Figure 8, the deviation from sampling homogeneity
at each temperature is shown for both ST and STDR. In the
ST simulation, sampling in the middle of the temperature
range is less than that at both low and high temperatures,
deviating from homogeneity by more than 60%. Since it is
unfavorable in this case to sample intermediate temperatures,
diffusion from high to low temperatures is impeded. In
particular, the ST simulation using these weight factors
experiences 56% fewer transitions between 417 and 454 K
compared to the STDR simulation using the same weight
factors. The sampling barrier in the intermediate temperature
range impedes the random walk. The application of the
DRPE results in a slight decrease of the acceptance ratio
from 0.43 in the ST simulation to 0.38 in the STDR
simulation. Importantly, the average replica speed in STDR
is higher than that of the ST simulation (0.058 and 0.053
for STDR and ST, respectively). This indicates that replicas
are able to efficiently explore temperature in the STDR
simulation. In this case, the addition of the DRPE does not
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significantly impair replica mobility and allows nearly
uniform sampling of all temperatures. It is therefore a more
suitable method than ST for this particular system.

We performed another comparison between ST and STDR
using weight factors obtained with only 500 ps of canonical
MD at each temperature. These weight factors are more
inaccurate than those based on 15 ns of simulation at each
temperature, leading to an average sampling inhomogeneity
of 96.88% in a ST simulation. By applying the DRPE in a
STDR simulation, the average sampling inhomogeneity is
reduced to 8.84%. The acceptance ratio for the STDR
simulation with these inaccurate weight factors is 0.38. This
is exactly the same as the acceptance ratio of the STDR
simulation using the weight factors based on 15 ns at each
temperature. This observation is in agreement with the results
of the STDR and STDRb simulations of the octapeptide. As
shown in Table 2, both STDR and STDRb simulations
exhibit nearly identical temperature diffusion coefficients,
acceptance ratios, and mean free paths. Importantly, the
results for both the octapeptide and the 35-residue peptide
demonstrate that replica mobility in STDR simulations is
not significantly affected by inaccuracy of the weight factors.
Further, more accurate weight factors do not improve
temperature diffusion, or corresponding structural conver-
gence. Thus, we recommend that, when the STDR algorithm
is used, the computational investment for the initial calcula-
tion of weight factors should be minimized.

Performance of STDR for More Complex Systems. To
compare STDR with conventional MD, we also performed
a MD simulation at the lowest temperature of the STDR
simulation (261 K). A superposition of 200 structures,
obtained every 1 ns from a 200 ns trajectory generated using
conventional MD at 261 K, is shown in Figure 9A. These
structures have an average rmsd of 1.66 A, indicating that
the peptide is trapped in one conformational basin and
undergoes only small conformational changes. This set of
structures contrasts with the set of 200 randomly selected
structures from the complete STDR simulation at 261 K
(Figure 9B), which represents completely different confor-
mations with an average rmsd of 8.40 A. For clarity, we
also show six example structures in Figure 9D to demonstrate
the variety of conformations observed in the STDR simula-
tion. To make a more direct comparison between conven-
tional MD and STDR, Figure 9C shows 200 structures from
STDR using the same amount of simulation time as the
conventional MD simulation (200 ns summed over all of
the temperatures, corresponding to approximately 3 ns at 261
K). Finally, the radius of gyration distributions for conven-
tional MD, STDR, and the first 3 ns of STDR are shown in
Figure 9E. Both distributions from STDR show several
conformational states, while the conventional MD simulation
is trapped in one state. Even when using the same amount
of computational resources, STDR produces a more hetero-
geneous ensemble of conformations.

Figure 10 displays hydrogen-bonding contact maps at 261
K for STDR, STDR with 3 ns of sampling, and conventional
MD. STDR produces a conformational ensemble in which
many contacts are formed with low probability. In contrast,
conventional MD generates a contact map with only a few
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Figure 9. Comparing STDR and conventional MD for (GVPGV)7. A total of 200 structures in ribbon representation along with
their rmsd are shown for (A) the conventional MD simulation of length 200 ns at 261 K, (B) for the STDR simulation at 261 K
using all of the data (120 ns at this temperature), (C) and for the STDR simulation at 261 K using the first 3 ns (this is the same
simulation time summed over all replicas as A). Glycine is in purple, proline is in yellow, and valine is in gray. (D) A selection
of six example structures is shown from the structures in B to illustrate the structural diversity obtained using STDR. (E) Probability

distributions of the radius of gyration.

contacts, some of which are formed for nearly the entire
simulation. The contact maps are shown with two different
vertical scales to emphasize this point. If only the conven-
tional MD simulation had been performed, a completely
different understanding of the conformational landscape
would have emerged. Single-temperature MD severely
underestimates the heterogeneity of the conformational
landscape and exhibits both pseudoconvergence and quasi-
nonergodicity. Even when using the same amount of simula-
tion time as MD, the contact map from STDR has more
contacts, none of which has a probability of more than 30%.

It is not possible to quantitatively measure the speedup of
STDR versus conventional MD for this system because
limited computational resources preclude performing con-
ventional MD simulations for the time required to achieve
structural convergence. We observe that conventional MD
is trapped in one conformational basin for 200 ns. It is not
possible to accurately predict how long it would take to
sample all relevant states and reach convergence. Qualita-
tively, we observe a dramatic sampling enhancement due to
STDR. Using the same amount of computational resources,
STDR generates more unique conformations for this peptide.

This indicates that the random walk in temperature does in
fact lead to enhanced sampling, establishing the efficacy of
the STDR method for a complex polypeptide.

Before sampling the complete energy landscape of a
system of interest, there is no way to confidently predict the
height of the energy barriers, or the number of energetically
stable conformations (local minima of the energy surface).
By coupling to simulations at higher temperatures, high
energetic barriers can be overcome. However, if one is not
simultaneously interested in the behavior of the system at
multiple temperatures, it may be less computationally
expensive to run very long simulations, or a collection of
simulations, at a single temperature.”> In the present study,
conventional MD successfully produced the conformational
ensemble of the octapeptide but resulted in quasi-nonergod-
icity for the 35-residue peptide. In order to truly “enhance
sampling” relative to single-temperature MD simulations, an
enhanced sampling method must achieve convergence at a
rate which is greater than the product of the number of
replicas and the computer time for each replica.

The present study of (GVPGV); shows that it is possible
to observe pseudoconvergence using single-temperature MD
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Figure 10. Hydrogen-bonding contact maps from STDR and
conventional MD. Hydrogen-bonding contact maps are de-
picted as three-dimensional maps, where peak height repre-
sents the probability of contact formation. These plots are
shown on two scales. On the left, the scale has a maximum
of 0.8, and on the right, 0.01, for clarity in showing the contacts
formed with low probability. A and B, the STDR simulation at
261 K using all of the data (120 ns at this temperature). C
and D, the STDR simulation using the first 3 ns (this is the
same simulation time summed over all replicas as E and F).
E and F, 200 ns of conventional MD. Some contacts are
formed over 80% of the time.

(that is, to observe convergence of a quantity of interest
without observing the true value of that quantity, Boltzmann-
weighted by the populations of all possible conformations).
Long-time MD simulations do not yield the appropriate
conformational distribution, and the system remains trapped
in a local minimum of the energy landscape. In contrast, we
observe that conventional MD is able to satisfactorily
reproduce the conformational ensemble of the octapeptide
at a significantly reduced computational cost compared to
using a generalized-ensemble method. In light of this
apparent contradiction, how are the averages of quantities
obtained using MD simulations to be interpreted? On the
basis of this work, it appears that using generalized-ensemble
algorithms is a more prudent approach, even if in some cases
it may be less efficient overall to do so (for increased
confidence in the accuracy of the data). Several other
examples have shown that the enhanced sampling provided
by generalized-ensemble methods provides convergence that
would not be feasible with single-temperature MD.%!%!8724
These observations underscore not only the need for en-
hanced sampling methods but also the shortcomings of
techniques such as block averaging over simulations initiated
in a single conformational basin in estimating the conver-
gence of results. The challenge in simulating complex
systems is that a priori one does not know the efficiency of
the generalized-ensemble approach relative to the “brute
force” MD approach. It may be advisible to use a general-
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ized-ensemble algorithm, especially if conformational sam-
pling, and not dynamic information, is sought.

Conclusions

We now return to the original question: given limited
computational resources, which generalized-ensemble algo-
rithm is most efficient at sampling a complex conformational
landscape? The first important distinction between methods
is the separation between those based on ST and those based
on RE. In this paper, we demonstrate that ST-based methods
result in both faster temperature diffusion and faster structural
convergence. They are therefore preferable to RE-based
methods. This is the most general conclusion of the paper.

Within the family of RE-based methods, the computational
efficiencies of the various algorithms are not equivalent.
SREM should only be applied to systems for which PEDFs
can be accurately obtained. Therefore, due to limited
computational resources, SREM can only be applied to
simple systems. Like SREM, RE is not well-suited to
complex systems because of the need to synchronize simula-
tions of a large number of replicas (and typically, a large
number of processors). Although there is no theoretical limit
on the number of replicas that one can use for a RE
simulation, it is generally difficult in practice to obtain access
to a large, dedicated, and homogeneous computing cluster.
Even if one does have access to such a computational
resource, the wasted CPU time may also increase sharply
with the number of replicas due to both CPU failure and
inhomogeneity in CPU speeds.

VREX represents an attractive alternative to RE since it
completely eliminates synchronization and communication
between replicas. It produces more homogeneous sampling
of temperature compared to SREM, with much less initial
simulation time. It is therefore preferable to both SREM and
RE. Since RE-based methods suffer from slower structural
convergence and temperature diffusion compared to ST-
based methods, it is preferable to use a ST-based method in
temperature. This disadvantage may become less significant
for complex systems. VREX may also be a more suitable
method in another reaction coordinate other than temperature,
for which weight factors are much more difficult to obtain.
Moreover, initial simulations for weight factor calculations
may also benefit from the use of VREX.

In the case of relatively simple systems for which weight
factors can be accurately calculated using minimal compu-
tational resources, ST is the most appropriate method. We
have shown that ST with accurate weight factors exhibits
the fastest temperature diffusion and, correspondingly, the
fastest structural convergence. However, for more complex
systems, for which weight factors are costly to compute,
STDR becomes the preferred method. Even with infinite
resources, a long initial simulation to compute weight factors
accurate enough to yield homogeneous sampling in ST may
not be the most efficient use of computational resources. The
feasibility of a ST simulation is determined by the accuracy
of the weight factors, which can only be assessed by actually
performing a ST simulation. Importantly, we have demon-
strated that STDR can make use of inaccurate weight factors
to achieve homogeneous sampling of temperature and
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consequently structural convergence. Replica mobility is only
slightly impeded by the DRPE. By contrast, ST with
inaccurate weight factors produces heterogeneous sampling
of temperatures, which is also an impediment to the random
walk in temperature. STDR is suitable for any computing
cluster or distributed computing environment, since it
requires no fixed number of CPUs or synchronization of
exchanges. Complex systems can therefore benefit from the
STDR method, which is increasingly advantageous as system
size and complexity grow.

Frequently Used Abbreviations

CPU, central processing unit; DR, distributed replica sam-
pling; DRPE, distributed replica potential energy; EED, end-
to-end distance; MD, molecular dynamics; RE, replica
exchange; SREM, serial replica exchange method; ST,
simulated tempering; STDR, simulated tempering distributed
replica sampling; VREX, virtual replica exchange.
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Appendix 1. Computing Error in Exchange
Probabilities for ST and SREM

The PEDFs of the octapeptide are nearly perfect Gaussian
distributions, as expected due to the large number of degrees
of freedom of the system and the central limit theorem.'*
Assuming that the PEDFs are Gaussian is in general a valid
assumption for biomolecular systems.”® As an estimate of
the error in the PEDFs, we considered the average deviation
of the average energy of each PEDF, (E,), from the average
energy of a reference PEDF, (E,)ieference, as follows:

Nlem S
1 p:

OPEDFs = N z |<En> - <En>reference| (24)
temps p=1

where Niemps is the number of temperatures. For the reference
PEDFs, we used potential energy distribution functions
calculated on the basis of all of the data from the RE
simulation (a total of 4.75 us for all temperatures). We
computed the average error in the differences of weight
factors in an analogous way, also using the RE simulation
as reference data:

1 N(empsil
Oweighlfactors = N -1 2 l(an+l - an) - (an+l - an)referencel
temps n=1

(25)
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The selection of the RE simulation as a reference was
made because it was the only generalized-ensemble method
that we tested that did not make use of any initial simulation.

In order to make a fair comparison between the errors in
the weight factors used in ST and the PEDFs used in SREM,
it is important to consider the error in not only the potential
energy distribution functions and dimensionless Helmholtz
free energies but also the error in the resulting exchange
probabilities. The error in the exchange probability of SREM
(eq 9) was computed as follows:

_ apij : — ~—(B—B)E—E;pepr)
Or, = O-E,:PF_DF -¢ : (ﬂj - ﬁi)OE-

i an,PEDF 'j,PEDF

(26)

We estimate this error by using the estimate for the error
in the PEDFs obtained in eq 24 and the average acceptance
ratio and average difference in inverse temperatures:

—(B—BNE~E;
OngsCStimate = (e ErhiX "‘PEDF)Xﬁj B ﬁi>0PEDFs (27

Similarly, the error in the exchange probability for ST
(given by eq 6) is

0P, 2

= j _ B PIE—(a-a)

o, = — o, =V 4 g

Py \/ [(8(% —a)) @ (@)

(28)

and this error is estimated using the average error in the
weight factor differences from eq 25 and the average
acceptance ratio:

(ﬁj_ﬂi)E_(aj_ai)>

Gweightfactors

GP/./.,eslimate = <C (29)

Supporting Information Available: Supplementary
table (S1), supplementary figures (S1—S3), and an example
calculation of the DRPE are provided. This material is
available free of charge via the Internet at http://pubs.acs.org.
Distributed Replica Sampling software is available online
at www.pomeslab.com.
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Abstract: A new formulation of the second-order exchange-dispersion energy of symmetry-adapted
perturbation theory is presented. The proposed approach allows to study — for the first time for
many-electron monomers — the effect of intramonomer electron correlation on this energy correction.
In the new formalism the exchange-dispersion energy is expressed in terms of properties of interacting
molecules, such as dynamic density-matrix susceptibilities and one-electron reduced density matrices.
The resulting formula has been used to obtain the main (noncumulant) part of the exchange-
dispersion energy for monomers described by coupled cluster theory limited to single and double
excitations. A density fitting approach has been applied in order to reduce the computational effort
for obtaining coupled cluster density-matrix susceptibilities. The new coupled cluster exchange-
dispersion energy has been compared with other available values of this interaction energy
component, obtained with monomers treated on the level of Hartree—Fock or density-functional
theories.

. Introduction Na  Na+Ng

V=Y > Wi
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Symmetry-adapted perturbation theory (SAPT) (see refs 1-3
for reviews) is a well established alternative to the super-
molecular approach for calculation of interaction energies
between two closed-shell molecules A and B (called
monomers in the following). In SAPT, one divides the total
Hamiltonian H of a dimer AB into the unperturbed part Hy,
being the sum of monomers’ Hamiltonians H, and Hg, and
a perturbation V, which describes the electrostatic interaction
between monomers (N, and Ny denote numbers of electrons
in the monomers A and B, respectively):

Na  Np+Ng NatNg

v=3 3 ;- Sy ST

i=1 j=1+Ny i i=1 peB Tpi j=1+N,y oaeA Faj

PN - L

acA ,BEB

The intermolecular interaction operator V can be conveniently
rewritten in the form:
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i=1 j=1+N,

where a generalized interaction operator v(i, j) is defined
4
as
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[In the following the coordinates (including spin) of the ith
electron will be denoted by a number i, while spatial
coordinates of this electron will be defined as r;.]

In SAPT, the interaction energy up to the second order
in V is defined as a sum of three Rayleigh—Schrodinger
corrections: first-order electrostatic (E'L,), second-order
induction (E{%) and second-order dispersion (E(d,sp) energies
and their exchange counterparts, accounting for electron
tunneling effects between monomers: first-order exchange
(EL), second-order exchange- induction (E@—ina), and
second-order exchange-dispersion (E2);— —aisp) €nergies. In
textbook derivations of perturbation theories it is always
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Table 1. The MP Level of SAPT(MP) Corrections (As Derived and Programmed in SAPT Program'3)?

energy MP level notes

ESL 3 relaxed (preferred) and unrelaxed versions available. The fourth
order is also present, although not used in practice

12) 2 unrelaxed version (true 'E23)),2'° the relaxed version is available

in the literature but absent in the SAPT program

EgL, 2 CCD+ST(CCD)'2 dispersion energy is also available in SAPT; the
coupled Hartree—Fock (CHF) dispersion energy also exists in the
literature®

Efon 2 usually CCSD monomer amplitudes are used instead of MP1 and
MP2 ones in formulas for the E§J, energy components'

E&—ing 0 relaxed (preferred) and unrelaxed versions available, the scaling
formula is used to estimate the intramonomer correlation effects

EBeh—disp 0 unrelaxed version

2 Some corrections are available in relaxed and unrelaxed versions, depending on whether monomer orbitals are or are not allowed to

respond to the perturbation field of another monomer.

assumed that eigenvalues and eigenvectors of the H, part
of the total Hamiltonian H are easy to calculate. However,
it is well-known that the exact solutions of the zeroth-
order Hamiltonian Hy = H, + Hpg are not available (with
the exception of the smallest few-electron molecules).
Therefore, additional approximations are necessary in
order to obtain SAPT interaction energies for many-
electron monomers.

Since usually the eigenfunctions of the Fock operator can
be easily obtained, Hartree—Fock (HF) determinants are
commonly used as a zeroth-order approximation to the
unknown exact wave functions of monomers, giving rise to
the SAPT(HF) approach. [A convention will be adopted in
this paper to denote as SAPT(Z) the SAPT approach with
monomers treated in the level Z.] Obviously, SAPT(HF)
neglects the effect of Coulomb electron correlation inside
the monomers. In order to account for this effect, every SAPT
correction is expanded in terms of monomer fluctuation
operators Wx = Hx — Fx, X = A, B, leading to the triple
perturbation theory.” Effectively, in this approach the
Mgller—Plesset (MP) expansion is utilized, so the method
can be labeled as SAPT(MP).**'? Energy corrections in
SAPT(MP) are denoted as E”?, where n, i and j are orders
of the perturbation operators V, W,, and Wg, respectively.
The SAPT(MP) approach has been implemented into the
SAPT suite of codes'® and has proven to be an efficient
method for studying noncovalent complexes of small atoms
and molecules (for examples of applications see refs 14—17).
Levels of MP theory used for various SAPT corrections are
presented in Table 1. In particular, it can be seen from this
table that the exchange-dispersion energy in SAPT(MP) has
been so far treated on the uncorrelated and uncoupled level
(i.e., neither the electron correlation nor the orbital relaxation
effects are taken into account for this correction). A lack of

2. Theory

the intramonomer correlation for the exchange-dispersion
energy is potentially one of the main sources of errors in
SAPT(MP).

Yet another treatment of the intramonomer correlation
problem is based on a density-functional theory (DFT)
description of monomers.'®>** Two groups were involved
simultaneously in a development of SAPT(DFT): Misquitta,
Szalewicz, and Jeziorski!?? (see also ref 23) and Jansen
and Hesselmann®*?’ (the latter authors prefer to use the
abbreviation DFT-SAPT for their method). The implementa-
tion of SAPT(DFT), followed by the utilization of the density
fitting (DF) approximation® to electron-repulsion integrals, > >
allows nowadays the use of SAPT for large van der Waals
molecules, like dimers of cyclotrimethylene trinitramine®>
and DNA bases®® or even for endohedral complexes of
fullerenes.*

Very recently a new SAPT(CC) approach has been
proposed.>*™*? In this method the wave functions of
monomers are described by coupled cluster (CC) theory.*?
So far the CC treatment has been applied to the
electrostatic,?®>” first-order exchange,***! induction,***?
exchange-induction,** and dispersion®® terms. A new
formalism proposed in this paper enables the calculation
of the second-order exchange-dispersion energy with an
account of intramonomer correlation. In practice, the
method has been implemented for the case of monomers
described by CC theory limited to single and double
excitations (CCSD).

The plan for this paper is the following: first the exchange-
dispersion energy will be expressed in terms of monomer
properties in an explicitly connected form. Next the orbital
working formula will be derived, and a DF approximation
will be applied. Finally, the illustrative results for the CCSD
exchange-dispersion energy will be presented and discussed.

2.1. Exchange-Dispersion Energy through Monomer Properties. The main goals of the derivations in the next sections
are to describe the exchange-dispersion energy in terms of monomer properties and to express the resulting formula in a

computationally convenient form.

It is known that if monomers are not too close to each other, then one can neglect multiple exchanges of electrons between
them, what leads to the so-called single-exchange or S? approximation.** The second-order exchange-dispersion energy in the

S? approximation is given by the following formula:*>*°
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(2
E exch—disp

= (WOW VP

disp.

y — VW Wo P

disp.

) — POPRWR IV ) (4)

disp.

In eq 4, WQ and W} are the exact wave functions for the ground states of the monomers A and B, and P denotes the single-
exchange operator:

Na  Na+Np
r=-3 S0, ®
i=1 j=1+N,

while the first-order dispersion wave function is obtained from the following equation:

S P LA

lpélli;p = z Z

k=1 i=1 AEX + AEL

(6)

where indices K(L) number the eigenstates of the monomer A(B), AEX and AES denote excitation energies of tlle monomers
A and B from their ground states, and V.. is a pure two-electron part of the operator V. Finally, the symbol X denotes the

mean value of an operator X with the zeroth-order wave function, i.e., with WQW$ (so, e.g. V = EY)).
Let us consider the term:

Na N
—(WWRIVPYRWL) = (W (1,2, NO¥ W1 2, Np* DY, D u(i i) X
=l =1

Na N
D D PR 2, L NYWE(. 2, L Npdr,..dTy,  (7)

j:] j':ll

which is obtained when eq 6 is inserted into eq 4 (electrons of the monomer B are denoted by primes, i.e., i’ = i + N,). After
making use of the indistinguishability of electrons within the monomers the following four types of integrals are obtained
from eq 7:

—(WAWRIVPWIWE) = NN [(W(1,2,... NO*WR(1", 2, . Np*u(l, 1)

WA, 2,...NOWE(,2', ..., Np)

(Ng — DWAQ2,2, ... NOWE', 1,...,N}) (8)
(N, — DWRQA, U, . NOWE2,2, ..., N}y)

(Ny — DNy — DWRA, 2, .., NOWE(',2, e Np1dT. dTy

+ o+ + X

In eq 8, the reduced one- and two-electron transition density matrices from the ground to the Kth (Lth) excited state of the
monomer A(B) can be identified. For the monomer A, these transition density matrices are given by the formulas,

ox K1 Ny [WA(1,2, .., N)*WA(I',2, .., N)dt,...dT),

- ©)
I3R2112) = Ny, = 1) [P0, 2,.., N)¥WRA, 2, Ny Ty dey

Note that the ground-state density matrices pa(111”) and To(1211"2’) can be obtained by replacing WX by W in eq 9. The
definitions from eq 9 allow us to rewrite the term under study in the following way:

—WOOVPERWEY = [ K110 (1 DL, 1)dr,dT
+ fon KAIRHYHA2' 1 (1, 1)de, drqdr) 10
+ [T 201)py H(112)u(1, 1)dr drdr,
+ [T a2n2)ry HA2112)u, 1)dr, dedr,dt)
An analogous derivation for the integral present in the numerator of eq 6 leads to a similar result,
(WAWEIV, WRW) = [ px (115 (1] 1')$dtldr] (11)

The final step needed to rewrite eq 4 through quantities belonging to the monomers A and B, is performed by utilizing the
equation for energy denominators:
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1 2 AEY AE; "
AEK+AEL_E./£) K2 2 A2 4w (12)
A B (AE,)) + 0" (AER) + o

used by Longuet-Higgins*’ to derive his famous formula for the second-order dispersion energy in terms of frequency-
dependent density susceptibilities of the monomers A and B, ax(r,r'lw):

Eszi:p = —%Tﬂ) faA(r],rzliw)(lB(r3, rﬁiw)iédrldrzdgdr‘tdw (13)
By combining eqs 4, 10, 11, and 12, one expresses the exchange-dispersion energy in terms of monomer properties, at the
cost of making an integration over the frequency w. The monomer properties, which have been identified in this process, are
straightforward generalizations of frequency-dependent density susceptibilities and will be denoted as density-matrix
susceptibilities o and @&. For imaginary frequencies (the only ones which are of interest in the context of this work), these two
new quantities are defined through transition density matrices and excitation energies in the following way:

oo K
o (111732liw) = 2°Y o0 K115 1) —2— (14)
A ,(2:1 Pa PA (AEXY + o?
o K
0, (12112";3liw) = 2 Y TS %1212 05 0 313) ——2— (15)
A KZ:‘I A A (AEKY? + o?

(For the monomer B, the definitions are completely analogous).

It is noteworthy that the density-matrix susceptibility & can be defined in a way that is independent of the sum-over-state
expansion (eq 14). To this end, a quantity related to the polarization propagator, which will be denoted as a “half-propagator”
{X; Y))it, should be defined for operators X and Y (the Y operator should be Hermitian):

N = — 0
<<Xa Y>>iw - 2<1P0|XR6H _ E() _ la) YIPO> (16)

where Q = 1 — IWoXWl is the projection on the space orthogonal to W,. Then the density-matrix susceptibility can be
defined as

a(l1’2lio) = —(p(111);p2))), 7)

where p(1) and p(111”) are the electron density and density-matrix operators. In the algebraic approximation these operators
are given by the equations:

a) = 2D
rq
sty = 2HEDEN,

pq

(18)

The operator &) = a’a, entering eq 18 denotes the usual spinorbital replacement operator*® (a” and a, are the creation and
annihilation operators for the spinorbital ¢,). In the following, real spinorbitals will be assumed. It can be noted that a usual
density susceptibility o(1,2liw) is obtained from eq 17 if 1 = 17 is set.

After making use of definitions from eqs 14 and 15, the second-order exchange-dispersion energy can be expressed as

1 S ’ . !’ 1. 14 1 ’/ /
2) — . . -
E(exch*disp = 3 f(‘) f 0, (LT 3liw)ag (11153 Tiw)v(1, 1 )r33/dr1drldr3dr3dw

+ %[ S [ oa(11233li00)8,(127111:3 liw) (1, 1’)%dfldrgdtgdf3drgdw
33

1 0 ~ 1.~ LY Ur ’ L ’ ’
+ 5 S5 S (21113 3lio)og(1 I2,3Izw)v(l,l)r33,drldrldr2dr3dr3dw .
+ %{ S GLA(12I12';3Iiw)dB(1'2'I1'2;3'Iiw)u(1,1’)éldtldr§dr2dt;dr3drgdw
1

33

- E‘e};i I [ 0212 3lim)ag(2'12:3liw)

pl = . . 1
+ P fy S a@12:3lim)0 (21233 liw)u(2, 2') dr,dr)drdrido

33

dr,d7ydr,dridw

Equation 19 describes the exchange-dispersion energy in terms of monomer properties, analogously to the Longuet-Higgins
formula for the dispersion energy.
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2.2. Explicitly Connected Formula for the Exchange-Dispersion Energy. Equation 19 contains two explicitly disconnected
terms (the last two terms), and it is not clear from the form of this expression if they cancel with some parts of the main term
(they should cancel since the exchange-dispersion energy is size-extensive). In order to perform the explicit cancellation, the
concept of the transition density cumulant is utilized. The cumulant of the transition density matrix has been introduced in ref
42 where it has served to remove explicitly disconnected parts in the formula for the second-order exchange-induction energy.
Two-electron transition density matrices I'*"% can be divided into five additive parts: four products of one-electron transition
and ground-state density matrices and a size-extensive cumulant part:

" *a2112’y = " *a1p2y — " Ka12)pI1’y + p(111)° 212"y — p(112)" 211" + AT *12112)  (20)

The specific formulas for quantities given in eq 20 can be obtained in the algebraic approximation if the matrices T®~* and
0K are expanded according to eqs 19 and 20 of ref 42. From eq 20 it follows that the & density-matrix susceptibility can
be also decomposed into the same number of components. Four of these terms are constructed from products of the o density-
matrix susceptibility and one-electron density matrices, while the fifth term is a true two-electron part of &, so it will be

named a cumulant susceptibility and denoted as A:

a(12112":3liw) = a(111";3liw)p(212') — a(112":3liw)p211") + a(212";3liw)p(111") — a211’;3liw)p(112') + A(1211°2";3liw)
(21)

[Note parenthetically that if the summation in eq 15 is performed over Hartree—Fock determinants, then it is restricted
to singly excited configurations, so that the quantity 4 in this case is equal to zero.] The partition given in eq 21 can be
utilized to divide E(ezx)ch_disp into the part containing only o’s and p’s (this part will be denoted as “(n)”), and the rest,
having at least one cumulant-like quantity 4 (denoted as “(c)”). Two terms resulting from the fourth integral of eq 19
cancel with the explicitly disconnected terms, analogously as in the approach used in ref 42 for the exchange-induction
energy. The remaining expression for the exchange-dispersion energy does not contain products of integrals and is,
therefore, explicitly size-extensive, provided that proper (i.e., size-extensive) density-matrix susceptibilities are utilized.
For a brevity of the next formula for the exchange-dispersion energy, the following notation will be introduced: if a
product f(ilj)g(kll) of functions f and g depending on electron coordinates i,j,k,/ is given, then the symbol 7% permutes
the coordinates of f and g placed just before the vertical bar, While oty permutes the electron coordinates just after the
vertical bar. Additionally, the symbols .} =1 — mj and .¢;; = 1 — m; will be defined. Then, e.g., w,a(111;3liw)p(212)
= a(112;3liw)p(2I1), while 7H0(111;3lim)p(212) = a(211; 3|zw)p(1|2) Finally, let nfj‘ and L/(,?} (with or without an asterisk)
denote symbols acting on electron coordinates of ox and px only (X = A, B). These symbols will generate the parts of
the formula for the exchange-dispersion energy, which have not been written explicitly for the sake of conciseness.
With these definitions, the explicitly connected formulas for the noncumulant part of the exchange-dispersion energy
can be written in the following compact form:

B2

exch—disp

n) = i S aA(1|1';3|iw)aB(1'|1;3’|iw)y(1,1’)idrldr;dr3drgdw
+ zi S S e 10, (112" 3liw) A 1, A o (111733 Ita))pB(2|1) dr drd;dr,dvidw

T N AR UR G

+ z—f: S, 1) {]‘QV{AZ,M{I,Z, AP =1 = gt 7)), r[l,z)OLA(lll;3|iw)pA(2l2)

(22)

% 0o(111":3liw)pg(2' 2 dr At dr,dr}dr,dride

Similarly, the cumulant-containing part is given by the following expression:

E2)

exch—disp

© = % S aA(1I2';3Iia))/'LB(1'2'I1'1;3'Iia))v(1,1')édr1dridrgd13drgdw
l e ’ . ’ e ’ 1 ’ ’
+ 5 S [ Aa02012"Blio)ag(112;3 liw)o(1,1')—dr,dr|dr,d7d7;de
33/
+ Zl [ oL YA A0, (1T:3li0)p, (212)25(17271172:3 liw) (23)
A,(12111";3liw). (1,2,/(]f,zaB(l'l1"3’|iw)pB(2'|2)

AA(12111":31i0) A (1'2'11'2:3liw))-— L 4, dv!dv,dejdr,dride
3

Equations 22 and 23 are the main formulas of the first part of this paper.
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It can be noted that a similar procedure can be employed to express the exchange-induction energy through static density-
matrix susceptibilities of monomers. The corresponding formula is given in the Appendix Section.

2.3. Spinorbital Form of EgL.,,disp. For practical applications, the formulas presented in eqs 22 and 23 should be rewritten
in the algebraic approximation. If a spinorbital basis {¢,} is used, then the expansions of one-electron density matrices and
transition density matrices for the monomer A take the form:

pa112) = D (p (D, (2) (24)
Pq
0—K _ 0—K\p 1
P2y = Y (gD, 2) (25)
Pq

where the expansion coefficients can be found from the following expressions:

(pa, SIA Y

s 26)
Wy = (wiw (

The expressions for the monomer B are obtained by replacing the index A by B.
An expansion of the density-matrix susceptibility in a spinorbital basis leads to the following expression (we skip the index
A):

a(12:3lim) = Y, D TE (i) (1), (% (3), (3) @7)

Piqr p2q2
where coefficients I1)72(iw) are defined as
K
PP} — 0—K\p1, .K—0 A—E
1T g, (i) = 2{; (o )Iq:(p )Zi(AEK)Z + ol (28)

If real spinorbitals are considered, the remaining permutational symmetry of spinorbital indices p, and ¢, in eq 27 allows to
rewrite the coefficients in the following form:

"2 (iw) = —(&)' 387, (29)

where g2 = (1/2)(élz + é2). In practice, these coefficients can be obtained by a slight modification of the algorithm for the
calculation of the polarization propagators.
Six-index expansion coefficients for the cumulant susceptibilities can be defined analogously to eq 28:

D2, . _ 0—K- K—0 AEK
A ) = 2 3 (N (30)

(for a definition of the (A" ¥);72 expansion coefficients in eq 30 see ref 42). To proceed further let us introduce the following
permutation operator:

1-P, )1 —P (€2))

Pp]pz.qlqg = ( ‘11‘12)

where P, permutes spinorbital indices r and s, and a “chemical” notation for generalized two-electron integrals is used
(pqlvirs) = f oy (Do, (Du(l, 2)d7(2)¢(2)dr d, (32)
A pure two-electron repulsion integral is denoted as

(pqlrs) = [ ¢;*:<1)¢q<1)t¢f(2)¢s<2>dr1dr2 (33)

Combining eqs 24, 27, 32, and 33, one can transform the noncumulant part of the exchange-dispersion energy to the
following spinorbital form:
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E®
exch dmp(n)

1 i -
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Pis,0lrspSEP, [ HP1P3(zw)nf°”(zw)dw(p3)’l
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An analogous derivation for the cumulant part leads to the expression:

+ o+ o+

E2)

exch— dlsp(c)

%‘[{ ‘/(; lem(la))Arlrz r3(lw)dw(plS2|U|r s )Sq

91493 5152,

I AZ‘Z§Z3(lw)H"r3(lw)dw(plq, lv1r,,)S;).
(Il sl)s‘zs‘ﬁ[ p]pzq]% H"ﬂ’*(m))A;l;z iw)dw(p,)) (35)

919293

7 Az ]

P1P2:P3 r:
P, . I AP ‘(zw)H“(za))dw(pB)

+ o+ o+ o+

In eqgs 34 and 35 the summation over repeated indices is assumed (Einstein convention).

2.4. CC Exchange-Dispersion energy. The presented formalism is so far completely general, and any well-defined method
for polarization propagators can be used to produce density-matrix susceptibilities for eqs 34 and 35. In particular, the energy
EGW_4ip = EQen—aisy(UCHF) can be obtained if the uncoupled HF (UCHF) propagators are used in eq 35. When the electron-
correlated polarization propagators are utilized instead, the exchange-dispersion energy with the inclusion of the intramonomer
correlation effect is obtained. In this work, the intramonomer correlation is studied on the CC theory level. The polarization
propagators used here are obtained from time-independent CC theory developed by Moszynski et al.** The general equation
for the imaginary-frequency CC polarization propagator from this paper adapted for our purposes takes the form:

(XN = 2(e S Ye TS D125 ReQ¥(iw)e S ) D) (36)

where ® denotes the reference determinant, & stands for the superoperator f1 + /2 + f3 +..., defined in such a way that
,1(Z) projects on the n-tuple excitation part of an operator Z,>° T is the usual amplitude operator of CC theory, and S is the
excitation operator, S = §; + S, + S; +..., introduced in refs 9 and 50 through the formula:

s 1 T T
D =—"T—¢ e (37
("Dl D)

Finally, Q¥(iw) stands for the first-order perturbed operator,*’ depending linearly on the perturbation X. The time-independent
theory of the CC polarization propagator has been recently implemented and studied on the CCSD level.’' Several variants
of this method have been examined in ref 51 and finally the CCSD(3) model has been chosen as optimal for many-electron
cases. [The CCSD(n) model includes the minimum number of terms from the expanded form of eqs 36 and 37, which is
necessary to include all CCSD terms contributing on at least the (AW") order.] The CCSD(n) propagators have been already
used for the induction, exchange-induction*? and exchange-dispersion energies*® and have been shown to produce very accurate
results in comparison to the benchmark values for the helium dimer.>* In the following, the number in parentheses will be
dropped if CCSD(3) propagators are used for SAPT corrections. The experience gained from the investigation of the cumulant
parts of the first-order exchange and second-order exchange-induction energies tells us that the cumulant part constitutes
usually only a few percent of the total correction.*'** Since the exchange-dispersion energy, unlike the exchange-induction,
is small in comparison to its polarization counterpart (it usually amounts to only 5—15% of the dispersion energy in the van
der Waals minimum); the cumulant part of the exchange-dispersion energy will be not implemented in the present study.

A closer examination of eq 35 reveals that the calculation of E2);,— gisp(n) scales with the sixth power of a dimension of the
orbital basis N, while in eq 35 the computational cost of the first and second terms scales with the seventh and the last term
scales with the eighth power of Nao. The high scaling of eq 35 is an additional argument to skip this part of the exchange-
dispersion energy in practical implementations (even if programmed, it could not be used but for the smallest monomers
anyway). Note parenthetically that the present formulation of the exchange-dispersion energy allows monomers to be described
in different basis sets (the so-called monomer-centered basis set approach™).

2.5. Density Fitting of Density-Matrix Susceptibilities. The cost of a calculation of full four-index CCSD propagators
scales with the eighth power of the molecular size,* since: (i) one has to calculate (Nxo + 1)Nao/2 responses to the perturbations
being the G‘Z = 1/2(EZ + Eg) operators, where EI’ = &% + v} are the usual orbital replacement operators*®* (in this chapter
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small letters will denote orbital indices); and (ii) the cost of one response calculation scales as iterative (*(v*0?), where v and
o are dimensions of virtual and occupied orbital subspaces, respectively.

In ref 39 Korona and Jeziorski have shown that by performing a fitting of CCSD density susceptibilities to some suitably selected
auxiliary basis {yx} of a dimension N,y (usually N, is only 2—3 times larger than N,g), the computational cost for the CC
dispersion energy can be reduced by one order of magnitude. To this end, the density susceptibility o has been expanded as

a(r, o) = - %<<2K;2L>>wa(rl)xL<r2> (38)
where the operators ¥k are defined as
= ZquEZ (39)
with coefficients DY, obtained from a fitting of orbital products with the auxiliary basis:

¢, (1) = D DLy (r) (40)
K

In the following, capital letters will be reserved for indices of the auxiliary basis set.

For the density-matrix susceptibilities it is still possible to perform a density fitting procedure on the orbital product
&p,(r3),,(r3) from eq 27 (a summation over spin is assumed to have been already performed), which leads to the following
asymmetric form of o

ar,Iryrlio) = = D D (B b, (T, (E)1(rs) (41)
pqg K

The expansion coefficients ((E7:7x))i, will be denoted as IT7x(iw). Additionally, in the next formulas a letter A
and B over IT will differentiate between propagators of the monomer A and B, respectively.

After performing the summation over spins in eq 35 and making use of eq 41, the following formula is obtained for the
exchange-dispersion energy with the DF approximation:

E2 ) = L f;f‘lmNaw)n'lMow)dw(NlM)(plsllvlrlqo
+ 2 ﬁ) H”‘ o)l ZH?M(zw)dw(pB)” + ZHZ‘Maw)dw(pB)”z
- nsz(zw)dw(pB) H”M(zw)dw(pB)’z](NIM)(plszlulrlsl)S‘
+ o L[ 20 io) e, + 200X, — T (i0)(p,))!
- H”‘N(zw)(pA)"z]H"M(lw)dw(NllVD(plql|U|r1q2)
+ rﬁ) [4H”N<lw>n L) (P! <pB>’2+4H”‘N<iw)H”M(lw)(pA)Zf(PB)ri
_ sz N(,w)n 2(i)(p,)) (pg)l! — 2H§§N(iw)rl"M(zw)(pA)”‘(pB)
- znz'Naw)n’ZM(zw><pA>’;§<pB>s2 — 20T 0) T (i) )
- HP2N<m)H’zM(zw)(pA)Zz(pB) — 201 0) T i) o), o) 42
- 2H”‘N(zw>n’2M(zw><pA>{;f<pB> — 201 (i) T i) 0, V()
o)L (00, by, + TG (0) (0 o)
x ﬁZ;N(in”M(zw)(pA)” (o)}l + H’ZNOw)H"MOw)(pAY’Z(PB) do(NIM)(piq,101r,5))S,S7;

where (NMM) = [ xn(r)ridyu(ry)dridr,, and the summation over spins have been performed as in ref 40. Note that the
dispersion energy can also be expressed through mixed three-index propagators:

Eg,=—= ﬁ) 117 (i) T (i) Ao (VM) (palrs) (43)
It should be stressed that this equation is not bitwise compatible with the formula for the dispersion energy obtained with

fully density-fitted density susceptibilities (see eq 38), but the differences should be the same order, as the accuracy of density
fitting for the (pglrs) integrals (they would dissapear if DF were exact). The non-DF orbital equations can be retrieved from
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eq 42 by replacing auxiliary indices N(M) by pairs of indices ps;q;(r3s3). The integral over w is calculated numerically (for
details see ref 51). In order to obtain a three-index matrix IT)\(iw), responses to N, perturbation operators Jx are calculated
first. With Q7x(iw) responses in hand, a square matrix of coefficients with indices p,g running from 1 to Nao can be easily
obtained from eq 15 of ref 39 by inserting E{; as the second perturbing operator. The computational cost of one QZ%(iw)
operator for the CCSD case scales as (2(0*v*), so for N, such operators the scaling with seventh power of the molecular size
is obtained.

Note that the calculation of the exchange-dispersion energy from ready propagators is also accelerated by one order of the
orbital basis size if DF is used: the calculation scales as (2(N%o) for the no-DF case and as (*(NioN.) if DF is applied.
However, this fact is of limited importance, since the calculation of the CCSD propagators is the most expensive part of the
program, anyway.

The one-electron density matrices used in this paper have been obtained from CC theory for the expectation value developed
by Jeziorski and Moszynski’® and implemented on the CCSD level by Korona and Jeziorski.>’ The exchange-dispersion
energy obtained from eq 35 with the CCSD(n) propagators® and with XCCSD-3 density matrices®’ will be denoted simply
as EQu—aispg(CCSD).

2.6. Implementation. Both DF and non-DF formulas for the noncumulant part of the exchange-dispersion energy have
been implemented as a local extension of the MOLPRO code.> The two- and three-index Coulomb integrals, coded in MOLPRO
for purposes of density fitted MP2°° and local CCSD®” methods, were used to obtain the 4k operators and to calculate the
exchange-dispersion and dispersion energies from eqs 42 and 43. Since the summation over orbital indices in the CCSD
half-propagator coefficients is not limited, there is no gain in performing the transformation to the molecular orbital basis in
this case. Therefore, the formulas have been implemented in atomic orbitals (AO). Noteworthy, such an implementation
makes it easy to extend the program to monomer-centered basis sets in the future. As already mentioned, the new code yields
the EQn-—aispy(UCHF) energy if the UCHF polarization half-propagators are inserted into eq 35. Analogously, by using the
coupled HF (CHF) half-propagators, the EX—qisp(CHF) energy is obtained. The calculations for the latter correction has not
appeared in the literature yet, however, it has been derived and programmed in the MOLPRO code as a byproduct of SAPT(DFT)
by Hesselmann et al.?”** The authors of these references focused however on the coupled perturbed Kohn—Sham (CKS)
dispersion and exchange-dispersion energies and did not present any calculations for the CHF case. It should be stressed that
in the SAPT(DFT) approach programmed in the SAPT code,'**'~*? the uncoupled KS (UCKS) method is used for the exchange-
induction and exchange-dispersion energies, and afterward scaling formulas are applied to estimate the coupled part of these
corrections, e.g., for the exchange-dispersion energy:

- Eiin(CKS)
Eexch—disp(CKs) - (2)— exch disp(UCKS) (44)
Ej,(UCKS)

Since the coupled variants of the interaction energy components are usually more accurate that the uncoupled ones, the
SAPT(DFT) approach presented by Hesselmann et al.*”* should be preferred over the approach based on the UCKS method.*'-**
Since the new code has been programmed in the AO basis, it has been easy to examine its correctness by inserting the
AO-transformed UCHF (or CHF) quantities (density-matrix susceptibilities and one- electron density matrices) instead of the
CCSD ones and by checking if the obtained value is equal to the EZ);— aispf(UCHF) (or EQy— gisp(CHF)) energy obtained from
the SAPT(DFT) program of Hesselmann and Jansen.
For an efficient implementation of the exchange-dispersion energy, it is useful to define the following intermediate:

or 1 oA, . B, .
Xy =5- ST (io)IT; (i) da (NIM) (45)
This quantity for fixed two indices is calculated on the fly and then used in the calculation of the corresponding part of the

exchange-dispersion energy. It is possible to switch on the paging over frequencies if all three-index objects do not fit into
memory. With the X} intermediate defined, the formula given in eq 42 can be rewritten as

2X5(pysylvlrigy)
[2XG5(Pe), + 2X00(0p), — Xgi(Pe), — Xgi (o) J(pisalvlrs ST,
[2XZ§§‘(pA)P‘ T 2X05(ea)g, — Xei(Paly, — X (o) 1001 a)S,
—[4XZi§:(pA> (pp)y, + 4X) (0 oy,

22X p, ) pg)t! = 2XP (0, (o) — 2X0 A (p o)yl — 2X0N () o)
X300 (o), — 2X0 (00 (o) — 2X01 (0 (0, — 2X01 (0, (0)
+ XZTVZ(PA)ZZ(PB)” + XZ:;;(PA)I(;Z(PB)A;T
+ X ep)s, + X0 0 op) )Py 05 )S)ST:

2)
Efexch disp(n)

+ o+ o+

(46)
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A ready-to-program version of eq 46 is presented in the Appendix Section.
Equation 46 resembles closely the UCHF formula for the exchange-dispersion energy.” In particular, the intermediate X is
an analog of the mixed double amplitude from ref 7. This correspondence is examined in detail for one selected term in the

Appendix Section.

It should be noted that an intermediate similar to X2¢ appears in the implementation of DF-DFT-SAPT,? where it is also
constructed from three-index objects (partially density-fitted CKS half-propagators). It should be stressed, however, that the
present approach derives rigorously the general expression of the exchange-dispersion energy in a form of density-matrix
susceptibilities and density matrices, while in ref 29 a theoretical background of a replacement of the UCHF quantities by

CKS or CHF ones has not been presented.

3. Results and Discussion

3.1. Computational Details. To illustrate the performance
of the method presented in the previous sections several test
calculations have been performed.

At the beginning the quality of DF for the exchange-
dispersion energy has been investigated for the van der Waals
complex of two neon atoms. In this test the distances between
atoms range from 3 to 9 bohr, thus covering repulsive,
minimum, and long-range regions of PES. The augmented
correlation-consistent aug-cc-pVDZ>#% basis has been used
in this case because of the necessity of performing the
calculations without the density fitting approximation (scaling
with the eighth power of the molecular size). The auxiliary
basis sets proposed in refs 61 and 62 were utilized. The basis
sets optimized for the MP2 correlation energy will be denoted
as aug-cc-pVXZ/MP2fit (X = D,T,Q), while other basis sets
optimized for the Coulomb and exchange integrals will be
denoted as cc-pVXZ/JKfit. The DF calculations for a larger
aug-cc-pVTZ orbital basis have been also performed.

The new approach has been then applied to the helium
dimer at various distances used previously to produce an
accurate PES for this van der Waals complex.”*®* The same
basis set (DC147) as in refs 52 and 63 has been used. A
large auxiliary basis (aug-cc-pVQZ/MP2fit)®"%* augmented
with the functions on the midbond (see ref 39 for details)
has served for a density fitting in this case. Additionally, for
the » = 5.6 bohr a smaller DC77 basis from ref 52 has been
used to calculate the exchange-dispersion energy without
density fitting. The numerical quadrature with 20 integration
points has been applied for the neon and helium dimers in
order to eliminate uncertainties related to the quality of the
numerical integration when comparing no-DF and DF
energies.

Finally, the new approach has been used to calculate the
exchange-dispersion and dispersion energies for selected
noncovalent complexes at geometries close to global minima.
These complexes are representative to various types of
dominant interactions at minimum, ranging from polar
systems to dispersion-bound species. The selected complexes,
along with the geometry references, are the following:
(H;0),," (HF)” (N2, (€O CO—HL0.7%% Ar,,*!
He—HF, and Ne—Ar. For the Ne—Ar complex, a distance
of 3.65 A between atoms has been used. For the He—HF
complex a distance between the helium atom and the center
of mass of the HF molecule (Ry—r = 1.7328 bohr) has been
set to 6.5 bohr. Some of these complexes have been
previously used to study the intramonomer correlation effects
for the induction®® and dispersion®® energies. For all cases,

the aug-cc-pVTZ orbital basis and the corresponding aug-
cc-pVTZ/MP2fit basis sets have been used. The 8-point
numerical quadrature has been utilized.

The core electrons (1s for C, N, O, F, and Ne and 1s2s2p
for Ar) have been frozen in the CC calculations. All results
have been produced with a local development version of the
MOLPRO suite of codes. The SAPT(DFT) results have been
obtained by using the PBEO functional®”®® with the asymp-
totic correction of Griining et al.®* and utilizing the code
available in MOLPRO and developed by Hesselmann and
Jansen.?**” The ionization potentials needed for the calcula-
tion of the asymptotic corrections have been obtained from
ref 70.

3.2. Discussion of the Results. Since the calculation of
the CCSD density-matrix susceptibility without density fitting
scales with the eighth power of the molecular size, the
possibility of obtaining a good quality DF-CCSD ex-
change-dispersion energies is crucial for the range of the
applicability of the new method. Therefore, it is important
to examine errors introduced by the DF approximation. Table
2 presents the dispersion and exchange-dispersion energies
for the Ne, complex calculated from CCSD(3) propagators,
obtained either without DF or with DF for various auxiliary
basis sets. In the table, the DF results are followed by the
percent errors with respect to the exact (non-DF) value. It
can be seen from Table 2 that the dispersion energy is not
very sensitive to a quality of auxiliary basis sets. All basis
sets (even cc-pVTZ/JKfit) produce results of a similar quality
with errors on the fourth digit in a majority of cases. [Note
parenthetically that the dispersion energies presented here
were obtained from eq 43, so they are not bitwise compatible
with values from ref 39 calculated from two-index propaga-
tors.] The exchange-dispersion energy is, however, more
sensitive to the quality of auxiliary basis sets, especially for
large distances. From the results presented in Table 2, it can
be seen that acceptable errors of a couple percent for the
whole range of distances are produced by the aug-cc-pVXZ/
MP2fit, X = T,Q basis sets only. In view of rather substantial
errors of the DF exchange-dispersion for the largest distances
considered, it is interesting to examine the total error
introduced by DF for the sum of the dispersion and exchange-
dispersion energies. The corresponding errors for the aug-
cc-pVDZ/MP2fit basis set are presented in the last line of
the results for the aug-cc-pVDZ orbital basis. It turns out
that errors of the exchange-dispersion energy at the large-R
region are not important since contributions from the
exchange-dispersion energy in this region are negligible
anyway. On the other hand, for the repulsive-wall region
the error caused by density fitting applied to E&:n—disp
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Table 2. Dispersion and Exchange-Dispersion Energies for Two Neon Atoms (Upper Numbers) Computed from
Density-Fitted CCSD(3) Density-Matrix Susceptibilities and Their Percentage Errors®
distance
basis set 3.0 4.0 5.0 6.0 7.0 8.0 9.0
aug-cc-pVDZ
ER,
no-DF —11.645 —2.2700 —0.4732 —-0.13178 —0.04750 —0.020144 —0.009601
aug-cc-pVDZ/MP2fit —11.649 —2.2702 —0.4731 —0.13176 —0.04749 —0.020139 —0.009601
—0.032 —0.0094 0.013 0.010 0.0082 0.021 0.0085
aug-cc-pVTZ/MP2fit —11.645 —2.2699 —0.4732 —0.13165 —0.04749 —0.020141 —0.009599
0.0065 0.0043 —0.0032 0.093 0.010 0.012 0.029
aug-cc-pVQZ/MP2fit —11.644 —2.2698 —0.4732 —0.13178 —0.04750 —0.020147 —0.009603
0.0077 0.0087 —0.0035 —0.0046 —0.0086 —0.017 —0.017
cc-pVTZ/JKfit —11.638 —2.2663 —0.4732 —0.13188 —0.04752 —0.020141 —0.009596
0.060 0.16 —0.0007 —0.080 —0.049 0.011 0.056
cc-pVQZ/JKfit —11.640 —2.2681 —0.4733 —0.13189 —0.04752 —0.020142 —0.0095963
0.045 0.081 —0.024 —0.088 —0.057 0.0070 0.053
Egzx)chfdisp
no-DF 4.619 0.5582 0.05271 0.004531 0.000445 0.0000448 0.00000549
aug-cc-pVDZ/MP2fit 4.610 0.5559 0.05256 0.004511 0.000436 0.0000411 0.00000452
0.20 0.41 0.29 0.43 2.14 8.09 18.
aug-cc-pVTZ/MP2fit 4.616 0.5573 0.05265 0.004608 0.000453 0.0000458 0.00000588
0.067 0.16 0.11 —-1.71 —-1.78 —-2.29 —7.04
aug-cc-pVQZ/MP2fit 4.618 0.5578 0.05266 0.004525 0.000443 0.0000442 0.00000539
0.023 0.079 0.088 0.13 0.37 1.29 1.84
cc-pVTZ/JK{it 4.604 0.5528 0.05222 0.004368 0.000387 0.0000286 0.00000194
0.32 0.96 0.94 3.59 13. 36. 65.
cc-pVQZ/JKfit 4.612 0.5557 0.05239 0.004383 0.000389 0.0000287 0.00000194
0.16 0.44 0.60 3.26 18. 36. 65.
percent error of Efly + ESkn-disp
aug-cc-pVDZ/MP2fit —0.18 —-0.14 —-0.021 —0.0044 —-0.012 0.0025 —0.0016
aug-cc-pVTZ
ER,
aug-cc-pVDZ/MP2fit —15.228 —2.915 —0.6669 —0.18267 —0.06388 —0.026839 —0.012734
aug-cc-pVTZ/MP2fit —15.298 —2.924 —0.6640 —0.18290 —0.06390 —0.026838 —0.012735
aug-cc-pVQZ/MP2fit —15.300 —2.924 —0.6642 —0.18298 —0.06392 —0.026845 —0.012739
cc-pVTZ/JKfit —15.286 —2.918 —0.6627 —0.18279 —0.06386 —0.026820 —0.012726
Eg)chfdisp
aug-cc-pVDZ/MP2fit 5.35 0.643 0.0707 0.00679 0.00059 0.000055 0.0000055
aug-cc-pVTZ/MP2fit 5.43 0.655 0.0721 0.00701 0.00061 0.000059 0.0000062
aug-cc-pVQZ/MP2fit 5.44 0.656 0.0724 0.00699 0.00061 0.000060 0.0000064
cc-pVTZ/JKfit 5.39 0.642 0.0699 0.00658 0.00053 0.000043 0.0000032

2 Lower numbers, for the smaller orbital basis only, relative to the results obtained without density fitting (denoted as no-DF). Energies

are in millihartrees, distances are in bohr.

determines the total error of the sum of the dispersion and
exchange-dispersion energies. However, differences between
the DF and no-DF results of order of a few tenths of percent
are acceptable in most applications. It can be, therefore,
recommended that for the aug-cc-pVXZ basis set just the
corresponding MP2fit auxiliary basis can be safely used for
the SAPT(CCSD) calculations, unless we are specifically
interested in the exchange-dispersion energy (for the latter
case the aug-cc-pVQZ/MP2fit auxiliary basis should be
utilized).

In Table 2 the DF-CCSD dispersion and exchange-
dispersion energies for a larger aug-cc-pVTZ orbital basis
are also presented. The results show that the exchange-
dispersion energies calculated with the aug-cc-pVDZ/MP2fit
and aug-cc-pVTZ/MP2fit basis sets do not differ much from
each other, therefore the smaller auxiliary basis can also be
used with this orbital basis.

The DF-CCSD exchange-dispersion energy for the helium
dimer is shown in Table 3. The full configuration interaction
(FCI) exchange-dispersion energies within the S? approxima-

tion listed in this table are the unpublished results collected
during the calculations performed to obtain the PES for the
interaction of two helium atoms.>*®* The CCSD(4) propaga-
tors have been utilized in this case,”" which are practically
exact (equivalent to FCI) for two-electron monomers (actu-
ally, it has been checked out that the results obtained with
the CCSD(3) and CCSD(4) models differ by less than 0.1%
for all values listed in the table). As discussed in ref 51, that
differences between the DF-CCSD and FCI dispersion
energies can be attributed exclusively to the DF error.
However, for the case of the density-fitted exchange-disper-
sion energy two sources of errors are possible: one stemming
from density fitting and the second one related to the neglect
of the cumulant contribution (see eq 35). The experience
gained from the investigation of the Ne, complex tells us
that the DF errors can be of order of 1—2% percent in the
minimum region. Therefore, large differences between the
EQen—aisp(CCSD) and Ek—qisp(FCI) corrections for distances
from 3.0 to 4.0 bohr (corresponding to a highly repulsive
region of PES) should be attributed rather to the cumulant
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Table 3. Second-Order Exchange-Dispersion Energies in Various Approximations for the Helium Dimer?

R
method 3.0 3.5 4.0 4.5 5.0 5.3 5.6 6.0 7.0

FCI 627.6 212.7 73.06 24.98 8.453 4.386 2.265 0.9316 0.09718

DF-CCSD(4) 479 191 70.5 25.0 8.59 4.47 2.31 0.950 0.0975
—24 -10 —-3.5 —0.14 1.6 2.0 2.1 1.9 0.4

UCHF 349.3 139.7 51.29 17.93 6.075 3.139 1.611 0.6557 0.06637
—44 —34 —29 —28 —28 —28 —29 —-30 —32

CHF 423.4 171.2 63.59 22.50 7.710 4.008 2.068 0.8476 0.08691
—33 —20 —-13 —10 —8.8 —8.6 —-8.7 —-9.0 —11

UCKS 431 179 67.1 23.8 8.15 4.22 217 0.882 0.0886
—31 —16 —8.1 —4.6 —3.6 —3.8 —4.3 —5.3 —8.8

‘scaled UCKS’ 415 174 65.8 234 8.01 4.14 2.13 0.863 0.0862
—34 —18 —10 —6.2 —5.3 —5.5 —6.2 -7.3 —11

CKS 467 192 72.4 25.8 8.86 4.60 2.37 0.965 0.0974
—25 —9.6 —-0.9 3.3 4.8 4.8 4.5 3.7 0.2

2 The second rows contain the percent errors with respect to the FCI exchange-dispersion energy (in the S? approximation). Energies are

in uhartrees, distances are in bohr.

part of the exchange-dispersion energy. For larger distances,
the differences are smaller than 2%, so they are of the same
order of magnitude as some DF errors in Table 2, and it is
difficult to attribute them unanimously to DF or cumulant
sources of error. In order to clarify this point a non-DF
calculation has been performed for a distance 5.6 bohr in a
smaller DC77 basis, giving the value of the (noncumulant)
CCSD exchange-dispersion energy (eq 35) equal to 2.2867
uhartree. For this distance, the ES—qispy(FCI) energy in the
$? approximation (2.2279 whartree) is available from un-
published calculations, utilizing a SAPT program specific
for two-electron monomers used also in refs 52, 63, and 71.
A subtraction of these two numbers gives, therefore, a pure
cumulant term for the helium dimer (eq 35). It turns out that
for the van der Waals minimum region this contribution
constitutes —2.6% of a total FCI exchange-dispersion energy,
i.e., is small enough to be neglected (this difference is only
0.2% of the total interaction energy). Summarizing, the
cumulant contribution for the helium dimer is significant only
in highly repulsive regions of PES (where it contributes by
ca. 25% to the total exchange-dispersion energy for He,, see
Table 3), while in all other regions this term is hidden within
uncertainties caused by the DF approximation. Unfortunately,
for many-electron monomers there is no reliable benchmark
for the exchange-dispersion energy, so the issue of the
importance of the cumulant contribution cannot be solved
unambiguously at the moment. However, it is known for
previous calculations that similar cumulant contributions for
the first-order exchange*” and second-order exchange-induc-
tion*? energies contribute an unsubstantial fraction to the total
energy correction. It can be, therefore, anticipated that the
cumulant part of the exchange-dispersion energy should be
small as well. It should be also noted that the calculation of
the cumulant contribution for many-electron monomers
would be very expensive, since six-index (five-index with
DF) objects should have been stored for a number of
frequencies on the one hand, and the numerical quadrature
itself would scale with the eighth (seventh with DF) power
of the molecular size on the other.

In Table 3 the UCHF, CHF and DFT exchange-dispersion
energies for the helium dimer are also listed for a comparison.
As it can be seen from this table, the errors of about 30%
are common for the ERy,q4is(UCHF) energy. Errors become

about three times smaller if the CHF polarization propagators
are used instead of the UCHF ones. On the other side, the
exchange-dispersion energies obtained from the asymptoti-
cally corrected PBEO functional and CKS propagators show
similar errors relative to the E&h—aisy(FCI) exact values as
the EQn—daispg(CCSD) results. Therefore, the conclusions can
be made that the CKS propagators for helium reproduce
rather well the exact propagators, if the asymptotically
corrected PBEO functional is used. On the other hand, the
quality of the UCKS exchange-dispersion energies with the
same functional is significantly worse. It should be stressed
that the usage of the scaling formula (44) deteriorates the
agreement with the FCI benchmark values in comparison to
the unscaled UCKS energies for all distances considered.
In Table 4 the dispersion and exchange-dispersion energies
for several van der Waals complexes are listed. These
energies have been calculated with DF-CCSD, UCHF, CHF,
and DFT approaches for monomers. A comparison of the
results listed in Table 4 with the DF-CCSD values, serving
as the benchmark, supports the conclusion reached for the
helium dimer that the UCHF method underestimates sub-
stantially the exchange-dispersion energy (by even 38% for
the He—HF complex). Unfortunately, the CHF approach does
not help to the same extent, as in the case of He,, although
errors of the CHF corrections do become somewhat smaller.

Finally, let us examine the DFT exchange-dispersion
energies. Again, three values of this correction listed in the
table correspond to the UCKS, ‘scaled UCKS’ (see eq 44),
and true CKS methods. It can be observed that the CKS
results are remarkably close to the benchmark values in all
cases, while errors in the UCKS and ‘scaled UCKS’ methods
are much larger (with one exception of the Ne—Ar complex,
for which the UCKS exchange-dispersion energy is close to
the DF-CCSD benchmark). In particular, the ‘scaled UCKS’
approach does not represent any improvement over the
UCKS approach, since usually the ‘scaled UCKS’ exchange-
dispersion energy ‘overshoots’ the DF-CCSD value from the
other side, although the errors are somewhat smaller in some
cases. Summarizing, from three SAPT(DFT) approaches for
a calculation of the exchange-dispersion only the method
utilizing the CKS propagators can be recommended. If the
CKS propagators are unavailable, one should rather use
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Table 4. A Comparison of the Exchange-Dispersion Energies Computed with the DF-CCSD(3), UCHF, CHF, and UCKS,
‘Scaled UCKS’, and CKS Approaches for Monomers?

complex
method Ne—Ar Ar, (H20)5 (HF), (CO)» (No), CO-H,0 He—HF
Egzx)chfdisp
DF-CCSD 0.0114 0.061 0.642 0.527 0.092 0.045 0.083 0.0053
UCHF 0.0085 0.055 0.495 0.381 0.064 0.029 0.059 0.0033
CHF 0.0093 0.059 0.527 0.400 0.072 0.035 0.063 0.0040
UCKS 0.0111 0.075 0.733 0.587 0.104 0.050 0.102 0.0051
‘scaled UCKS’ 0.0085 0.050 0.575 0.481 0.070 0.040 0.071 0.0045
CKS 0.0101 0.063 0.628 0.513 0.092 0.047 0.084 0.0054
ER,

DF-CCSD —0.267 —0.846 —3.651 —3.176 —1.048 —0.537 —1.013 —0.1663
UCHF —0.244 —0.918 —3.116 —2.556 —0.967 —0.449 —0.910 —0.1261
CHF —0.236 —0.815 —3.200 —2.673 —0.931 —0.477 —0.873 —0.1443
UCKS —0.329 —1.270 —4.511 —3.758 —1.499 —0.662 —1.400 —0.1874
CKS —0.253 —0.852 —3.543 —3.079 —1.016 —0.539 —0.976 —0.1650

2 Dispersion energies are also listed for a comparison. Energies are in millihartrees.

UCKS propagators without trying to improve them by
introducing some provisional scaling procedures.

4. Summary

A new formulation of the second-order exchange-dispersion
energy in the single-exchange approximation has been
presented. The exchange-dispersion energy is expressed
through the formula involving frequency-dependent density-
matrix susceptibilities and one-electron density matrices of
monomers, in the spirit of the Longuet-Higgins formula for
the second-order dispersion energy. An explicit cancellation
of disconnected terms has been achieved through the
introduction of the cumulant density susceptibilities. The new
approach has been applied to the case of the CCSD
polarization propagators for the main (noncumulant) part of
the exchange-dispersion energy. In this way the exchange-
dispersion energy with the inclusion of the intramonomer
correlation effects has been obtained for the first time for
many-electron systems. The density fitting technique has
been applied to density-matrix susceptibilities in order to
reduce the computational time. For the CCSD susceptibilities,

5. Appendix

the CPU time has been scaled down in this way from the
eighth to seventh power in terms of the orbital basis size,
thus allowing to perform benchmark calculations for a few-
atom monomers. The relative error of density fitting for the
case of the exchange-dispersion energy is somewhat larger
than for the dispersion energy and sometimes constitutes a
couple percent of the whole correction in the minimum and
even about 10% or more for large distances. However, since
the exchange-dispersion energy is usually much smaller than
the dispersion energy, the error resulted from density fitting
with respect to the sum of exchange-dispersion and disper-
sion energies is of order of a few tenths of percent. A
comparison with benchmark DF-CCSD values has allowed to
assess the quality of the three common SAPT(DFT) approaches
for the calculation of the exchange-dispersion energy. It turns
out that the CKS exchange-dispersion energy is usually in a
very good agreement with DF-CCSD, while the quality of the
UCKS energies is significantly worse in a majority of cases.
Finally, the numerical investigation of the ‘scaled UCKS’
approach shows that this method should be abandoned in favor
to the CKS exchange-dispersion energy.

5.1. The Exchange-Induction Energy Expressed through Density-Matrix Susceptibilities. A computationally efficient

way to express the second-order exchange-induction energy through monomer properties has been developed in ref 42 where
the ground-state and first-order density matrices have been used for this purpose (with the effective electrostatic potential of
the second monomer acting as a perturbing operator). From a theoretical point of view, it may be interesting to express this
correction analogously to the induction energy, for which the following formula exists in the literature:’>">

1 ,
Efi(A = B) = =3 [ vgp(Da(1, 110)245(1)de,d7, (47)
In eq 47, the effective electrostatic potential of the monomer B is used, which is defined as
pp(1'11") ,
Veirp(1) = vp(1) + f , dr} (48)
117

where in turn vp is the one-electron potential of the monomer B. The formula for the E{2}(B <— A) term is completely analogous.
Repeating derivation steps shown in the first part of this paper, the exchange-induction energy in the S? approximation can
be written in terms of the static density-matrix susceptibilities:
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E? . (A—B) = % S o1, g (30, (11173310)p5(111)dr, d dT,s

% f u(1, 1) 5(3)0t4(112°5310). 4,05 (11105211 dr dedThd T,

% S o1, g 5(3)- (153 Ay 0a (111331000, (211" py(112)d T, d d7d

+ o+ o+

% J o1, 1) vg53) (49)
(A AR A% — 1 — w5, )0, (111:310)p,(212) pg (1711 05(2'12)

o, (112/;310)A5(172'1172) + A4,(12112';310)p(1'12)

A A0, (1113310)0,(212) Ag(172'11°2)

Ap(12112;310). 4 3,05(111)pR(212) + A,(121127;310)Ag(172'11°2)]d7,d7 d7,d7}dT,

+ + + X

where Ag(1211’2’) denotes the two-electron density-matrix cumulant’* of the monomer B, which for the CC case has been
derived in ref 41. The first four terms inside the square brackets correspond to the noncumulant part of the exchange-induction
energy. Equation 49 is interesting from a formal point of view, since it expresses the exchange-induction energy through
quantities independent of another monomer. The calculation of this correction by using eq 49 would require a knowledge of
the whole density-matrix susceptibility. Clearly, from the computational point of view, it is more convenient to calculate one
response of the monomer with respect to the potential of another monomer and to use the resulting first-order density matrix
for the calculation of the exchange-induction energy, than to calculate ca. Nxo or Ny, responses to the Gﬁ’, or Jx operators.
However, eq 49 could be in principle an interesting alternative to the approach presented in ref 42 if it were sufficient to
obtain monomer properties for SAPT in a purely monomer basis set.

5.2. Working Formula for the Exchange-Dispersion Energy. An implementation of eq 35 can be further simplified
if one utilizes the generalized Coulomb and exchange matrices, introduced in ref 39. In the formula below the capital
bold letters denote a matrix of Nyo X Nao dimensions, the one-electron density matrices of monomers are denoted by
the capital bold letters A and B, while S stands for the overlap matrix. The definitions of generalized right and left
Coulomb matrices and generalized inner and outer exchange matrices for a general (not necessarily symmetric) matrix
Y are listed below:

j(Y)i Y;:(rslvlr's')
i,
J(Y),,
K(Y)!
]o((Y)j, = Y.(rslvlr's’)

Yi(rslvlr's')

50
Y;/(rslulr’s’) 0

With these definitions the exchange-dispersion energy can be expressed as

Eg()ch—disp(n) = 2XZ:::(P151|U|”1‘11)
+2XPUSTIB); + 2X00SB)(pys,lulns) — XUSIK(B),)

— XVT(SBY!(pysylulrs)

4152
l o
+ [2XPIA)ES] + 2X0T(SA), (pyg i) — XUTK(AYS)
- X{;;:(SA);‘](plqllulrlqz)
1 18 l ) Ip) ) rr
+ S EBSEIA) + 4XTSAS B

! o [ )
- 22X 2VZS‘IZZJ(A)‘;i(BS);‘Z — 2X7 2"S“Z(SB)sz(A);‘.i

DS T 4252 P>
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1

— axensy j(B)Zi(AS)’jz‘ — 2X)"(ASBS)!(p,g,101r,s))

q15, Py

— 2XITSAZIBSE — 2XPTSBSA(pq,luirys))

S

X ASLBS) (pigylvlns) + XETKASBLS)

+ XPUSPK(BSA)) + X0TSBY2SA(piq,lvlrys))
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The quantities like products of the overlap and density matrices or the generalized Coulomb and exchange matrices can be
calculated in advance and stored on disk. Unfortunately, not all terms can be factorized in this way, so still the overall scaling
of eq 51 remains (N3o), although with a lower prefactor. As already noted, the scaling of eq 51 is of a limited importance in
view of high costs of the DF-CCSD propagators.

5.3. A Comparison with the Formula for the UCHF Exchange-Dispersion Energy. In order to find a correspondence
between the new formula (eq 35) and the UCHF exchange-dispersion energy (eq 108 of ref 7) let us consider the first term
of eq 35, in which the UCHF propagators have been used. If W° is set to ® (Hartree—Fock determinant) and WX are
approximated by singly-excited determinants WX = ®(i — a), then the propagator formula (see eq 28) takes the form:

77 (iw) = 22(d>|ép‘d)(i—>a)>(cb(i—>a)l D)

919>

= 226”‘6“ oo

( (ll) + w (52)

ai

WA+ o

where A, = &, —

&; is a difference of orbital energies for spinorbitals ¢, and ¢; (a,b and i,j denote virtual and occupied

indices, respectively, relative to ®@). If eq 52 is inserted into the first term of eq 35, then the following expression is obtained

1 * Ampz : Brlfz :
%j; H (la))H‘ ‘(zw)da)(plslIvlrlql)(pzqzlrzsz)

Ay

—ZZIO

iac A jbeB

sdw(iblvlja)(ailbj) (53)

0> (M) + o

=2 2 i - A (azlb;)(zblvlm) — 4 (ibluja)

iac A jbeB

which, after the summation over spins, gives the first term of eq 108 in ref 7. Note that this paper contains several misprints

corrected recently in ref 75.
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Abstract: A complicated problem of seven electronic states in four terms, 'Ay’, 'E”, 1'E’, and
2'E’, interacting with six vibrational modes, a’, a,”, €, and €, was solved to take into account
the combined two-mode Jahn—Teller (JT) plus two-mode pseudo JT effects and rationalize the
electronic structure of the CO3; molecule. The JT and first-order pseudo JT effects in the E”
state are separated from the rest of the problem by symmetry; they do not influence the ground
state properties. In the remaining five-state five-mode problem including the ground state, (A,
+ 1E’ + 2E) ® (a/ + € + ¢€), the JT two-mode problem is reduced to the one-mode one by
means of coordinate transformations. Several high-level ab initio calculations including all of
the five states confirm the previously found coexistence of a central minimum of D5, symmetry
and three equivalent minima with a distorted geometry of C,, symmetry in the ground state; the
barrier between them is rather small, 0.2—0.3 eV, but large enough to distinguish them
spectroscopically. Harmonic vibrational frequencies of the two configurations near the minima
of the adiabatic potential energy surface are also evaluated. The calculations show how the
distorted configurations are produced by the JT effect in one of the excited E states, similar to
a previous finding in Os. Numerical data of ab initio calculations yield also the effective vibronic
and primary force constants for all of the terms. An electronic structure problem of this complexity
including a reduction of the two-mode problem to one mode with full interpretation of the origin
of coexisting different geometries as due to the JTE in the excited state is presented here for
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the first time.

Introduction

The carbon trioxide CO; molecule is of significant interest
due to its potential role in the atmospheric chemistry of Earth
and Mars.' ™ The necessity to characterize the CO3 molecule
emerged first from the data on the photolysis of ozone—carbon
dioxide ices at 77 K.? Attention to this system was renewed
recently by the studies of kinetics of the reaction of carbon
dioxide CO, with oxygen.'~® It was proved that COs is an
important intermediate in the quenching of the electronically
excited oxygen atoms O('D) by CO, and the 'O isotope
enrichment of stratospheric carbon dioxide. The O('D) atom
is initially generated by the photolysis of stratospheric ozone;
it then collides with CO, to form CO;, followed by

*To whom correspondence should be addressed. E-mail:
james.boggs @mail.utexas.edu.

dissociation to CO, and the O atom in the ground *P or
excited 'D electronic state via oxygen quenching or an
isotope exchange mechanism.

Quite a number of experimental and theoretical investiga-
tions have been devoted to the structure of the CO; molecule.
Ung and Schiff'® in 1966 postulated the existence of the CO;
species in the gas phase without its explicit detection. Later,
Moll et al.? and Jacox and Milligan* investigated the infrared
spectrum and derived a planar C,, structure at low temper-
atures. Earlier experiments predicted that CO; in the C,,
configuration is produced in the reaction of CO, + O('D)'%.
The latest experimental exploration of the structure of CO;
was carried out by Jamieson and co-workers in 2006.'* Tt
was the first spectroscopic detection and identification of the
D5, configuration of COs.

10.1021/ct9002515 CCC: $40.75 © 2009 American Chemical Society
Published on Web 09/24/2009
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In 1987, Van de Guchte et al.'? performed self-consistent
field (SCF) calculations on COj; and predicted a stable Ds;,
structure with lower energy than in the C,, geometry. This
calculation is likely to be too simple to give a reliable
conclusion, but it inspired further interest in elucidating the
geometric and electronic structure of CO;. Castro and
Sylvio'* used many-body perturbation theory and couple-
cluster calculations to confirm that the C,, and D5, isomers
coexist, but the C,, structure lies about 18 kJ/mol lower than
the Ds;, isomer.

In recent years, higher-level computational methods have
been used extensively to explore the structure of the CO;
molecule. In 2004, on the basis of the complete active space
self-consistent field (CASSCF) optimized geometries and
internal contracted multireference configuration interaction
with Davidson’s cluster correction (MRCI + Q) single-point
energies, Mebel et al.'> and Bennett et al.® predicted that
the C,, and Dj, configurations have similar energies (the
energy difference is about 0.1 kcal/mol) and are separated
by a transition state with a barrier of about 4.4 kcal/mol. In
2007, Kowalczyk and Krylov'® performed a series of coupled
cluster calculations (CCSD, CCSD(T), CCSDT, EOM-
CCSD, and EOM-EE(2,3)) to study the electronic structure
of CO;. They were the first to involve the influence of the
excited state via the pseudo Jahn—Teller effect (JTE) in the
formation of the ground state geometry of this molecule (for
other systems, this procedure has been previously involved
many times'”'®), but they took into account only one excited
state in a one-mode treatment. In the calculations of this
paper,'® the Dy, minimum disappears at higher levels of
correlation treatment and basis set, and only the C,, minimum
remains. The authors explained the disappearance of the high-
symmetry equilibrium configuration by pointing out that in
previous multireference studies dynamical correlation was
not included in the geometry optimization. More recently,
Qin and So00' used the DFT method to support the
conclusion of coexistence of the D3, and C,, geometries.

Despite these theoretical studies performed on COj;, the
main question of the ground state configuration and geom-
etry, Dy, versus C,,, as well as expected vibrational frequen-
cies at the minima, remains controversial, and no full
discussion of the origin of this complicated adiabatic potential
energy surface (APES) is given. The presence of a C»,
minimum with a symmetry lower than the highest one, D3,
in the nondegenerate ground state indicates that there is an
essential implication of the JTE involving excited electronic
states.'”'® This means that to rationalize the results of ab
initio calculations one has to take into account the mixing
of the ground and all relevant excited states via the JTE and
pseudo JTE (PJTE), which seems to be crucial in this
problem. In any full consideration of this system, the three
close-in-energy excited E states, each of which is potentially
subject to JTE and PJT mixing with the others and with the
ground state via the six active vibrations, must be taken into
account. This amounts to a combined JTE plus PJTE seven-
state six-mode problem, which can be reduced by symmetry
to three simpler problems, the main of which is the five-
state five-mode one that includes the ground state. The
present paper reports a solution of these problems which
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rationalizes the electronic structure of CO; and gives a clear
physical picture of the origin of its two coexisting configura-
tions in the ground state.

Formally, the APES obtained in this paper may serve as
a basis for evaluation of the full rovibronic spectrum of COs.
This is a separate and very difficult problem; we do not know
of any precedent rovibronic solutions of this complexity.
Partial solutions were discussed by Stanton®° for the radical
NO;, which looks similar to CO; but is essentially different.

The JTE and PJTE in CO;

According to the one-point calculations of the CO5; molecule
in the high-symmetry configuration D5, in this and previous
works, its ground state is 'A,’, and there are three spin-singlet
excited electronic terms, E”, 1E’, and 2E’, that we found
located at about, respectively, A = 0.97 eV, A = 2.65 eV,
and A, = 2.81 eV above the ground state, and six vibrational
modes: totally symmetric a,’, out-of-plane a@,”, bend ¢’
(denoted below as 1e”), and CO stretch ¢’ (denoted below
as 2¢’). In principle, all of these electronic terms and
vibrations are involved in the formation of the APES of this
molecule and its properties.

The first simplification of the problem can be obtained
based on the fact that the E” term does not mix with the
ground state A" (in first order of the displacements) as there
are no ¢” vibrations in CO;, and it mixes with the higher
excited 1E” and 2E’ terms via the out-of-plane displacements
a,”, which are not active in the remaining five-state five-
mode problem. This allows us to separate the main combined
(A + 1E' + 2E) ® (a)" + l&’ + 2¢’) two-mode JT plus
two-mode PJT problem'’ from the pure excited state JT E”
® (a/ + le’ + 2¢’) and PIT (E” + 1lE" + 2E) ® )"
problems. The vibronic coupling effects in the latter two
problems are rather weak and not significant (see below).

The 5 x 5 secular matrix of the main problem contains a
large number of constants including the JT vibronic coupling
constants of each of the electronic terms to each of the
vibrations and the PJT coupling constants between them, as
well as the primary force constants and quadratic coupling
constants. Fortunately, the problem can be simplified em-
ploying the results of the general theory of the multimode
JTE (see in ref 17, sections 3.5 and 5.5; ref 21, and ref 22,
as well as ref 23). According to the theory, the JT two-mode
problem can be reduced to the ideal (one-mode) one by
means of transformations in the coordinate system. In the
transformed coordinates, only one e mode is JT-active (the
interaction mode), the other one remaining non-JT-active
(meaning harmonic and nonshifted), so the problem becomes
(A + 1E" + 2E") ® (a)” + ¢’), and the JT plus PJT secular
matrix is considerably simplified. The interaction mode
stands for the total distortion produced by the nuclear
displacements in the two modes, which in an appropriately
chosen coordinate system is described by one minimum of
the APES. Although the interaction mode is a function of
the initial modes, and the reduced number of vibronic
coupling constants is a combination of the larger number of
initial constants, the problem is still essentially simplified
because, as shown below, the interaction mode can be
obtained from the ab initio calculations.
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Figure 1. Schematic diagram of energy level of the ground
state A" and four excited state (1E” and 2E” in D3, symmetry)
dependence on the Qy coordinate of the interaction mode
when their PJT mixing is ignored (F; = 0). The order of
magnitude of the JT vibronic coupling constants is taken
approximately in accordance with the ab initio calculations.

To get preliminary qualitative hints on where to find
the interaction mode and what should be expected from the
numerical calculations, some initial estimates based on the
general theory'” and previous experience'® may be useful.
In particular, if we ignore the PJT interaction between the
three terms and take the JT coupling constants approximately
as they appear in the ab initio calculations, we obtain for
the cross section Q. = 0 the energy level dependence on Qg
shown in Figure 1. In fact, to get this picture qualitatively,
we should assume that the JTE in at least one of the exited
E states is sufficiently strong so that the JT stabilization
energy is larger than the energy gap to the ground state. This
is just the picture we got in solving the problem of O;.'8

In Figure 1, the JTE splitting in the two excited E states and
the harmonic curve of the ground state are shown. We know
qualitatively how these curves change when the PJTE interac-
tion is included; it is indicated by the dashed lines. An important
feature in this energy level scheme is that the JTE in the excited
state strongly influences the ground state APES, resulting, as
shown in the ab initio calculations below, in the formation of
an additional minimum with lower (C,,) symmetry. There are
three equivalent directions of the JTE distortions in the (Qy,
Q.) space, and hence, if an additional C,, minimum is formed
under the influence of the excited state, there will be two more
of them, forming three additional equivalent minima in the space
of the interaction mode.

Following the qualitative picture of Figure 1 (which is
confirmed below by the ab initio calculations), we see that
the direction from the central minimum (if any) to the
distorted configuration C,, is determined by the direction of
the JT distortion in the excited E states, more precisely, in
the direction of the combined two-mode (interaction mode)
distortion plus a possible shift of the a,” displacements. To
have an idea how the interaction mode depends on the initial
modes, consider first the 2E” term with the strongest JTE,
the 2E" ® (le’ + 2¢” + a;’) problem, which generally
produces two kind of distortions, one of which is given in
symmetrized displacements (g9, ¢1e» ga) Of the 1le” mode,
the other in the coordinates (q2g, g2, g.) of the second mode
2¢’. Obviously, the real displacements of individual atoms
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are some vector sums of their displacements in each of these
modes. The three modes have different frequencies.

The process of reducing the two-mode problem to a one-
mode one is to perform first a scale transformation, (g;)> =
Kig, that makes the elastic term isotropic (with the same
force constant K = 1 for all g{ coordinates)** and then an
orthogonal transformation (rotation) for ¢;” and ¢;.” and a
shift for g, of the coordinate systems (qi¢’, qic’, g.”) to new
ones (Qip, O, Q,) in such a way that one of the modes
becomes JT-inactive (has no linear terms in the Hamiltonian),
the other one being accordingly modified. The transformation
of the two-mode problem to a one-mode one with quadratic
terms included was carried out recently by Polinger® (in
previous works, only linear displacements were taken into
account). In this transformation, the coupling to the totally
symmetric coordinates can be separated by means of a shift
along the Q, axis. Performing the 2 x 2 transformation in
the remaining (Qy, O.) space, we get

Qp = €919 T €9
0, = dig, t+ dyqy, (D

where the coefficients of this transformation are combinations
of linear and quadratic vibronic coupling constants and force
constants of all three modes.”® Their exact numerical
evaluation is not the goal of our calculation, but in further
exploration of the excited states, this may be necessary. The
main role of the interaction mode is to allow us to reformulate
the problem in terms of (A" + 1E" + 2E’) ® (a;” + ¢’) with
one ¢ mode instead of two and to determine the effective JT
parameters of this interaction mode (meaning the parameters
of the APES of the excited state) by comparison with the
numerical data. Numerically, the constants in eq 1 will also
be affected by the influence of the JTE on the 1E’ term, but
this influence is insignificant. The JTE on this term, as shown
in the calculations below, is very small, and the contribution
of its quadratic terms (which only contribute to the warping
of the Mexican hat) is negligible (anyhow, it just changes
the expressions for the coefficients in eq 1).

For the direction from the D3, minimum to the expected
C,, minimum which coincides with the similar direction to
the corresponding minimum of the JTE 2E’ ® (a,” + ¢’) in
the excited 2E’ term (Figure 1), we should take into account
that the minimum on the Qy axis (where Q. = 0) has also a
shift component along the Q, axis. This follows directly from
the general solution of the quadratic E ® (a,” + ¢’) problem'”
and is confirmed below in the ab initio calculations of the
APES along the Q, coordinate (see Figure 7). Therefore, in
the space of the interaction mode, the direction from D3, to
C,, to be matched with the numerical calculations below is

Qp = c1q19 T Cagpp T ¢4, (2)

With only one active ¢’ mode taken into account and in
the space of its coordinates, we can write the effective matrix
equation for the potential energy of the system (the APES)
of the (A" + 1E" + 2E) ® (a;” + ¢’) problem as follows (I
is a unit matrix 5 x 5):

W-—-EI=0 3)
where
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W=
i Wl FIZQH F12Qs FISQH F13Qe )
W, = F,0y + N, + F50, + .
Fule ™ o kA, Ful 26200, + FOQ, FuQy + F30, Q.

W, + F05 — Ny, +F;Qa -

FinQ. FyQ, +2650,0, + 50,0, F50, Fy0Qy + 530,

FgeQIIQH + A1
W, — F;0, + N +F“Qa+ ”
Fi30, Fy0y + FésQa Fy0, ’ 3;an 0 :3_ A ’ F330, + 2633000 + F{% 0.0,
3 Xaxo 2
. W, + F;0, — N +F“Qa—
F\50, F,,0, F,30, + F&0, Fy,0, + 2G3,0,0, + F¥0,0, 3 33%0 33 3

! FgeQuQH + AZ f

In the formation of this equation, the wave functions of the two E; terms are denoted by 1if) and lie), i = 2 and 3, and that
of the ground state is la). The 5 x 5 secular matrix (eq 3) contains the effective constants of vibronic coupling to ¢” displacements,
with linear F; (i = 2, 3) and quadratic G; (i = 2, 3), and three constants F;; (if =12, 13, and 23) of pseudo JT coupling
between the terms by e’ displacements, as well as the diagonal quadratic coupling terms N; = Gi(Qy> — Q,%) and elastic
energies W; = (1/2)K(Qy* + Q.2 + (1/2)K#Q,% i = 1—3, and the constants of the vibronic coupling of the three electronic
terms to Q, displacements F* (i = 2, 3) and one constant F»;“ of the coupling between the two E terms. The Fi* (i = 2, 3)
are the quadratic constants for interactions between the a,” and ¢’ modes.

We emphasize that because of the transformations above the relation between these constants and the initial JT constants
of coupling to the two ¢’ modes are complicated and in fact unnecessary, as the latter are unobservable. The APES matrix (eq
3) should be regarded as the effective potential energy matrix, which describes the real surface to be obtained in the ab initio
calculations below. The parameters in this matrix are thus effective coupling constants that describe the APES. Some of these
constants are not directly related to observable properties (e.g., the primary force constants K; for JT modes'”). The derivations
and discussion above show how the real APES is formed by complicated JT interactions between the electronic states and
vibrational modes in the Dj, configuration, especially, why we can consider only one JT vibrational mode instead of two.
After accepting this conclusion, we can ignore eqs 1 and 2 and start further consideration from eq 3.

As mentioned above, the electronic structure of CO;5 is somewhat similar to that in the ozone molecule O; where the three
minima of the obtuse triangular (C,,) configuration are formed under the strong influence of the JTE in the excited E state,'®
and there is a shallower minimum with the Ds, configuration. But compared with O3, the CO; molecule is much more
complicated because of the two-mode problem and the presence of three excited close-in-energy E terms in the high-symmetry
configuration, with two of them strongly influencing the ground state. Among four-atomic molecules, CO; is the most
complicated system studied in this respect.

Ab Initio Calculations

In all of the ab initio calculations for this problem, Dunning’s correlation consistent basis set cc-pVTZ>* is employed. The
active space is composed of the extensively used 16 electrons and 13 active orbitals (i.e., all valence electrons and orbitals
with the exception of 2s lone pairs of oxygen atoms) denoted as (16/13). Another smaller active space is (16/10), which
excludes the three empty orbitals corresponding to the three antibonding oco*’s based on (16/13). The inactive orbitals (1s
of C and 1s and 2s of O) were kept frozen temporarily only when the smaller active space (16/10) was used.

The geometry optimizations and frequency calculations were performed by single-state CASSCF (SS-CASSCF)* and
MRCI+Q methods?® (Tables 1 and 2). In addition, state-average CASSCF (SA-CASSCF)?’ calculations were carried out to
optimize the stationary points and scan the potential energy curves. On the basis of the SS-CASSCF or SA-CASSCF geometry,
the MRCIH-Q single-point energies are also obtained to account for the dynamical correlation. Considering the computational
efficiency, only reference configurations with weights larger than 1 x 107* were selected to be correlated in the MRCI+Q
calculations with 16/13 active space.

Besides the multireference methods above, two high-level single-reference methods, that is, Brueckner coupled-cluster
doubles with perturbative triples (BCCD(T))*® and coupled-cluster involving singles and doubles with perturbative triples
and quadruples (CCSD(TQ)),?® were used to optimize the structures and calculate the frequencies at the minima.

Table 1. Optimized Geometries (Bond Lengths in Angstroms and Angles in Degrees), Energy Differences AE (in eV), and
Total Energies (in au) at the D5, Minimum of the CO3; Molecule Obtained by Different Computational Methods

CZV
methods Dsp, R(CO) R(CO") R(CO?) £0'CO? AE (Ecoy — Epan) total energy (Day)
MRCI+Q (16/10) 1.2550 1.1718 1.3252 142.2 -0.11 —263.27351667
MRCI+Q//SS-CASSCF(16/13) 1.2637 1.1739 1.3380 142.1 —0.10 —263.28928534
MRCI+Q//SA-CASSCF(16/13) 1.2635 1.1727 1.3428 142.2 —0.08 —263.28907391
BCCD(T) 1.2597 1.1758 1.3333 142.6 —0.23 —263.29442881

CCSD(TQ) 1.2570 1.1745 1.3324 142.4 —0.28 —263.29093183
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Table 2. Frequencies of CO5 in cm™' at the Minima Obtained with Different Methods

mode (symmetry)\methods MRCI+Q (16/10) SS-CASSCF(16/13) BCCD(T) CCSD(TQ) CCSD(T)?
Dap
bend (¢) 460 440 455 466 —402
OPLA (a") 769 761 762 772 776
CO stretch (ay) 1124 1084 1094 1113 1105
CO stretch (€) 1647 1182 1316 1274 1093
CZV
bend (b,) 591 580 567 575 575
bend (ay) 604 578 612 597 606
OPLA (by) 694 682 672 675 683
CO stretch (by) 1049 1017 1006 1017 1007
OCO stretch (ay) 1122 1075 1093 1096 1099
CO stretch (ay) 2100 2071 2066 2073 2078
2 Ref 16.
Qe (Ang)
0.6 {
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04
03 1A
0.2 24
3A,
0.1 IBZ
0.0 ——2B,
-0.1}
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Figure 2. Equipotential curves on the APES of the ground
state of COj3 in the cross section of the (Qy, Q,) plane of the
interaction mode obtained by the BCCD(T) method.

All of the calculations were performed using the MOLPRO
quantum chemistry program package,*® except the CCS-
D(TQ) calculations performed with the ACES II program.*’

Energies and Optimized Geometries of CO;

Figure 2 shows the equipotential curves on the contour map
of the APES of the ground state of CO; in the cross-section
of the (Qy, Q) plane of the interaction mode obtained by
the BCCD(T) method (SA-CASSCEF yields a similar surface,
which is not shown here). Figures 3 and 4 present the energy
levels of all three terms (A,’, 1E’, and 2E’) in the cross-
section of the APES along the two interaction coordinates
Qp and Q,, respectively. The CO; geometries in the D3, and
C,, configurations of the APES minima are shown in Figure
5. Figure 6 shows the energy levels of all four terms (A,
E”, 1E/, and 2E’) as a function of the out-of-plane a,”
displacement. They all remain approximately harmonic, so
there are no significant implications caused by the separation
of the (E” + 1E” + 2E’) ® a,” problem. The PJTE here is
weak, lowering the corresponding vibrational frequencies but
not producing instabilities (see the weak PJTE'”). Similarly,
the mixing of the three terms A,’, 1E’, and 2E’ under totally
symmetric displacements, as seen from Figure 7, is also
weak, but the two excited states have shifted minimum
positions in accordance with eq 4 obtained below. Numerical

Figure 3. Ground 1A; and four excited state energy levels
(2A; and 1B, and also 3A; and 2B, correspond to 1E” and
2E’ in D3, symmetry, respectively) of COjz in the cross-section
of the APES along the interaction mode Qy obtained by the
MRCI+Q//SA-CASSCF (16/13) method.

/ ——1A’
) =24

3A
——4A

——5A

T T T T T T 1
00 01 02 03 04 05 06 07
0. (Ang.)

Figure 4. Ground 1A’ and four excited energy levels (2A’
and 3A” and also 4A” and 5A” correspond to 1E” and 2E’ states
in D3, symmetry, respectively) of COj3 in the cross-section of
the APES along the interaction mode Q. obtained by the SA-
CASSCF (16/13) method.

data, on geometries, energies, and frequencies of CO;
calculated by different computational methods, are listed in
Tables 1 and 2.
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R(C-0) = 1.2550 A R(C-0")=1.1718 A R(C-0)=1.3252A £0'CO*=142.2°
12637 A 11739 A 13380 A 142.1°
12635 A 11727 A 13428 A 142.2°
12597 A 11758 A 13333 A 142.6°
1.2570 A 1.1745 A 13324 A 142.4°
Day Coy

Figure 5. Optimized CO3; geometries of the Ds, and C,,
configurations at the APES minima (bond lengths in ang-
stroms and angle in degrees) obtained by MRCI+Q(16/10),
SS-CASSCF(16/13), SA-CASSCF(16/13), BCCD(T), and CCS-
D(TQ) methods, respectively.

E(eV)

+A
—— 1E|
—+— 2E]|
—<— 3E|

. 0?5 0!6

Q,,. (Ang.)
Figure 6. Energy levels of all four terms (A4, 1E, 2E, and 3E
states corresponding to the Ay, E”, 1E’, and 2E’ states in

the D3, point group) along the out-of-plane Q.- displacement
calculated with the SA-CASSCF(16/13) method.

E(eV)
7 -

T T T T L
0.1 0.2 0.3 0.4 0.5 0.6

0, (Ang.)

Figure 7. Energy levels of the three terms (A", 1E’, and 2E’)
along the totally symmetric displacements Q, calculated with
the SA-CASSCF(16/13) method.

All of the methods used in the present study reveal two
kinds of minima in the ground state APES of CO;: the central
minimum, which yields the geometrical structure of Dj,

Liu et al.

symmetry, and three equivalent minima of C,, symmetry.
The latter have slightly lower energy than the D3, minima.
The single-reference methods, BCCD(T) and CCSD(TQ),
produce much larger energy differences between the two
minima than the multireference methods (Table 1). We also
found that the results of MRCI+Q with the active space of
(16/10) are similar to those of the SS-CASSCF and SA-
CASSCF methods obtained with the more time-consuming
(16/13) active space. It shows that, for the system under
consideration, the dynamical correlation may strongly influ-
ence the relative energies but affect less the optimized
geometry and frequencies.

In addition to the dominant closed-shell configuration
(4a)*(1ay")*(Be’)* (4e’)*(1le”)* in the active space with a
weight of 69%, SA-CASSCF calculation shows that there
is a two-electron excited configuration (4a;)*(la,”)*-
(Be)*(1e”) (4e)*(1ay’)* with a weight of 18% in the ground
state, which means the single-reference method may fail. To
remedy this, higher-order correlations should be included.
In one of the previous papers,'® the D3, minimum was not
found in the calculations by CCSD and CCSD(T) methods.
Their total energies, geometries, and frequencies could not
be exactly reproduced in our calculations, and the discrep-
ancy cannot be explained by a numerical error. The results
that we obtained for this case with different programs agree
very well (the Dj, configuration was checked at different
levels by ACES I1,>' MOLPRO,° and several other quantum
chemistry programs). Arguably, this discrepancy may be
caused by the defects in the HF-SCF codes of the old version
of ACES-IIL In our computations with the BCCD(T) and
CCSD(TQ) methods, we got the D3, minimum, quite similar
to the results of the MRCI+Q method.

For the excited states of CO;, SA-CASSCF (16/13)
calculations also show that there is a large static correlation
contribution. In particular, for the 2E” state, the dominant
electronic configuration comes from a two-electron excitation
of the ground state, which cannot be described well by single-
reference methods, such as popular EOM-CC and TDDFT.
The multireference treatment is necessary in such cases.
Perhaps this is the reason that in our multirefernce calcula-
tions of the excited states the energies are lower than those
obtained by other methods (e.g., in ref 16).

Further Discussion: Jahn—Teller Parameter
Values

As discussed above, it is seen in Figure 1 that the Qg
coordinate of the interaction mode coincides with the line
that connects the Ds;, and C,, minima. On the other hand,
we can get the coordinate of this line from the ab initio
calculations following the distortions from the geometry at
the D3, to the C,, minima in terms of the symmetrized normal
displacements a,’, 1¢’, and 2¢” in the D3, geometry. This can
be done by optimizing the corresponding linear combination
of these coordinates to fit the numerical values of the atomic
coordinates of COj; in the two minima. It yields (cf. eq 2)
the following:

0, = 0.98931¢,, + 0.00479¢,, + 0.14574g,  (4)
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Similarly,

0, = 0.99999¢q,, + 0.00485¢,, (5)

The coefficients in the linear combination show that,
in the distortion from the high-symmetry D5, configuration
to the C,, one along the interaction mode, the contribution
of the bend 1¢’ mode is overwhelming, and there is also a
significant contribution from the totally symmetric displace-
ments Q,, which is understandable in view of the change in
the average interatomic distances in this transformation. It
is reflected also in the shift of the minimum along the Q,
coordinate in the excited E terms in Figure 7.

Comparing the computed energy levels of the five states
(Figure 3) with those in Figure 1, we see that qualitatively
the formation of the low-symmetry C,, minima is indeed
controlled by the JTE in the excited E states, similar to the
0; case.'® But compared to the latter, the CO; system has a
more complicated electronic structure. First, there are three
excited state conical intersections in the Dj, symmetry of
COs and a considerable PJT interaction between two of the
excited states at the avoided crossing point Qy =0.05 A.
More important is the interaction between the Ey branch of
the excited E state with the ground state at another point of
avoided crossing (Qy = 0.30 A) that is very strong and
produces a gap of A = 1.78 eV between them (in Os, this
interaction is very small). For this reason, the barrier between
the two geometries, 0 = 0.22 eV, is much smaller than in
O3, but it is still significantly higher than the zero vibration
level, so the two configurations can be observed spectro-
scopically. The large energy gap at the avoided crossing may
also quench the otherwise important topological (Berry)
phase implications, which influence the rovibronic spectrum
in the JT minima (see, e.g., the discussion of the O; caselg).

On the contour map of the ground state APES in the space
(Qp, Q.) (Figure 2), the positions and the relative barriers
between the central minimum and the peripheral ones and
between any two C,, minima are qualitatively different from
many other multiminima APES in JT systems with ground
state degeneracy.'” Indeed, while in the latter cases the
transition between the peripheral minima goes directly
between them sidestepping (bypassing) the high-symmetry
configuration, in COj;, the direct barrier between the C,
minima is very high as compared with the barrier to the Dj,
one. This situation may be important in evaluation of the
tunneling splitting, as well as the whole rovibronic spectrum.

The numerical results of the ab initio calculations allow
us also to approximately estimate the values of the majority
of the effective JT parameters in eq 3. To do this, we can
produce further appropriate cross-sections of the multidi-
mensional five-branched APES and compare the energies as
functions of the JT parameters with ab initio obtained values.
By fitting the ab initio data at small deviations from the Dj,
symmetry with the roots of eq 3 in the cross-section Q, = 0
with O, = 0, and Qy = 0 with Q, = 0, respectively the
approximately estimated parameters are as follows: K; =
18.92 eV/A2 K, = 30.40 eV/A%, K; = 14.17 eV/A%, Fy, =
0.84 eV/A, Fi3 = 2.99 eV/A, Fy; = 0.76 eV/A, F», = 0.73
eV/A, Fy; = 4.76 eV/A, G,=—4.34 eV/A% and Gy, = —5.70
eV/A% K" = 70.95 eV/A?, K" = 80.90 eV/A2, K;* = 78.58
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eV/A2, Fy* = 6.50 eV/A, F3* = 6.32 eV/A, and Fy" ~
The fitting is approximate and may not be acceptable for
large deviations from the D3, symmetry. As expected (Figure
1), the strongest PJTE comes from the interaction between
the ground state and the 2E’ state, and the stronger JTE is in
the degenerate 2E’ state too. Even though the interaction
between the other excited 1E” and the ground state A, is
small, it cannot be ignored, as it affects indirectly the ground
state structure through its JT and PJT interaction with the
2E’ term. In total, the coexistence of the D3, and C,,
equilibrium configurations in CO; is controlled by the
combination of the JTE and PJTE, which mix five electronic
states with five vibrational modes. The small F;* constants
of quadratic interactions between the a;” and ¢” modes could
not be obtained in our calculations because they fall out from
the cross-sections of either Q, = 0 or Q, = 0, while
calculation of the whole Q,Q, surface is extremely time-
consuming and seems to be excessive.

As for the separate excited state E” ® (a;” + le’ + 2¢)
problem, the calculations reveal a somewhat different
interaction mode along which the JTE is very weak with a
distortion (the radius at the bottom of the trough of the
APES') of py ~ 0.07 A, which hardly influences the
geometry in this state.

Conclusion

The CO; molecule proved to have a very complicated
electronic structure and two different, coexisting geometry
configurations. An electronic structure problem of this
complexity with a full explanation of the origin of peculiar
geometries due to the JTE and PJTE in excited states is given
here for the first time. High-level ab initio calculations of
the APES of the ground and six (three two-fold degenerate
in the high-symmetry configuration) excited electronic states
in the space of all six (two two-fold degenerate in-plane,
one totally symmetric, and one out-of-plane) active vibra-
tional modes of the CO; molecule were performed and
rationalized in terms of a combined two-mode JT and two-
mode PJT problem. One excited state plus the out-of-plane
mode were separated by symmetry. The two-mode JT
problem was reduced to the one-mode one by means of a
coordinate transformation. The coexistence of two types of
APES minima with D3, symmetry (one minimum) and C,
symmetry (three equivalent minima) was confirmed, and the
origin of the distorted configuration as due to the strong JTE
in one of the excited states was revealed. The harmonic
vibrational frequencies in the minima of the two configura-
tions were also evaluated. The efficiency of the JTE theory
in rationalizing the results of ab initio calculations is
demonstrated here by the solution of a very complicated
problem of CO;.
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Abstract: Unrestricted coupled cluster spin contamination corrected [UCCSD(T)] and unre-
stricted Brueckner doubles [UBD(T)] variations of the Weizmann-1 theory (W1), denoted as
W1U, W1Usc, and W1BD, respectively, are compared with the restricted open-shell W1 theory
[W1(RO)]. The performances of the four W1 variants are assessed with 220 total atomization
energies, electron affinities, ionization potentials, and proton affinities in the G2/97 test set, for
consistency with the error analysis of the original W1(RO) study. The root-mean-square deviations
from the experiment of W1U (0.65 + 0.48 kcal/mol), W1Usc (0.57 + 0.48 kcal/mol), W1BD
(0.62 + 0.48 kcal/mol), and W1(RO) (0.57 + 0.48 kcal/mol) show that the four methods are
virtually indistinguishable. This error analysis excludes the “singlet biradicals,” C, and O, since
single determinantal methods are not really adequate for these strongly multireference systems.
The unrestricted W1 variants perform poorly for such highly spin-contaminated and multireference
species (the largest deviation from experiment for W1Usc is —4.2 4+ 0.1 kcal/mol for the O3
EA). W1(RO) performs much better than its unrestricted counterparts for these pathological
cases (the deviation from experiment is reduced to —1.5 4 0.1 kcal/mol for the O3 EA), though
the errors are significantly larger than those for the overall test set. The examples of C,, O,
and the F, potential energy curve indicate that an advantage to using W1BD is that the error in
(&%) correlates with the magnitude of the error in energy, whereas W1(RO) loses accuracy without
such a warning.
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l. Introduction

Advances in computational methods and computer hardware
have made possible the accurate ab initio calculation of
energies for small- and medium-size molecules. Combined
with Pople’s model chemistry concept, these calculations
provide reliable thermochemical predictions, which are a
significant achievement of modern computational chemistry.'

* Corresponding author. E-mail: gpetersson @wesleyan.edu.

" Wesleyan University.

* Gaussian, Incorporated.

TWeizmann Institute of Science

¥ Current address: Department of Physics, University of Con-
necticut, 2152 Hillside Road, U-3046, Storrs, CT 06269-3046

A “theoretical model chemistry” is a complete algorithm
for the calculation of the energy of any molecular system.>
It cannot involve subjective decisions in its application. It
must be size extensive, giving energies that are additive for
separated systems, so that the energy of every molecular
species is uniquely defined. A model chemistry is useful if
for some class of molecules it is the most accurate calculation
we can afford to do. A number of “black-box” computational
methods have emerged in the past two decades, through the
development of composite theoretical model chemistry
methods such as the complete basis set (CBS) model
chemistries of Petersson et al.,*”® the Gaussian-n methods
of Pople and co-workers,””'? the Weizmann-n (Wn) theories
of Martin and co-workers,'>~!7 the high-accuracy extrapo-

10.1021/ct900260g CCC: $40.75 © 2009 American Chemical Society
Published on Web 08/31/2009
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lated ab initio thermochemistry (HEAT) protocol of the
Gauss and Stanton groups,'® ° and the correlation-consistent
composite approach (ccCA) of Wilson and co-workers,>!*>
to name a few.

The Wn computational protocols of Martin and co-workers
offer a sequence of models of increasing cost and accu-
racy,”> 2 the converging hierarchy of which currently ranges
from W1 to W4.4. W1 theory, the most computationally
accessible member of the evolving Wrn family, is often
employed as a benchmark for more approximate methods
in the absence of accurate experimental data. Some of the
key accomplishments of W1 theory are:

i. It achieves 0.44 kcal/mol mean absolute deviation (0.56
kcal/mol rms deviation) for 220 total atomization energies
(TAES), electron affinities (EAs), ionization potentials (IPs),
and proton affinities (PAs) of the G2/97 set;

ii.As a properly defined theoretical model chemistry, it is
applicable in a “black-box” manner by a nonspecialist; and
iii. It is completely devoid of parameters adjusted to fit
experimental data.

The present study compares the performance of several
unrestricted variants of W1 theory: unrestricted W1 (W1U),
WI1U with a spin contamination correction (W1Usc), and
unrestricted Brueckner doubles W1 (W1BD). Standard W1
will be explicitly referred to as WI(RO) in this study, in
order to avoid confusion in the comparison.

Il. Restricted vs Unrestricted Reference

One of the major issues in computational studies of open-
shell species is the selection of a restricted or an unrestricted
reference wave function. Each has its well-known advantages
and disadvantages. For example, restricted open-shell coupled
cluster singles and doubles®’ 3! with perturbative triples,>> >
[ROCCSD(T)], dissociate to the wrong energy limit, while
the unrestricted coupled cluster [UCCSD(T)] wave function
dissociates to the correct energy limit, but the wave function
becomes significantly spin contaminated as a bond dissoci-
ates. Several approaches have been used through the years
to alleviate the spin contamination problem. For example,
the spin correction term in W1Usc was introduced for this
purpose.®®

Whether one chooses a restricted or an unrestricted
reference determinant, it is best to be consistent. Although
it is common practice in the application of unrestricted
methods to treat many unrestricted Hartree—Fock (UHF)-
unstable species (e.g., F,, alkenes, or polyenes) with a
restricted reference, problems arise in reactions involving
these “closed-shell” molecules. For example, the methyl
C—H bond dissociation energy (BDE) of UHF-unstable
1-butene gives a radical product, H,C=CHCH,CH,, that
would be described by an unrestricted determinant. Employ-
ing a restricted reference for 1-butene and an unrestricted
reference for the 1-buten-4-yl radical would create consis-
tency problems between reactant and product energies and,
thus, generate spurious BDE contributions. No matter how
distant a radical center is, an unrestricted treatment of the
radical will induce spin polarization of the UHF-unstable
m-bond. These problems are eliminated if one employs a
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restricted open-shell Hartree—Fock (ROHF) reference for the
radical or a UHF reference for the parent alkene.

Another alternative to unrestricted Hartree—Fock (HF) and
coupled cluster is the use of charge coupled device (CCD)
calculations with Brueckner orbitals,>’ ~*? coined as “Brueck-
ner doubles” (BD) by Handy et al.*! This method employs
a reference configuration, BDRef (from which the singles
coefficients are zero for the coupled cluster wave function
truncated at the doubles level), in place of the HF reference
typically employed in the coupled cluster ansatz. The
Brueckner condition implies that the corresponding reference
determinants give the best overlap of a one-configuration
approximation of the wave function with the exact wave
function.* Such a reference was introduced by its namesake
Brueckner in 1954, as part of a self-consistent method in
nuclear physics,?” and was first employed by Nesbet®® for
use in the configuration interaction (CI) expansion of a wave
function. In the field of computational chemistry, the
resurgence of interest in Brueckner orbitals in the past two
decades was prompted by Chiles and Dykstra*® and later by
Handy and co-workers.*! Similar studies that demonstrate
the robustness of BD as an alternative to its coupled cluster
counterpart**~*> have been carried out over the years. Since
the species considered in the previous paragraph (i.e., F, and
alkenes) are not UBD-unstable, the problems of consistency
between the reactant and the radical product are also
eliminated by using a BD-based method.

lll. Computational Details

A. Components of W1. The justification for the selection
of each component calculation in W1(RO) has been presented
in detail'*'> and will not be repeated here. The W1U and
WIBD methods retain the essential features of standard
WI1(RO) but replace the sequence of ROHF, ROCCSD, and
ROCCSD(T) calculations with their spin-unrestricted coun-
terparts for W1U for calculations involving open-shell species
and with the BDRef, BD, and BD(T)46 sequence for W1BD
theory. All calculations were carried out with Gaussian 09,*
which uses the ROCCSD(T) definition of UCCSD(T) in a
basis of semicanonicalized ROHF orbitals,*>*® with the
semicanonicalization carried out before the integral trans-
formation. The triples contribution to BD(T) is evaluated with
semicanonical Brueckner orbitals.

The UB3LYP/cc-pVTZ+1d geometry optimization and
frequency calculations are retained from the original W1(RO)
implementation. Optimized geometries and energy compo-
nents for all species are available in the accompanying
“geometries.txt” and “components.pdf” files as Supporting
Information. In the original implementation of W1(RO),
scalar relativistic corrections were obtained with the
Martin—Taylor small (MTsmall) basis sets**° as one-
electron Darwin and mass—velocity terms”'? from averaged
coupled pair wave functions,”® while corresponding com-
ponents in this study were obtained with Douglas—Kroll—Hess
(DKH) second-order scalar relativistic calculations™* 8 using
a Gaussian nuclear model®® (also employing the MTsmall
basis sets). Spin—orbit calculations were taken directly from
ref 14. The spin correction term in W1Usc,
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AE(spin) = —6.28mE, X A% yur (1)

minimizes the difference between ROCCSD(T) and
UCCSD(T) energies for some highly spin-contaminated
species.>®

B. Implementation of Brueckner Doubles. The BD
algorithm employed throughout this study involves macro-
iterations to update the orbitals, wherein each macroiteration
involves an integral transformation and a CCD calculation.
Thus, BD calculations appear, at first glance, to be signifi-
cantly more expensive than the corresponding CCSD cal-
culations. In practice, however, W1BD calculations are only
slightly more expensive than the corresponding ones in W1U
or W1(RO). The two main reasons for this are as follows:
i. Since W1 involves a sequence of calculations, the
converged orbitals and amplitudes from each step can be
used to start the next. As a result, most of the extra CC
iterations required are performed in the first BD(T) calcula-
tion, which uses the smallest basis set in the sequence of
calculations. For the largest basis set (i.e., the BD/aug-cc-
pVQZ+2df step), typically only two or three BD macroit-
erations are required, and the second and later macroiterations
require only a few CC iterations.
ii. Calculations involving even three heavy atoms spend a
significant amount of time in the (T) steps, (the only O(N”)
parts of W1), and calculations on systems having four or
more heavy atoms are dominated by these steps. The triples
calculations have the same cost for CCSD(T) and BD(T).

The result is that the extra cost of doing W1BD over W1U
or W1(RO) is in the range of 20—40% for two heavy-atom
systems, about 20% for three heavy-atom systems, and going
down further to less than 20% for systems with more than
three heavy atoms and/or those involving second-row atoms
and beyond. (W1 calculations involving two or more second-
row or heavier atoms are dominated by the last calculation,
which includes triples and correlates core electrons. As noted
previously, the triples part of this step has the same cost for
CCSD(T) and BD(T), and the BD iterations converge quickly
since they use the orbitals, amplitudes, and basis set from
the preceding frozen-core calculation as an initial guess.)

All but one of the correlation energy calculations in W1
use the frozen-core (FC) approximation, which substantially
speeds up the calculations as compared to correlating all
electrons (Full). Previous papers on the BD method have
not discussed the issue of frozen-core with this model, and
some programs, such as Gaussian 03, freeze the core orbitals
at their initial values during BD iterations. This means that
the converged BD(FC) energy varies with different initial
guess orbitals. For example, in CN, the UHF solution is
highly spin contaminated, while the BD(Full) reference
determinant has very minimal spin contamination. Hence, a
BD(FC) calculation starting from the UHF orbitals will freeze
a core that is more spin polarized than that of a BD(Full)
calculation and produce a different energy than, say, a
BD(FC) calculation that starts with (also much less spin
contaminated) B3LYP orbitals. The consistent approach to
frozen-core BD calculations is to update all orbitals, including
the core, during the BD iterations but to restrict the
amplitudes in the CCD calculations to those involving only

J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2689

valence orbitals. The results are then independent of the
initial orbitals, and the core is spin polarized only to the
extent that the BD valence is. This approach is used in all
BD results reported here.*’

IV. Results and Discussion

Since the four flavors of W1 theory are virtually the same
for closed-shell species, we shall focus on their performance
for open-shell systems. The extent to which the ROHF and
UHF reference determinants differ can be measured by the
error in (S?) for the reference configuration.

A. Spin-Contaminated Species. The restricted and un-
restricted variations of W1 theory have been evaluated with
bond dissociation enthalpies (BDEs), EAs, and IPs of some
radicals and biradicals (Table 1). The sample of 11 reactions
was selected on the basis of sizable errors in (S?)yyr and the
availability of reliable experimental data.®®~¢’

The rms deviation from experiment (Table 1) is not
surprisingly the largest for W1U (1.3 + 0.3 kcal/mol), in
the absence of any rectification of the spin contamination
problem. The spin correction in W1Usc indeed reduces the
rms error to 0.6 £ 0.3 kcal/mol but is not always reliable.
For example, AE(spin) in eq 1 overestimates the correction
for the first C—H bond dissociation in acetylene by 0.8 +
0.02 kcal/mol and worsens the deviation with experiment
of the first C—H bond dissociation of propene by 0.8 & 0.4
kcal/mol (Table 1). The rms deviations for W1U, W1Usc,
WIBD, and W1(RO) are 1.3 £+ 0.3, 0.6 £ 0.3, 0.8 = 0.3,
and 0.6 £ 0.3 kcal/mol, respectively, demonstrating the
comparable accuracy of W1Usc, WI1BD, and W1(RO) in
handling these UHF spin-contaminated species. Note that
both W1BD and W1(RO) attain these results in the absence
of the empirical spin correction in W1Usc.

The following interesting observations are made for the
three most spin-contaminated species of the G2/97 test sets,
C,, O3, and CS™, selected on the basis of A{S*)yyr values
greater than 0.6:°%

i. First is the existence of multiple solutions, which com-
plicates the use of “black-box” methods. To compound the
problem of multiple solutions for both restricted and
unrestricted versions of both HF and Brueckner determinants
for C,, the relative energies of the solutions are switched
between the HF vs the CCSD(T) levels of theory for both
restricted and unrestricted reference configurations. That a
single reference method produces several solutions comes
as no surprise in these cases, since C, and Oj are known to
possess a significant multiconfigurational character in their
wave functions. If there are indications of near degeneracies
of configurations (such as a large error in (5?) for UHF or
UBDRef or a negative eigenvalue for a virtual orbital as in
neutral C,), then it is necessary to explore multiple solutions
in addition to checking for the correct number of imaginary
frequencies. A more thorough discussion is presented as
Supporting Information (see “Problem_species.pdf” file),
which includes an example of solutions crossing between
the BD vs BD(T) levels of theory.

ii. Second, the reactions involving these severely spin-
contaminated systems indicate that A{S?)yur values do not
correlate as well with the energy error in a W1U calculation
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Table 1. Deviations (Experiment—theory) of Calculated BDEs and adiabatic IPs and EAs from Experiment of Selected

Spin-Contaminated Species, in kcal/mol

W1U A(S?) W1BD A(S?) deviation (experiment—theory) experiment
species? reaction reactant product reactant product WiU W1Usc W1BD W1RO?
o-Radicals
BDE AHys H—CN —H + -:C=N 0.00 0.37 0.00 001 -19 -04 -10 -08 126.29+0.2°
H—-C=CH —H + -C=CH 0.00 0.35 0.00 0.03 -0.6 0.8 0.0 0.1 133.46 &+ 0.02¢
H—CH=CH, — H + -CH=CH, 0.00 0.18 0.00 0.01 -04 0.3 -0.1 -0.1  110.71 £ 0.6°
IP AE, C=0—e¢e +C=0" 0.00 0.21 0.00 0.02 -09 -01 -06 —0.2 323.17+0.01°
N=C—-C=N —e + N=C—-C=N" 0.00 0.35 0.00 003 -18 -04 -13 —1.0 308.42+0.2f
EA AE, CH,=C=CH — e~ + CH, =C=CH 0.00 0.21 0.00 0.03 -0.7 01 -04 03 20.59 + 0.17
C=N—e™ +C=N 0.00 0.37 0.00 0.0t -18 -03 -10 -07 89.06 + 0.1¢
m-Radicals
BDE AHogs HCH,—CH=CH, —H + -CH,—CH=CH, 0.00 0.20 0.00 0.04 0.5 1.3 0.8 0.9 88.79 4+ 0.49
EA AE, CH,CHCH,™ — e~ + CH,CHCH, 0.00 0.20 0.00 0.04 -05 03 -03 -0.1 11.09 + 0.2
Singlet Biradicals
BDE AHxs F—F—F+F 0.30 0.01 0.00 0.01 1.8 0.6 1.1 1.0 38.00 + 0.2
Triplet Biradicals
EA AE, H-C—-C=N"—e~ + H-C-C=N 0.12 0.36 0.02 0.07 -05 05 -03 -0.2 46.20 + 0.3"
MAD 1.1 0.5 0.6 05 +02
rms 1.3 0.6 0.8 06 +03
LD —-2.1 1.3 -1.3 -1.0

2 Geometries are optimized at the UB3LYP/cc-pVTZ+1d level and available as Supporting Information. ? W1(RO) energies were
calculated with Gaussian 09 (ref 47). °ref 60. “ref 61. ° ref 62. "ref 63. 9 ref 64. " ref 65.

as A(S®)upprer values do for W1BD errors (vide infra). A
sizable A{S®)ugpret value appears to be a useful warning of
when to be skeptical of W1BD results (refer to Supporting
Information Table S—III and discussion on pages 11—12 of
“Problem_species.pdf” file for details).

B. G2/97 Test Set. The G2—1°""" and the G2—2°"7° test
sets, collectively referred to as the G2/97 data set of Curtiss
et al. were employed to calibrate the accuracy of W1(RO)
for EAs, IPs, and PAs, while the G2—1 test set and a subset
of the G2—2 data set (26 out of 93) of heats of formation
were used in the calibration of total atomization energies
(TAEs).!* The selection of TAEs, EAs, IPs, and PAs is
retained in assessing the performance of W1U, W1Usc, and
WIBD, in order to facilitate comparisons with W1(RO)
values in the literature.'*'> A thorough discussion on the
notable discrepancies with experiment for some problematic
cases has already been presented by one of the authors.'* A
comprehensive breakdown of the G2—1 and the G2—2 TAE,
EA, IP, and PA energetic components and error statistics
for W1U, W1Usc, W1BD, and W1(RO) are available as
Supporting Information. The error analyses for 220 reactions
from the G2/97 data set are summarized in Table 2. The
reported uncertainties in the deviations from experiment
represent the uncertainties in the experimental data.*®

The overall G2/97 rms errors for W1U, W1Usc, W1BD,
and W1(RO) (excluding C, and O3) are 0.65, 0.57, 0.62,
and 0.57 £ 0.48 kcal/mol, respectively. Comparison of the
calculated energies with experiment is rather problematic due
to the large experimental uncertainties (£ 0.65 for TAEs, +
0.32 for EAs, and 4 0.35 kcal/mol for IPs, Table 2). The
experimental uncertainties are of greater magnitude than the
differences in rms errors between the methods themselves,
making W1 variants virtually indistinguishable from one
another for the G2/97 test set (Table 2).

C. F, Potential Energy Curve. Although the Wn meth-
ods are intended for the thermochemistry of molecular

systems at equilibrium geometries, the potential energy curve
for the F, '27 ground-state dissociation provides insight into
the differences between the UCCSD(T), the spin-corrected
UCCSD(T), the UBD(T), and the ROCCSD(T) levels of
theory. Deviations of the potential energy curves from the
exact solution in the cc-pVDZ basis are shown in Figure 1.
A constant geometry-independent shift of the energy from
the full configuration interaction (FCI) reference would
display as zero error throughout the potential energy curve.

Neither restricted nor unrestricted CCSD(T) give a reliable
description of bond-breaking reactions. These qualitative fea-
tures of restricted and unrestricted methods along a potential
energy curve for bond dissociation are well-known.”" The spin
correction successfully reduces the UCCSD(T) error in energy
but shows fluctuation and dissociates improperly, reminiscent
of problems encountered with a restricted reference (Figure 1).
Furthermore, Ochterski et al. pointed out that the spin contami-
nation error increases linearly with A(S®yur for AS®unr less
than 0.6.%% This is consistent with our observations for Cy, Os,
and CS* (see “Problem_species.pdf” file given as Supporting
Information) and strongly suggests that eq 1 is also not
applicable for A(S?)ynr > 0.6 on the F, potential energy curve
(A{S*)uur = 0.6 is marked by the vertical dashed line at 1.5 A
in Figure 1).

The Brueckner doubles approach possesses compensating
advantages over both the RHF- and the UHF-based methods.
First, there is very good agreement between the UBD(T) and
the ROCCSD(T) potential energy curves in the vicinity of
the equilibrium geometry, where UCCSD(T) is already
contaminated with unwanted contributions from higher spin
multiplicities. This efficacy of Brueckner orbitals in reducing
spin contamination over a wider range of geometries
compared to UHF-based methods is also well documented.”?
Furthermore, the Brueckner doubles curve is practically
indistinguishable from that of ROCCSD(T), up to the point
where the UBD(T) energy errors exhibit extreme sensitivity
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Table 2. Error Analysis (kcal/mol) for TAEs (298 K), EAs, IPs, and PAs of Select Molecules in the G2/97 Test Set for the

Different Variations of W1 Theory?

G2/97 subset? method MAD rms LD species/LD
TAEzgsx (81)°
W1U 0.60 £+ 0.41 0.75 £ 0.65 1.72 +0.10 CINO
W1Usc 0.56 £+ 0.41 0.70 +£ 0.65 1.79 £ 0.10 CINO
W1BD 0.61 £ 0.41 0.77 £ 0.65 1.97 £ 0.10 CINO
W1(RO) 0.55 £+ 0.41 0.67 + 0.65 1.75+0.10 CINO
EA (55)¢
W1U 0.46 £ 0.22 0.60 £ 0.32 —1.96 £+ 0.60 CH,NC
W1Usc 0.41 £0.22 0.53 +£ 0.32 —1.64 £ 0.60 CH,NC
W1BD 0.43 £ 0.22 0.55 £ 0.32 —1.81 £ 0.60 CH.NC
W1(RO) 0.43 £0.22 0.53 +£ 0.32 —1.74 £ 0.60 CH,NC
IP (76)°"
W1U 0.41 £0.16 0.57 £ 0.35 —2.10 £ 0.23 CS
W1Usc 0.33 £0.16 0.42 £ 0.35 1.39 £ 0.05 P
W1BD 0.37 £ 0.16 0.49 £ 0.35 —1.48 £0.18 N (3% cation)
W1(RO) 0.35 £0.16 0.46 + 0.35 1.42 +0.05 P>
PA (8)¢
W1U 0.42 0.48 —0.83 CoHo
W1BD 0.42 0.49 —0.88 CoH,
W1(RO) 0.43 0.49 -0.83 CaoHo
Total (220)
W1U 0.49 £ 0.27 0.65 £ 0.48
W1Usc 0.44 £ 0.27 0.57 £ 0.48
W1BD 0.48 £ 0.27 0.62 £ 0.48
W1(RO) 0.44 + 0.27 0.57 + 0.48

2 C, and Oj are excluded in all statistics. Optimized geometries, total energies, and energy changes of species and reactions in the G2/
97 sets are given in the Supporting Information “geometries.txt”, “components.pdf’, and “Test_set.pdf” files, respectively. The uncertainties in
the deviations from experiment represent the uncertainties in the experimental data (see “Test_set.pdf’). ® The number of reactions
considered in each subset is indicated as the number in the parentheses in the first column. € See Supporting Information Tables S—III and
S—IV for individual TAEs. ¢ See Supporting Information Tables S—V and S—VI for individual EAs. ¢ See Supporting Information Tables
S—VII and S—VIII for individual IPs. Excludes CN (°IT), CN ('=*), B,H,4, sec—CsH;, and Si2Hs (see ref 14). 9 See Supporting Information
Table S—IX for individual PAs. Calculated proton affinities are considered converged at the W1 level (ref 14), agreeing well with experiment.
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Figure 1. The error (mE;) in the UCCSD(T), the spin-
corrected UCCSD(T), the UBD(T), and the ROCCSD(T)/cc-
pVDZ potential energy curves for the F, 'S ground state.
W1U/W1Usc and W1BD results beyond A(S?)yur = 0.6 (1.5
A) and A(S?)uepres = 0.1 (1.75 A), respectively, (indicated by
dashed rather than solid curves) are considered unreliable.
Spin contamination errors cease to have a linear relationship
with energetic errors beyond these cut-offs.

to geometry changes and the restricted coupled cluster begins
to break down (1.2R, or 1.75 A in Figure 1). This RBD(T)/
UBD(T) instability point is an unambiguous demarcation
between the absence and the onset of significant BD energy
errors, holding promise as a diagnostic tool for assessing
the reliability of BD calculations. The good correlation
between the WIBD A(S?) values and the energy errors is
consistent with the results for CS* and O;. The potential
energy curve for the restricted wave function proceeds toward
the wrong energy limit without such a warning.

V. Conclusions

The unrestricted flavors of W1 theory presented in this study
are viable alternatives to W1(RO). W1U benefits significantly
from a spin correction term for the 11 spin-contaminated
reactions (Table 1), reducing the rms error from 1.3 to 0.6 &
0.4 kcal/mol. The accuracy of the W1Usc, the W1BD, and the
W1(RO) theories are indistinguishable from one another when
evaluated with the moderately spin-contaminated data set (Table
1) and the 220 total atomization energies, electron affinities,
ionization potentials, and proton affinities in the G2/97 test set
(Table 2). Unlike W1U, the W1BD method demonstrates good
correlation between the A{S®)upprer and the energetic errors and,
thus, gives a clear indication of the onset of energetic errors
associated with spin contamination. W1(RO) gives no such
straightforward warning when its single determinant reference
wave function is inadequate. We, therefore, recommend the use
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of W1BD, rather than W1Usc, as an unrestricted alternative to
WI1(RO) in studies of potentially pathological cases. Multiple
solutions were obtained for both the restricted and the unre-
stricted methods for C, and O;, demonstrating the need for
exploring multiple solutions with single-reference wave func-
tions even in the “black-box” context. Of course, testing for
the correct number of imaginary vibrational frequencies is
always necessary.
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Abstract: Conjugated circuits have been employed to accurately reproduce the aromatic
stabilization, London susceptibility, and ring current maps in polycyclic aromatic hydrocarbons,
PAHs, focusing on polybenzenoids. Starting from a wave function ansatz, constructed as a
superposition of Kekulé valence bond structures, the conjugated circuit resonance energy is
derived using the second quantization formulation. Approximated expressions for the resonance
energy, London susceptibility, and ring electron current intensity have been obtained. In these
expressions, the benzene molecule is employed as a reference for the calculation in a graph
theoretical fashion of properties in larger polybenzenoids. Comparison of the results obtained
with conjugated circuits with those obtained using more accurate quantum chemical methods
reflects the power of the conjugated circuit concept as a quantitative tool for the study of magnetic
properties in PAHs. Besides the usefulness of this methodology for understanding and interpreting
both the aromatic stabilization and the magnetic behavior of small and medium size PAHSs, it
provides a straightforward alternative way for the computation of these properties in giant PAHs
for which ab initio calculations are not applicable.

1. Introduction

As defined by Randi¢ in its essential review' on the
application of the chemical graph theory to the study of
polycyclic aromatic hydrocarbons, PAHs, conjugated circuits
are those circuits within an individual Kekulé valence
structure in which there is a regular alternation of both CC
double and single bonds. This simple concept has been
employed independently by Randi¢* * and Gomes and
Mallion® to develop the conjugated circuits model, CCM.
The CCM performs a partitioning of the resonance energy,
RE, of a PAH into local ring terms. Therefore, it allows
interpreting the total aromatic stabilization of a given PAH
in terms of ring contributions.’

A quantum chemical justification of the CCM is obtained
from the valence bond theory, if one restricts the large
number of valence structures present in a polycyclic conju-
gated hydrocarbon to the Kékule structures. This idea was
first coined by Simpson® and subsequently employed by
Herndon’*® more than 30 years ago to calculate the resonance

* Corresponding author. E-mail: mandado@uvigo.es.

energies in PAHs from empirical quantities. On the other
hand, Klein and Trinajsti¢® outlined a quantum chemical
derivation of the conjugated circuits model through the
Pauling—Wheland resonance theory.'® As remarked by
Randi¢,' this connection between the CCM and the quantum
chemical theory is crucial because it has provided the model
with a more quantitative character and a theoretical foundation.

In spite of the huge number of published articles employ-
ing conjugated circuits,'" its scope as a quantitative chemical
tool for studying the properties of PAHs is still to be
exploited in its entirety. For instance, although some qualita-
tive relations between conjugated circuits and ring current
maps were pointed out some time ago by Randié,'? the
conjugated circuits have never been employed, neither for
calculating magnetic susceptibilities nor for constructing ring
current maps.

Alternatively other graph theoretical approaches have been
developed to determine the London susceptibility,'? i.e., the
magnetic susceptibility due to induced ring electron currents.
The efforts of Aihara in this direction deserve special
mention. He was able to connect the aromatic stabilization

10.1021/ct9002866 CCC: $40.75 © 2009 American Chemical Society
Published on Web 09/16/2009
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Figure 1. Superposition diagrams for the Kekulé structures of naphthalene.

with the diamagnetic susceptibility exaltation'*”'” and the
induced ring electron current'® in polycylic conjugated
systems through the extended Hiickel—London theory of
diamagnetism and the definition of the topological resonance
energy.'®?° His works first demonstrated that the magnetic
and energetic criteria of aromaticity are indeed interrelated,>'**
showing that the London susceptibility of a PAH is the result
of the superposition of individual ring circuit contributions.
However, the application of the Aihara’s methodology to
compute individual and total London susceptibilities requires
the calculation of the circuit resonance energies,” which is
restricted to the Hiickel molecular orbital theory**** and can
become unmanageable for the case of giant PAHs.

On the contrary, because of its simplicity and intuitiveness,
the conjugated circuits model can be considered the most
powerful graph theoretical tool for the study of the aromatic
stabilization in PAHs. In addition, it can provide more
accurate results, with no limit for the system size, than those
obtained by other topological approaches, since it can be
applied in combination with more accurate quantum chemical
methods. In this paper, we extend the application of
conjugated circuits to the calculation of London susceptibili-
ties and ring current intensities. In the following section,
Section 2, the conjugated circuit resonance energy is derived
using an operator formalism developed in the context of the
second quantization, in order to lend the necessary theoretical
foundation to the method. Then, the expressions for the
London susceptibility and the ring current intensity are
obtained. Comparison of the results with those obtained using
more accurate quantum chemical methods is performed in
Section 3. Finally, the main conclusions are formulated in
the last section, Section 4.

2. Background and Theoretical Development

Conjugated Circuit Resonance Energy. In this section,
the conjugated circuit resonance energy is obtained using a
formulation based on creation and annihilation operators.
Using this formulation, the Kekulé valence bond structures
and a series of operators associated to the conjugated circuits

can be represented explicitly. Our derivation starts with the
same wave function ansatz as that proposed by Herndon,®
where the normalized ground-state wave function (eq 1) is
expressed by a linear combination of equally weighted
normalized functions, each corresponding to a Kekulé
structure:

Py = L_Z IK) (1)

Ny i=1

where ng is the total number of Kekulé structures. The
expectation value of the energy for a given PAH is then
obtained from eq 2:

1 ng ng .
E= n—z D (KIHIK) 2)

K i=1 j=1

The different contributions to the energy that are implicit
in eq 2 can be viewed straightforwardly using the superposi-
tion diagrams of Kekulé structures. The superposition
diagrams for the Kekulé structures of naphthalene are shown
in Figure 1. As can be seen, the superposition of a Kekulé
structure with itself results in a set of localized bonds,
whereas the superposition of two different Kékule structures
results in a sum of localized bonds and cyclic delocalized
structures. These cyclic delocalized structures result from
the superposition of a conjugated circuit L with its counter-
part L', which only differ in the arranging of the alternant
bonds. One can represent the energy contribution of a cyclic
delocalized structure by introducing appropriate operators
into eq 2. In order to shape such operators, it is useful to
employ the second quantization formulation of the valence
bond theory.?® So, the kets IK;) in eq 1 can be represented
in second quantization by

Wy = L Y &10) 3)
\ng =
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Ne,

RS = HA%% )

where each operator AY * acts on the vacuum state 10) by
creating an electron pair in the bond formed by atomic
orbitals K and L; this operator is in turn an antisymetrized
product of two particle creation operators:°

A%ﬁ'— = aga a:ﬁ - a;ﬁ al_fa (5)
where the subindex a or § indicates the electron has spin
alpha or beta, respectively. The set of KL atomic orbitals
necessary to construct the operator I%fr depends on each
Kekulé structure, but its number is always equal to N./2, N,
being the number of 7 electrons. The nomenclature intro-
duced in eq 4 to denote each pair of atomic orbitals KL
employs two subindices, i to indicate that the bond is
associated to the Kékule structure i, and n to distinguish
between different bonds associated to the same Kekulé
structure, so that two sets of different subindices (i,n) may
refer to the same pair of atomic orbitals provided that these
subindices are defined for different Kekulé structures.

The application of the set of Ki" operators of a given PAH
on the vacuum state |0) generates the kets |IK;) that represents
the Kekulé structures of the system. Therefore, they will be
called Kekulé operators from now on. In addition, the bra
(Kil can be generated through the adjoint of Ki", K;,

ng

i = ! —> (O&, (52)
\/nK’ 1
Ney,
K‘ = HA%/Ii(z‘,n) (6)

n=1

where each operator A acts on the vacuum state (Ol by

creating an electron pair in the bond formed by atomic

orbitals K and L, this operator is in turn an antisymetrized

product of two particle annihilation operators.

af —

Ayl = agq g — Agplrg (N

At this point it is useful to introduce some properties

of A¥ * and A%, which can be deduced straightforwardly

from the well-known anticonmutation properties of the
particle creation and annihilation operators.?’

0 MU = A s = gt

(i) AZALN0Y =0, ALAN0) =0

From property (i) it can be stated that, contrary to the
particle creation/annihilation operators, interchange of two
A# T or A#{ operators does not have any effect on the
sign of IK;) or (K|, respectively. Therefore, the energy of
the system can be written as in eq 8 independently of the
order in which the operators A%{me or A"lé/i(,-,n) have been
introduced for the construction of the Kekulé operators
K or K.

Mandado

ng
- niz Z RARN0) ®)
Ki=1 j=1

The transformation of a Kekulé structure into one of its
conjugated circuits and vice versa can be also represented
usmg AY T and AY operators. Thus, we define the operator
CL associated to the circuit L as the product of the AY
operators required to reduce the ket IK;) to the conjugated
circuit L, which can be represented by the ket IL) or IL) for
its counterpart, and C7 as its adjoint. Obviously, the number
of A¥ operators forming €, depends on the conjugated
circuit size and the number of 7 electrons, N,. Moreover, a
conjugated circuit L can have several operators C; associated.
This fact is illustrated in Figure 2 for one of the conjugated
circuits of phenantrene.

The energy contribution from the superposition of a
conjugated circuit L and its counterpart L’ can then be
obtained from eq 8§ by introducing properly the operators
associated to L. Taking into account that the product of a
Kekulé structure by itself represents only contributions from
localized bonds, the energy contribution due to electron
conjugation in the circuit L comes exclusively from the
crossed products of K; and Kj structures and then can be
written as in eq 9:

Np  ng—1  ng

-2y ¥ D (OKCTAC, K0y ()

nK p=1 =1 i

where the first summation runs over all the operators
associated to the conjugated circuit L, the number of
operators associated to L is denoted by N;.

Application of property (ii) reduces drastically the number
of non-null terms in eq 9. Thus, if the CL operator tries to
remove a bond electron pair, which does not exist in Kfr,
the rgsult of applying CLp is zero, the same applies to C*p
and K; operators. Then, two conditions must be satisfied for
a term to be non-null: (1) the operator CL must contain only
bond electron pairs that appear in K and (2) K; and K" must<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>