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Abstract: Distributed Replica (REPDSTR) is a powerful
parallelization technique enabling simulations of a group of
replicas in a parallel/parallel fashion, where each replica is
distributed to different nodes of a large cluster [Theor. Chem.
Acc. 2003, 109, 140]. Here, we use the framework provided
by REPDSTR to combine a staged free energy perturbation
protocol with replica-exchange molecular dynamics (FEP/
REMD). The structure of REPDSTR, which allows multiple
parallel input/output (I/O), facilitates the treatment of replica-
exchange to couple the N window simulations corresponding
to different values of the thermodynamic coupling parameters.
As a result, each of the N synchronous window simulations
benefit from the sampling carried out by the N-1 others. As
illustrative examples of the FEP/REMD strategy, calculations
of the absolute hydration and binding free energy of small
molecules were performed using the biomolecular simulation
program CHARMM adapted for the IBM Blue Gene/P
platform. The computations show that a FEP/REMD strategy
significantly improves the sampling and accelerates the
convergence of absolute free energy computations.

Introduction
The design of accurate and rapid methods for calculating the
free energy of solvation and binding of small molecules is one

of the central goals of computer simulations. Progress in this
area could, for example, help speed up the development and
prediction of new therapeutic molecules and accelerate drug
discovery. In principle, this can be achieved using free energy
perturbation (FEP) calculations based on molecular dynamics
(MD) simulations of atomic models including explicitly the
solvent molecules. To enable robust and effective computations
of absolute solvation free energies and of binding free energies,
a staged FEP/MD simulation protocol based on a step-by-step
decomposition of the total reversible work was developed.1-4

The staged protocol effectively breaks down the complete free
energy calculation into several independent MD simulations,
which are easy to distribute over independent compute nodes.
Nevertheless, a treated based on independent simulations does
not exploit all the available information in the computations
for the sampling. Furthermore, such a treatment does not make
the best possible use of supercomputing platforms allowing
massively distributed processes.

One possible strategy to improve the FEP/MD is to couple
the staged free energy simulations using replica-exchange
methodologies.5-12 With REMD, the rate at which the con-
figurations of a system are being explored can be considerably
enhanced by attempting coordinate swapping between indepen-
dent simulations generated at different temperatures5,6,11,12 or
with different Hamiltonians.7-12 Of particular interest, replica-
exchange has been combined in Monte Carlo simulations to
compute relative free energies.7,13 This suggests that REMD
might be a promising avenue to further improve FEP/MD
simulations. The Distributed Replica (REPDSTR) technique
recently developed and implemented in the biomolecular
program CHARMM14 by Hodoscek and co-workers15,16 allows
multiple MD simulations on similar systems to be simulta-
neously performed in a highly efficient parallel/parallel mode.
In the REPDSTR implementation, each independent MD
simulation is treated as an independent replica that occupies a
group of processors, and each has its “private” input/output
(I/O), including the input script. This is illustrated in Figure 1.
REPDSTR is in contrast to the more standard parallel MD,
where only the root process deals with the I/O. For this reason,
the parallel scaling in REPDSTR is primarily determined by
the number of CPUs occupied by each replica, rather than by the
total number of CPUs in use. The multiple I/O and parallel
structure of REPDSTR greatly facilitate the usage of replica-
exchange protocols, with infrequent communication between
the separate simulations. It follows that an implementation of a
staged FEP protocol with replica-exchange between the different
thermodynamic window simulations is relatively transparent and
easy to manage. One advantage is that the resulting free energy
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perturbation distributed replica-exchange molecular dynamics
(FEP/REMD) algorithm is controlled within a single program
rather than via an external job-driven script. It is therefore well
adapted for massively distributed supercomputing platforms.

In this communication, we describe and implement a com-
putational scheme based on the REPDSTR of CHARMM for
computing the absolute hydration and binding free energies
within a staged FEP protocol using a replica-exchange MD
simulations with λ-swap moves. It is shown that this FEP/REMD
scheme improves the sampling efficiency and convergence of
free energy computations. FEP/REMD is illustrated with the
calculation of the absolute hydration free energy of water and
benzene and the absolute binding free energy of camphor-P450
complex.

Computational Details

A. Staged FEP Simulation Protocol. The staged FEP/MD
simulation protocol with biasing restraints was described in refs
1-4. Briefly, the insertion of the ligand into the binding pocket
is done in three steps, with the help of the three thermodynamic
coupling parameters, λrep, λdis, and λelec, controlling the non-
bonded interaction of the molecule with its environment. One
additional parameter, λrstr, is used to control the translational
and orientational restraints. The potential energy is expressed
in terms of the four coupling (window) parameters

where U0 is the potential of the system with the noninteracting
ligand, Urep and Udis are the shifted Weeks-Chandler-Anderson
(WCA) repulsive and dispersive components of the Lennard-
Jones potential (introduced in ref 1), Uelec is the electrostatic
contribution, and ur denotes the restraining potential that helps
improve phase space sampling. The repulsive contribution ∆Grep

corresponds to the process

the dispersive contribution ∆Gdis corresponds to the process

and the electrostatic contribution ∆Gelec corresponds to the process

The free energy ∆Grstr corresponds to the process

The insertion of the ligand or solute into the bulk is calculated
according to the same protocol but without the restraint.

B. REPDSTR Implementation. With the REPDSTR module
of CHARMM,15,16 each λ-staging FEP window is treated as a
replica. The hydration free energy calculation is separated into three
types of jobs, corresponding to the contributions from the repulsive,
dispersive, and electrostatic nonbonded interactions. The binding
free energy calculation is separated into four types of jobs,
corresponding to the repulsive, dispersive, electrostatic, and restraint
contributions. Each replica from the set of replicas within a given
type occupies multiple processors, in a parallel/parallel mode.
Figure 2 shows the REPDSTR implementation of each interaction
type as well as the corresponding coupling parameters and replica
labels.

The replica-exchange algorithm follows the conventional
Metropolis MC exchange probability with λ-swap moves

where U denotes the total potential energy of the underlying
replica, and λtype

i and λtype
j denote the staging parameters. When

a move is accepted, then the λ values are exchanged (λ-swap).
During the REMD simulation, alternating pairs are considered
for exchange attempts. Figure 2 shows these replica pairs for
each type of interaction, with even and odd denoting the
“alternating” replica exchange mode. This λ-swap replica-
exchange protocol could easily be extended to the windows of
umbrella sampling simulations.

C. MD Simulation. All the FEP/MD simulations were carried
out on the IBM Blue Gene/P cluster Intrepid of Argonne National
Laboratory using version c36a1 of the CHARMM program,14

which was modified for the present study. For the hydration
calculations each replica (window) occupies 16 CPUs, while for
the binding free energy calculation each replica occupies 64 CPUs.
To decrease the computational cost without compromising ac-
curacy, reduced systems of the bulk solution and of the binding
site were simulated in which the influence of the surrounding was
incorporated by a mean-field treatment. The Spherical Solvent
Boundary Potential (SSBP)17 was used for the bulk simulation,
and the Generalized Solvent Boundary Potential (GSBP) was used
for the binding site simulations.18 The hydration FEP calculations
were done with 400 explicit water molecules and SSBP at 300 K.
The systems were propagated with a 2 fs time step using Langevin
dynamics. Calculations based on simulation of 40 and 100 ps with
different replica-exchange frequencies were generated and com-
pared. To estimate the statistical convergence of the calculations,
10 independent FEP/REMD simulations runs were performed
consecutively starting from the configuration saved at the end of
the previous run.

For the binding free energy calculations of the camphor-P450
complex with a fixed number of water molecules, ten 100 ps

Figure 1. Multiple I/O structure of distributed replica parallel.

U(λrep, λdis, λelec, λrstr) ) U0 + Urep(λrep) + λdisUdis +
λelecUelec + λrstrUrstr (1)

U(λrep ) 0, λdis ) 0, λelec ) 0, λrstr ) 1) f

U(λrep ) 1, λdis ) 0, λelec ) 0, λrstr ) 1) (2)

U(λrep ) 1, λdis ) 0, λelec ) 0, λrstr ) 1) f

U(λrep ) 1, λdis ) 1, λelec ) 0, λrstr ) 1) (3)

U(λrep ) 1, λdis ) 0, λelec ) 0, λrstr ) 1) f

U(λrep ) 1, λdis ) 1, λelec ) 1, λrstr ) 1) (4)

U(λrep ) 1, λdis ) 1, λelec ) 1, λrstr ) 1) f

U(λrep ) 1, λdis ) 1, λelec ) 1, λrstr ) 0) (5)

P(λtype
i T λtype

j ) )

min{1, e-[U(λtype
i ,Xi)+U(λtype

j ,Xj)-U(λtype
i ,Xj)-U(λtype

j ,Xi)]/kBT} (6)
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production runs were performed for the binding site (with
GSBP) and hydration, respectively, with a replica-exchange
frequency of 1/100 steps. The systems were propagated with a
2 fs time step using Langevin dynamics. The GCMC simulation
algorithm, which allows the number of water molecules to
fluctuate in equilibrium with an infinite bulk,4 was employed
with a replica exchange frequency of 1/100 steps. The force
field parameters and initial structure of camphor-P450 complex
were taken from ref 4. To estimate the statistical convergence
of the calculations, 10 independent FEP/REMD simulations (10
× 100 ps) were performed consecutively for each system with
a fixed number of water molecules, each starting from the
configuration saved at the end of the previous run. In the FEP
simulations combining GCMC and REMD, 30 consecutive
calculations were performed to eliminate the influence of
structural relaxation on the calculated free energy.

For all calculations, the energies were collected during the
production run and postprocessed using the weighted histogram
analysis method (WHAM).19 The results for the hydration free
energy of water and benzene in bulk water are given in Tables
1 and 2, respectively. The results for the binding of camphor to
cytochrome P450 are summarized in Tables 3 and 4.

Results and Discussions

A. Hydration Free Energy. Tables 1 and 2 report the
calculated hydration free energy for water and benzene using
different replica-exchange frequencies and simulation length.
For each exchange frequency, an acceptance ratio of about 30%
to 40% was achieved using the λ-swap moves and the present
set of window parameters. A similar acceptance ratio was
obtained for the absolute binding free energy calculation. A

Figure 2. REPDSTR implementation of the staging simulation protocol. Note that the LJ-WCA repulsive interaction is decomposed
into 9 stages where each stage consists of two windows with 0 and 1 denoting the initial and final FEP state, respectively. All
the windows of the same type were run in a single parallelized job. Each FEP window has its corresponding replica label, and
each replica further occupies multiple processors, of which only the root (I/O) process (vertical solid line) is shown. Replica-
exchange attempts occur between the two root processes of a selected replica pair.

Table 1. Hydration Free Energy and the Individual Components for Water

MD run exchange frequency ∆Grep ∆Gdisp ∆Gelec ∆G expt

40 ps 0 4.79 ( 0.11 -2.81 ( 0.03 -8.09 ( 0.07 -6.12 ( 0.14 -6.3
1 /1000 steps 5.10 ( 0.16 -2.87 ( 0.01 -8.20 ( 0.12 -5.97 ( 0.23
1/100 steps 5.11 ( 0.15 -2.87 ( 0.02 -8.13 ( 0.08 -5.89 ( 0.18

100 ps 0 5.12 ( 0.10 -2.88 ( 0.01 -8.20 ( 0.05 -5.95 ( 0.11
1/1000 steps 5.11 ( 0.06 -2.87 ( 0.01 -8.21 ( 0.07 -5.97 ( 0.12
1/100 steps 5.09 ( 0.07 -2.88 ( 0.01 -8.21 ( 0.06 -6.00 ( 0.12
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higher acceptance ratio can be obtained by increasing the
number of windows but that would also increase the compu-
tational cost. The statistical uncertainties (standard deviation)
for the total hydration free energy and the various components
were calculated from the 10 separate production runs.

For the solute water molecule, the total hydration free energy
from the 100 ps production runs converges toward a value of
-6.0 kcal/mol. The three individual contributions are more
informative of the performance of the FEP/REMD than the total
free energy, as they display different convergences. The
electrostatic and dispersive components converge, consistent
with the observation that switching those relatively “soft”
interactions is not associated with any sudden reorganization
of the surrounding bulk. In contrast, the convergence of the
repulsive component is more clearly improved by replica-
exchange. The trends are clearer with the 40 ps production runs.
With straight FEP/MD (no replica-exchange), the value of ∆Grep

is 4.97 kcal/mol (based on 10 independent runs), which
systematically deviates by ∼0.3 kcal/mol from the converged
value of 5.09 kcal/mol. Such deviation disappears when replica-
exchange is attempted every 1000 or 100 steps. This observation
is consistent with the fact that extensive sampling is necessary
to sample the cavity formation associated with the repulsive
solute-solvent interaction. With FEP/REMD, the ∆Gelec cal-
culated from the 100 ps runs is essentially unchanged compared
to the 40 ps runs, though the uncertainty is slightly smaller.
The two nonpolar components converge well; the averaged
∆Grep and ∆Gdisp of the 40 ps FEP/REMD runs are almost the
same as those of 100 ps runs, regardless of the relatively larger
uncertainty due to shorter sampling.

Benzene provides a more interesting testing ground to
illustrate the gain by FEP/REMD because of its larger size. The
absolute hydration free energy of benzene calculated from 10
independent 40 ps production runs without replica-exchange
(-1.05 kcal/mol) deviates systematically from the best-
converged value obtained by FEP/REMD (-0.41 kcal/mol).
This demonstrates the enhanced convergence from FEP/REMD.
With respect to the impact of increasing the replica-exchange
frequency and the sampling time, the individual components
display similar trends as water shown in Table 1. In the 40 ps
runs, the largest deviation again comes from ∆Grep and a
systematic deviation of almost -1.0 kcal/mol is avoided by
replica-exchange. It is also noteworthy that the contribution from
van der Waals dispersion (-12.63 kcal/mol) deviates systemati-
cally from the converged value (-13.03 kcal/mol).

The statistical uncertainty in the 40 ps simulation runs exhibits
a curious “turnover” with increasing exchange frequency, i.e.,
the statistical uncertainty is larger when replica exchanges are
attempted every 10 steps ((0.45 kcal/mol) than every 1000 steps
((0.31 kcal/mol). It is likely that the cause of this is the
difficulty to sample the cavity formation associated with the
harsh solute-solvent repulsive interaction. With higher ex-
change frequency, the trajectories jump along the λrep coupling
parameter rapidly, which results in larger fluctuations in the
energy samples. This situation is hidden for small solutes such
as a water molecule, while the larger benzene molecule requires
a more important surrounding reorganization of the solvent upon
solute insertion. These observations suggest that a systematic
investigation of the relation between the exchange frequency
and length of MD trajectory should be the object of further

Table 2. Hydration Free Energy and Individual Components for Benzene

MD run exchange frequency ∆Grep ∆Gdisp ∆Gelec ∆G expt

40 ps 0 13.46 ( 0.47 -12.63 ( 0.18 -1.88 ( 0.04 -1.05 ( 0.45 -0.87
1 /1000 steps 14.41 ( 0.31 -13.07 ( 0.06 -1.89 ( 0.06 -0.55 ( 0.29
1/100 steps 14.45 ( 0.39 -13.01 ( 0.07 -1.85 ( 0.05 -0.41 ( 0.39
1/10 steps 14.67 ( 0.45 -13.07 ( 0.07 -1.90 ( 0.10 -0.30 ( 0.50

100 ps 0 14.47 ( 0.20 -13.06 ( 0.06 -1.87 ( 0.04 -0.45 ( 0.19
1/1000 steps 14.50 ( 0.21 -13.06 ( 0.04 -1.86 ( 0.06 -0.42 ( 0.18
1/100 steps 14.49 ( 0.11 -13.03 ( 0.05 -1.86 ( 0.03 -0.41 ( 0.13
1/10 steps 14.49 ( 0.13 -13.03 ( 0.08 -1.86 ( 0.07 -0.41 ( 0.15

Table 3. Binding Site Free Energies of Camphor-P450 Complex with a Fixed Number of Water Molecules at Binding Site
and Hydration Free Energies of Camphor

binding site bulk water

fixed number of water (MD) fixed number of water (REMD) MD REMD expt

∆Grep 7.99 ( 0.13 8.32 ( 0.29 21.15 ( 0.21 21.06 ( 0.30 .. .
∆Gdisp -35.50 ( 0.06 -35.97 ( 0.03 -21.15 ( 0.15 -21.12 ( 0.08 .. .
∆Gelec -1.52 ( 0.04 -1.25 ( 0.04 -4.80 ( 0.04 -4.82 ( 0.04 .. .
∆∆Grstr 9.98 ( 0.03 10.07 ( 0.04 .. . .. . .. .
sum -19.05 ( 0.14 -18.83 ( 0.33 -4.80 ( 0.15 -4.88 ( 0.30 -3.5
∆Gb

0 -14.25 ( 0.21 -13.95 ( 0.55 .. . .. . -7.75

Table 4. Binding Free Energies of Camphor to p450

MD run ∆Grep ∆Gdisp ∆Gelec ∆Gb
0 expt

GCMC-REMD run 0-9 13.63 ( 1.23 -36.10 ( 0.10 -1.21 ( 0.02 -8.73 ( 1.43 -7.75
run 10-19 15.61 ( 0.83 -36.18 ( 0.03 -1.24 ( 0.02 -6.86 ( 0.99
run 20-29 15.76 ( 0.56 -36.19 ( 0.03 -1.24 ( 0.02 -6.71 ( 0.69

GCMC-MD run 0-9 13.58 ( 1.19 -36.00 ( 0.03 -1.30 ( 0.01 -8.87 ( 1.31
run 10-19 14.32 ( 0.53 -36.05 ( 0.02 -1.29 ( 0.03 -8.16 ( 0.48
run 20-29 15.75 ( 0.73 -36.20 ( 0.05 -1.31 ( 0.03 -6.91 ( 0.64
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analysis. Of relevance to such issues, it was recently shown
that Hamiltonian replica exchange provides a direct route for
minimizing the hysteresis error in hydration free energy
calculations.20

As shown in Tables 1 and 2, the free energy with replica-
exchange converges better with increased exchange frequency.
To assess the additional computational cost associated with the
exchanges, Figure 3 shows the CPU time of FEP/REMD relative
to that of FEP simulations without replica-exchange. It can be
seen that with exchange frequencies up to 1/100 steps, there is
no significant increase of the CPU time, while for 1/10 steps,
the CPU time increases by ∼17%. Thus, an exchange frequency
of ∼1/100 steps seems to be an optimal choice with the current
FEP/REMD implementation.

B. Binding Free Energy. The convergence of a calculation
of the absolute binding free energy of camphor for p450 is
challenging because the binding site is deeply buried within
the protein and is not solvent accessible. For this reason, the
movement of water molecules in and out of the binding pocket
is extremely slowly. This is expected to complicate the
convergence of FEP/MD calculations. It was shown previously
that the contribution from the repulsive interaction is grossly
underestimated in FEP/MD calculations initiated from the
structure of the bound complex with a fixed number of water
molecules in the buried site. Reasonable results are obtained if
the number of water molecules is allowed to fluctuate via a
GCMC algorithm.4 It is of interest to test if replica-exchange
without GCMC is able to cure this problem. To this end, the
FEP/REMD calculation was first performed with a fixed number
of water molecules corresponding to the X-ray structure of the
bound camphor-P450 complex. In Table 3, it can be seen that
REMD does not actually improve the convergence of the
repulsive interaction contribution. The resulting binding free
energy is too favorable by almost 5-6 kcal/mol, similar to
previous results.4 This shows that the FEP/REMD scheme, by
itself, is unable to enhance the sampling of different number of
water molecules in the buried binding pocket. Combining
replica-exchange with GCMC and MD to perform FEP calcula-
tions appears to be necessary in this case. Table 4 gives the
results for the calculations performed within a FEP/GCMC-

REMD scheme and compares those with the FEP/GCMC-MD.
It can be seen that both methods yield a reasonable total binding
free energy, indicating that the GCMC algorithm is essential to
treat the buried p450 binding site. Again, the repulsive free
energies estimated from FEP/GCMC-REMD converged better
than that from FEP/GCMC-MD simulation. For the absolute
hydration free energy of camphor in bulk water, no noticeable
gain is observed with FEP/REMD compared to FEP/MD. In
both approaches, the repulsive and dispersive interactions nearly
cancel out. This is consistent with the previous results with water
and benzene (Tables 1 and 2).

Table 4 shows that from the 10th MD run the repulsive free
energies are essentially converged to 15.6 kcal/mol, whereas
the corresponding results from the FEP/GCMC-MD simulation
are underestimated by ∼1.4 kcal/mol. Ultimately, the average
repulsive free energies of both methods reach a value about
15.75 kcal/mol but only after the 20th run. Figure 4 provides a
more detailed picture for the convergence of FEP/GCMC-
REMD calculations. One can see that some structural relaxation
dominates the early stage of the simulations with and without
replica-exchange. The free energy from the FEP/GCMC-REMD
simulations starts to fluctuate around a stable value of -12.0
kcal/mol from the 12th run. In contrast, the FEP/GCMC-MD
calculation seems to be drifting up even after the 20th run. This
shows that replica-exchange significantly accelerates the configu-
rational sampling of the receptor-ligand-solvent complex. The
calculation of the electrostatic and dispersive contributions benefits
less markedly from REMD, probably because they are switched-
on after the formation of a cavity and the fluctuations of the
surrounding water molecules are smaller. As observed in Table 4,
the dispersion free energy and charging free energy of FEP/GCMC-
REMD are very close to the results from FEP/GCMC-MD. The
introduction of replica-exchange does not have a large impact in
the case of the geometrical restraining potential (Table 3).

Conclusion
A free energy perturbation staging protocol with replica-
exchange molecular dynamics (FEP/REMD) implemented

Figure 3. Cost of replica-exchange MD simulation relative
to that without replica-exchange. The CPU time of simulation
without replica-exchange is denoted with exchange frequency
1/10000 steps (0.0001). Figure 4. Binding site free energy convergence of GCMC/

(RE)MD simulations. Note that GCMC/REMD shows faster
convergence than GCMC/MD simulation.
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with a distributed in a parallel/parallel mode replica strategy
REPDSTR has been described and implemented for large
supercomputing platforms. As a natural outcome of this
implementation, replica-exchange over configuration with dif-
ferent thermodynamic coupling parameters was shown to
enhance the sampling for the calculation of hydration free
energies. The benefit is most striking in the case of the repulsive
contribution to the free energy (related to the cavity formation).
This would be expected to hold in general for ligand binding at
the solvent-exposed site near the surface of a receptor. For the
deeply buried binding site, the REMD combined with the
GCMC algorithm significantly accelerates the free energy
convergence. Applications to the present FEP/REMD method
to produce a general protocol to different ligand binding
processes are currently underway.
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Abstract: Milestoning is a method aimed at reconstructing
the statistical properties of the long-time dynamics of a
system by exploiting the crossing statistics of a set of
hypersurfaces, called the “milestones”, placed along the
reaction coordinate [Faradjian and Elber, J. Chem. Phys.
2004, 120, 10880]. Recently, Vanden-Eijnden and Ven-
turoli [J. Chem. Phys. 2009, 130, 194101] showed that
when a complete Voronoi tessellation of the configurational
space is available, milestoning can be reformulated to
utilize the statistics from a series of independent simula-
tions, each confined within a single cell via strict reflections
at the boundaries. As a byproduct, this “Voronoi tessellated
milestoning” method also permits to compute the free
energy of the tessellation. Here, the method is extended
to support the usage of differentiable restraining potentials
to confine the trajectories within each cell.

1. Introduction
Conformational changes in large biomolecules are complex and
slow processes taking place on very long time scales, which
often extend well beyond the reach of brute force molecular
dynamics (MD) simulations. An emerging class of techniques

attacks this problem by first trying to determine an optimal
reaction pathway (or pathways) for the transition in a space of
very high dimensionality, without making any a priori assump-
tions about the mechanism.1-5 Once such an optimal pathway
has been identified, a strategy then consists of inferring the
statistical properties of the long-time dynamics by exploiting
the information harvested from relatively short independent
trajectories.6-9 Of particular interest is the milestoning method
introduced by Faradjian and Elber,8 in which the dynamical
properties of a reactive event are reconstructed out of a series
of short trajectories between a set of hypersurfaces (the
“milestones”), disposed sequentially along the reaction pathway
between the reactant and the product.10-14 Recently, Vanden-
Eijnden and Venturoli extended milestoning by identifying the
edges of the cells of a complete Voronoi tessellation of
configurational space as the milestones.9 It was shown that the
“Voronoi tessellated milestoning” could be formulated to require
only a series of independent simulations, each confined within
a single Voronoi cell, leading to a simplification and an increase
in robustness of the original algorithm. The confinement was
realized by a simple collision rule via strict hard-wall reflections
(velocity inversion) at the boundaries.4

Despite its formal simplicity, the hard-wall boundary condi-
tion involves modifications of the dynamical propagation
algorithm at the heart of MD source codes. This makes its
implementation in widely used biomolecular simulation MD
packages (e.g., AMBER,15 CHARMM,16 GROMACS,17 and
NAMD18) somewhat cumbersome, and may even affect per-
formance. With the aim of extending the range of applicability
of the method, in this work, we propose and test an alternative
strategy based on the introduction of continuous and dif-
ferentiable restraining potentials to confine the system within a
given cell. We illustrate how the formalism presented in ref 9
can still be used, with minor modifications, to compute the
equilibrium probability and the rates of transitions for the origi-
nal dynamics. The possibility to use potentials will facilitate
the application of the Voronoi tessellated milestoning because
the introduction of user-defined external forces is straightfoward.
We note that the confinement with potentials can also affect
performance because portions of trajectories that are transiently
out of the cells are discarded in the analysis, but this effect can
be minimized by proper tuning of the parameters in the
potentials.

In the remaining part of this letter, we first describe the details
of the restraining potentials and the key quantities to be
computed for free energy and milestoning calculations, and then
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we illustrate the method by applying it to two simple examples,
a numerical toy model and a solvated alanine dipeptide.

2. Theoretical Developments

2.1. Soft Wall Restraining Potentials. Let us consider a
molecular system with coordinates x and potential energy U(x).
In most biomolecular applications, the dimensionality of the
system is very high, but most of the variables can be unimportant
for the description of a reactive mechanism. For this reason, it
is customary to introduce a smaller number of collective
variables to characterize the process. Let us indicate the set of
collective variables, functions of x, by {z(x)}. Suppose we are
given a set of K points in z-space, (z1, z2, ..., zK), that we call
centroids. These support a complete and unique Voronoi
tessellation of the original Cartesian space of the system, where
each cell R is defined such that ||z(x) - zR|| < ||z(x) - zγ|| for all
γ * R; || · || indicates the norm in some metric, which shall be
assumed Euclidean for the sake of simplicity.

It was shown previously,9 via a reformulation of the
milestoning algorithm,8 that the statistical properties of the long-
time dynamics of the system can be reconstructed from
independent simulations, each confined inside one of the K cells.
The key feature required for this result is that the confined
dynamics must be equivalent to that from a long unbiased
trajectory passing through the same set of cells.4,9 More
specifically, the confinement must leave unperturbed the dy-
namical properties of the systems when it is in the interior of
the cell as well as the probability flux in and out of the cells. In
ref 9, the confinement was realized with a strict reflection rule,4

i.e., by reversing the velocity of the atoms when a trajectory
attempted to cross the hyperplane between two neighboring cells
R and γ. An alternative strategy, explored here, is to introduce
planar half-pseudoharmonic restraining potentials to confine the
system within each cell:

where the unit vector nb̂Rγ ) (zγ - zR)/||zγ - zR|| is normal to the
hyperplane separating the cells R and γ, zjRγ ) (zγ + zR)/2 is the
midpoint between the centroids R and γ, and H is the Heaviside
step function. The real parameter kw determines the strength of
the restraining potential. Hereafter, we will refer to the present
approach as the soft walls (SW) restraints, to emphasize the
distinction with the strict hard walls (HW) reflections used in refs
9 and 4.

An illustration of uR(x) is given in Figure 1. The restraining
potential uR(x) is 0 in the interior of the cell R, and it acts as a
penalty function toward the cell boundary when the trajectory
crosses any of the hyperplanes separating R from other cells.

It can be understood from the following argument that the
fundamental requirements of the confined dynamics can be met
when the restraints of eq 1 are used. First, since uR(x) ) 0 inside
the cell, using eq 1 guarantees that the equilibrium distribution
inside the cell is the same as that of an unbiased simulation,
apart for small errors at the boundaries related to time discreti-
zation. Moreover, this implies that we also have the correct
fluxes in and out of the cell (otherwise, their effect would

propagate in and spoil the distribution inside), and hence, the
pieces of trajectory of the restricted simulation are indistinguish-
able from the pieces of an unbiased trajectory passing through
the same cell.

It is possible to compute the equilibrium probability and the
rates of transitions for the original dynamics from the simula-
tions confined within the Voronoi cells by the HW reflections.9

In the following sections, we show that, with minor modifica-
tions, the formalism can still be used with the SW restraints.

2.2. Free Energy of the Tessellation. The conservation of
probability flux through the boundaries of the cell gives a way
to compute, πR, the equilibrium probability of the system to be
in cell R, and the associated free energy, GR ) -�-1log πR

(where � ) 1/kBT, with kB the Boltzmann constant and T the
temperature), as summarized hereafter.4,9 The rate of escape
from cell R to cell γ, conditional on the system being in the
cell R, is defined as νRγ ) NRγ/TR, where NRγ is the number of
collisions with the boundary separating the cells R and γ, and
TR is the total simulation time spent inside cell R. The
normalized equilibrium probability πR solves the following
equations involving the rates of escape νRγ:

This equation expresses that, at statistical steady state, the
total probability flux in cell R must be equal to the flux out of
R by conservation of the total probability. In ref 9, TR was simply
the total simulation time with the system confined in cell R by
means of HW. With SW, eq 2 is still valid, as long as one counts
only the portion of trajectory spent inside the cell R as the time
TR.

2.3. Milestoning. Identifying the edges of the Voronoi
tessellation as milestones, the dynamics of the system is reduced
to that of a discrete state continuous-time Markov chain in the
state space of the milestones indices.9 By indexing the mile-
stones as i and j, this amounts to defining a rate matrix qij, whose
elements are given by

uR(x) ) ∑
γ)1

K kw

2
(n̂Rγ · [z(x) - z̄Rγ])2 H(n̂Rγ · [z(x) - z̄Rγ])

(1)

Figure 1. An illustration of the potential uR(x) used to
constraint a trajectory in cell R, eq 1. Portions of three cells
R, �, and γ with centroids (zR, z�, zγ) are shown. The potential
is 0 in cell R (white region), and its units are arbitrary. Cell
edges are represented as black lines. Note that the edge
between cells � and γ (dashed black line) has no effect on
the restraint, and it is shown only for the purpose of clarity.

∑
γ)1
γ*R

K

πγνγR ) ∑
γ)1
γ*R

K

πRνRγ, ∑
R)1

K

πR ) 1 (2)
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The factors Nij and Ri in this equation can be expressed9 in
terms of the average properties extracted from simulations
confined to the cell R, weighted by the equilibrium probability
πR of finding the system in cell R:

Here TR is the duration of the simulation confined in cell R,
Nij
R is the number of transitions from edges i to j observed during

this simulation, and Ri
R is the total time that edge i was the last

edge to be hit during this simulation (i.e., ∑iRi
R ) TR). The only

requirement to use eqs 4 with SW is to prune the trajectory to
its portion that is strictly inside the cell R before computing
Nij

R, Ri
R, and TR (i.e., the parts spent outside the cell in the SW

region must be discarded).
The rate matrix qij specifies completely the dynamics of the

Markov process, and hence, it can be used to compute many
important quantities as, for example, the mean first passage times
(MFPTs) from any milestone to any other.9,14 For instance, if
τi

N with i ) 1, ..., N - 1 denote the MFPTs from milestone i to
milestone N (τN

N ) 0 by definition), then these MFPTs can be
computed by solving the linear system of equations:

3. Results and Discussion
In the following, we illustrate the implementation of milestoning
with SW restraints on two simple systems, the Mueller poten-
tial19 and the solvated alanine dipeptide. Prior to this, an
important point concerning the position of the centroids sup-
porting the Voronoi tessellation deserves special attention. While
eqs 3-5 can be applied to any set of hypersurfaces, it has been
shown that the formalism gives exact MFPTs, if the hypersur-
faces used as milestones are chosen as the isocommittor surfaces
of the reaction.14 From a practical viewpoint, the isocommittor
surfaces can be calculated approximately by the string method
and its variants.3-5,20-22 In the string method, the transition path
is represented as by an ordered sequence of K discrete “images”,
{z(1), z(2), ..., z(K)}, in the space of collective variables z(x). This
suggests9 to first use the string method to determine the transition
path by optimizing the position of the K images and then use
these images as centroids to support the Voronoi tessellation.
Naturally, the edges between the cells are hyperplanes perpen-
dicular to the optimized path and, hence, approximations of the
isocommittor surfaces.

3.1. The Mueller Potential. We first consider a simple
2-dimensional system evolving on the Mueller potential energy
surface according to Langevin dynamics (i.e., we take {z(x,y)}
≡ (x,y), the coordinates of the system). The same model was
studied in ref , so for comparison, we took the same centroids
as generators of the Voronoi tessellation. These are 18 equi-
distant images (the red circles in Figure 2), computed with the
finite-temperature string method.4 All simulations were per-
formed by integrating Langevin equations of motion with the
second-order algorithm of ref 23 by taking �-1 ) 20, friction

400, and a time step ∆t ) 10-4. Hard and soft wall trajectories
of 108 steps were generated in each cell.

Figure 2 shows the Mueller potential together with the
Voronoi tessellation associated to the images from the string.
The edges of the cells were taken as milestones. The successive
positions of the system at every time step along a piece of
simulation with SW are also shown as white dots. Note that, as
already pointed out before, the portion of trajectory inside the
cell samples the equilibrium distribution associated to the
underlying potential in the cell.

Figure 3 shows the free energy GR )-�-1log πR, where πR

is the solution of eq 2, corresponding to the tessellation shown
in Figure 2. Results are presented for SW and HW simulations
and numerical integration (Exact). The numbering of the cells
goes from 1 to 18 from top-left to bottom-right in Figure 2.
Table 1 summarizes results for MFPTs calculations considering
the transition from the black dashed line to the black continuous
line in Figure 2. The table also shows the mean and the extremal

qij ) Nij/Ri (3)

Nij ) ∑
R)1

N

πR(Nij
R/TR), Ri ) ∑

R)1

N

πR(Ri
R/TR) (4)

∑
j)1

N-1

qijτj
N ) -1, i ) 1, ..., N - 1 (5)

Figure 2. Mueller potential with a set of milestones, corre-
sponding to the edges of Voronoi cells, generated by images
along the converged string from the finite-temperature string
method. The successive positions of the system at every time
step along a piece of simulation with SW are also shown as
white dots. MFPTs, discussed in the text, are calculated from
the dashed to the continuous black line.

Figure 3. Free energy GR ) -�-1log πR of the Voronoi
tessellation from HW and SW simulations on the Mueller
potential compared with the exact one obtained by numerical
integration. Numbering of the cells goes from top-left to
bottom-right in Figure 2.
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values of the elements needed for the calculation of the qij matrix
defined in eq 3, computed from SW and HW simulations and
a long free trajectory (2 × 109 steps). The excellent agreement
shows that the confinements do not introduce biases in the
calculations of qij.

3.2. Solvated Alanine Dipeptide. In order to test the
implementation of SW and HW in a realistic biomolecular
context, we examine the transition from helical to extended
conformation of the alanine dipeptide solvated in explicit water.
We describe the transition here by using two collective variables,
the φ and ψ backbone dihedral angles, neglecting the role of
the solvent degrees of freedom.24 We used the CHARMM16

code for all calculations with CHARMM22 all-atom force field25

and the TIP3P model26 for water molecules.

The free energy landscape in φ and ψ variables was computed
with the single-sweep method,27 and it is shown for reference
in Figure 4 (energies are in kcal/mol). A minimum free energy
path in (φ,ψ) space was computed using the string method.3 20
images along this path are represented as circles in Figure 4,
and they were used as centroids for the Voronoi tessellation.
Note that in our calculation, we focus on the reaction channel
with φ < 0, where the main metastable states are. In principle,
we could also investigate the kinetics of transitions between
the states with φ > 0, but these are less often visited, and hence,
their existence does not affect much the rates we compute. The
edges of the Voronoi cells are represented as red lines in Figure

4 (taking into account periodicity). The dashed and continuous
black lines are the start and the ending milestones for MFPTs
calculation. The HW confinement condition was implemented
into the Nosé-Hoover (NH) dynamics subroutine of
CHARMM.28 The successive values of dihedral angles at every
time step along pieces of simulations with ahrd walls are shown
as white and gray dots. NH dynamics was also used for SW
simulations. In this case, the forces on atoms coming from the
potential (1) were implemented and added to the standard
CHARMM forces.

Table 1. Kinetics for the Mueller Potential for the Transition from the Black Dashed Milestone to the Black Continuous
Milestone in Figure 2a

MFPT 〈Ri〉 Rimax Rimin 〈Nij〉 Nijmax Nijmin

soft walls 547 ( 24 0.0065 0.4644 1.55 × 10-8 1.35 × 10-6 3.32 × 10-5 6.05 × 10-11

hard walls 553 ( 14 0.0065 0.4645 9.99 × 10-9 1.37 × 10-6 3.27 × 10-5 4.10 × 10-11

free simulation 562 ( 16 0.0065 0.4645 1.89 × 10-8 1.37 × 10-6 3.19 × 10-5 4.02 × 10-11

a The agreement of all quantities shows that the dynamical properties of the trajectory inside the cells are left unperturbed by the two
different confinement methods, i.e., it is as if the confinement was absent. Errors on MFPTs were obtained from five different runs.

Figure 4. Backbone dihedral free energy surface of solvated
alanine dipeptide (units are kcal/mol) with a set of milestones
(red lines) corresponding to the edges of Voronoi cells
generated by images along the converged minimum free
energy path (red circles) and the helical to extended transition.
The successive values of dihedral angles at every time step
along pieces of simulations with HW are shown as white and
gray dots. MFPTs, discussed in the text, are calculated from
the dashed to the continuous black line.

Figure 5. Free energy of the Voronoi tessellation from HW
and SW sampling for the solvated alanine dipeptide. Number-
ing of the cells goes from 1 to 20, counting from top to bottom
in Figure 4.

Figure 6. Rates of escape from cell #2 (i.e., associated to
the second string image counting from top to bottom in Figure
4), ν21, top line, and ν23, bottom line, as a function of the
trajectory length for the alanine dipeptide SW simulation with
kw ) 200 kcal/mol/rads2.
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Figure 5 shows the free energy corresponding to the tessel-
lation shown in Figure 4. Results are for HW and SW
simulations (with two different values of the penalty constant
kw). In all cases, the trajectories in each cell were 1 ns long.
Numbering of the cells goes from 1 to 20 and top to bottom in
Figure 4. In order to assess convergence of the calculation, we
monitored, during the simulations, the values of the escape rates
from the cells, νRγ. Figure 6 shows the rates from cell two versus
the length of the entire confined trajectory for SW simulations
with kw ) 200 kcal/mol/rads2. Escape rates from other cells
converge on the same time scale.

MFPTs were computed considering the transition from the
black dashed to the black continuous line in Figure 4. Results
are summarized in Table 2, together with the mean and the
extremal values of the elements needed for the calculation of
the qij matrix defined in eq 3. The excellent agreement shows
again that the confinements do not introduce biases in the
calculations of qij.

The MFPT for the transition from dashed to continuous
milestone in Figure 4 estimated from milestoning with HW and
SW simulations is about 28 ps. For comparison, the MFPT
between the same two milestones was computed by direct
counting of consecutive hittings, along a free, unbiased simula-
tion of 80 ns, obtaining 29.97 ps. These values agree with results
from other CHARMM calculations of solvated alanine dipeptide
in a similar simulation setup, where the MFPT for the same
transition was estimated to be of about 30 ps.29,30

4. Concluding Remarks
Milestoning with Voronoi tessellation9 is a method to reconstruct
the dynamical properties of complex reactive systems by
matching together informations obtained from multiple trajec-
tories, each confined in a different cell of a Voronoi tessellation
of configurational space. In this letter, we have illustrated how
the formalism can still be applied, with minor modifications,
when the confinement in the cells is realized via continuous
and differentiable potentials. With respect to the original
formulation, where the confinement is realized with strict
reflections (velocity inversion at the boundary), the possibility
to use potentials will facilitate the application of the method
because user-defined external forces are easy to introduce in
most MD codes and do not require modification of the
dynamical propagators. However, the confinement with poten-
tials can also affect performance because portions of trajectories
that are transiently out of the cells are discarded in the analysis.
Note also that we did not optimize for efficiency here, which
would require adjusting the penalty constant kw in eq 1.

As a final remark, let us point out that the method proposed
in this letter, like the one in ref 9, can be trivially distributed

on multiple processing nodes, since it is based on independent
simulations with no required communication among them.
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Abstract: Events of scientific interest in molecular dynamics (MD) simulations, including
conformational changes, folding transitions, and translocations of ligands and reaction products,
often correspond to high-level structural rearrangements that alter contacts between molecules
or among different parts of a molecule. Due to advances in computer architecture and software,
MD trajectories representing such structure-changing events have become easier to generate,
but the length of these trajectories poses a challenge to scientific interpretation and analysis. In
this paper, we present automated methods for the detection of potentially important structure-
changing events in long MD trajectories. In contrast with traditional tools for the analysis of
such trajectories, our methods provide a detailed report of broken and formed contacts that
aids in the identification of specific time-dependent side-chain interactions. Our approach employs
a coarse-grained representation of amino acid side chains, a contact metric based on higher
order generalizations of Delaunay tetrahedralization, techniques for detecting significant shifts
in the resulting contact time series, and a new kernel-based measure of contact alteration activity.
The analysis methods we describe are incorporated in a newly developed package, called
TimeScapes, which is freely available and compatible with trajectories generated by a variety
of popular MD programs. Tests based on actual microsecond time scale simulations demonstrate
that the package can be used to efficiently detect and characterize important conformational
changes in realistic protein systems.

1. Introduction

As progress in computer technology has extended the reach
of molecular dynamics (MD) simulations1,2 from picoseconds
to nanoseconds and microseconds, complex and functionally
important biomolecular motions, such as protein folding and
ligand binding, have become more accessible, but the
resulting data sets have become increasingly large and
unwieldy. Routine MD simulations currently generate tra-
jectories consisting of thousands or millions of frames,
rendering both visual inspection and data analysis difficult
and time-consuming. We expect that, over time, the analysis

of these trajectories will require increasing automation, with
human intervention limited to selected events of scientific
interest.

We are particularly interested in the detection of significant
secondary or tertiary structure rearrangements of proteins,
as these motions are often of functional importance. Ex-
amples of such large-scale motions include allosteric con-
formational transitions and folding processes, which give rise
to substantial alterations in the interactions between amino
acid residues. To shed light on such phenomena, the work
described in this paper focuses largely on the automated
recognition of significant amino acid contact changes in MD
trajectories and on measurement of the actiVity, the total
number of such changes per unit time.

Our approach makes use of a particular type of “coarse-
grained” model to reduce the level of detail in the spatial
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representations of long MD trajectories. In particular, we
employ a coarse-grained model based on side chains, which
offers certain advantages over models based on R-carbon
atoms in the context of the present application. Three-
dimensional protein structures are described using a distance
matrix representation3,4 that records all pairwise distances
between the coarse-grained side chains. In contrast with
traditional methods based on the use of global root mean
square deviation (rmsd) measurements, the use of distance
matrices does not require the translational and rotational
alignment of protein structures and facilitates the identifica-
tion of local structural differences.5 Our approach decom-
poses structural changes into a set of key side-chain motions,
providing greater sensitivity to a wide range of significant
conformational changes than is typically obtained from
traditional rmsd-based metrics.

We introduce two alternative approaches to identifying
time-dependent contact graphs from distance matrices: a
method based on distance cutoffs, which proves useful for
detecting local contact formation and breaking activities, and
an approach based on Delaunay tetrahedralization, which is
better suited to the detection of global folding activities. A
recrossing filter is used to eliminate transiently appearing or
disappearing edges in the contact graph that are likely to
represent random fluctuations and not biologically significant
conformational changes.

In the remainder of this paper, we describe the essential
elements of our approach, using four microsecond-scale
simulations for illustrative purposes. For each trajectory
frame, we construct a graph representing all contacts between
amino acid side chains, computed using a spatially coarse-
grained representation. We track changes in this graph over
time, employing a median filter and a recrossing filter for
the counting of discrete events that are reflected in the time-
dependent contact graph. Finally, we use a kernel measure
to derive activity levels from the event data. Although in
this work we only examine protein trajectories, it should be
relatively straightforward to generalize our approach to, for
example, nucleic acids or carbohydrates.

2. Methods

2.1. Molecular Dynamics Simulations. We applied our
algorithms to four all-atom MD trajectories, each ap-
proximately 1 µs in length. (More detailed system parameters
are given in the Supporting Information.) Using the tradi-
tional metric of R-carbon rms deviation from the known
atomic structure, Figure 1 shows distinct dynamic behavior
among the chosen trajectories, which we found particularly
useful for method validation. Trajectory 1 (blue) results from
a 0.52 µs simulation of Src kinase. In this “generic”
trajectory, the system experiences a series of conformational
changes, forcing it to increasingly higher rms deviations of
up to 4 Å. The “stationary” trajectory 2 (red) corresponds
to a stable 1.0 µs simulation of the fast-folding triple mutant
K65(NLE), N68H, K70(NLE) of chicken villin subdomain
HP-35,6 where the system remains close to the initial
conformation (rms deviation ∼1 Å) over the entire length
of the simulation. The “diffusive” trajectory 3 (black) shows

the opposite behavior. Starting from an extended (unfolded)
villin chain, the system remains far from the native structure
during the full 4.3 µs simulation time, visiting various
unfolded conformations. Finally, trajectory 4 (green) corre-
sponds to a 2.5 µs “folding” simulation of villin. Together,
the four trajectories in Figure 1 cover several scenarios that
are commonly encountered in MD simulations of folded and
unfolded proteins.

2.2. Coarse-Graining of Side-Chain Contacts. Nonco-
valent interactions between side chains, such as hydrogen
bonds or salt bridges, play a critical role in protein dynamics.
Singh and Thornton have shown that each of the 400 possible
amino acid side chain pairings exhibits a pronounced peak
in its separation histogram at a distance of 5-8 Å.7 Following
this finding, we identify a representatiVe atom in each side
chain for an efficient calculation of such contact separation
distances. (Some side chains have more than one functional
group, but our current Delaunay tetrahedralization approach
relies on the choice of one representative atom per side
chain.) For most residues, we define the second heavy (non-
hydrogen) atom counted from the end of the chain as the
representative atom. This rule takes into account the fact that
in branched residues (e.g., Gln, Asp, or Arg) the end of the
chain may be ambiguous, whereas the second heavy atom
is straightforward to define in 14 amino acids. Of the
remaining six, three aromatic residues (His, Phe, and Tyr)
form special cases due to the presence of an aromatic ring;
here we pick the atom at the base of the ring (closest to the
main chain) as representative. The rare Trp is represented
by the epsilon-2 carbon at the center of the double ring.
Finally, the achiral Gly and cyclic Pro do not have extended
side chains. We represent them by the R- and γ-carbons,
respectively, to account for all amino acids.

The idea of reducing the level of detail is not unique to
our work, and a number of similar concepts have already
been described.8-13 One possibility is to consider the
hydrogen bonding network14 as a coarse representation of
relevant contacts. We have decided against using hydrogen

Figure 1. R-Carbon rms deviation from the native conforma-
tion as a function of simulation time: trajectory 1 (blue, Src
kinase); trajectory 2 (red, villin near-native); trajectory 3 (gray,
villin unfolded); trajectory 4 (green, villin folding). The double
logarithmic plot bridges between the various time and spatial
scales explored by the four trajectories.
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bonds because they tend to be very transient in MD
simulations15 and provide too much detail; it is often
sufficient to know which amino acids are interacting. Another
possibility is to select the centroids of side chains16 or the
R-carbon atoms instead of the representative atoms intro-
duced above. Due to the widely variable sizes of side chains,
however, the centroids or R-carbons are imprecise markers
for interactions with neighboring residues. Alternatively, one
could consider the five to seven spatial contact patterns
discovered by Singh and Thornton for each of the pairings
of amino acids in their Atlas of Side-Chain Interactions,7

but the enumeration of such patterns for every amino acid
candidate pair in every trajectory frame would be much more
expensive than our simple distance metric.

Given a coarse representation of the structure, an important
step in our analysis is to estimate the time-dependent contact
pattern (or graph) that captures interactions between repre-
sentative side-chain atoms. Any such graph approximates
the actual atomic interactions, so in practice we can expect
some inaccuracies in the assignment of contacts. We
introduce two possible approaches for identifying contact
graphs with this model: the distance cutoff and the so-called
generalized masked Delaunay (GMD) tetrahedralization.
Each of these graph-based concepts has its unique advantages
for event detection and activity monitoring. While the
distance cutoff approach is more selective with respect to
local proximity relationships, which is useful for tasks such
as distinguishing between the formation and breaking of
contacts, the GMD approach accounts for global geometric
changes and offers a way to monitor the overall structural
variability. For the assignment of the contact graph, it is
useful to consider advantages and limitations of these
concepts in more detail. Figure 2 provides a schematic
overview of proximity measures in two dimensions (the
generalization to three dimensions is straightforward). The
initial side-chain model is depicted in Figure 2A.

2.3. Distance Cutoff. The cutoff-based metric is the most
basic proximity criterion. Contacts are based on the Euclidean
distance between representative atoms, and atoms closer than
a given cutoff are considered in contact. Parts B and C of
Figure 2 illustrate the difficulties associated with identifying
contacts by a cutoff distance. If the cutoff is too short (Figure
2B), some valid contacts may be missed, producing false
negatives. If the cutoff is too long (Figure 2C), too many
undesired contacts are included in the graph, leading to false
positives. Such redundant graph edges are typically incon-
sistent with the actual nearest-neighbor interactions of side
chains. In practice, a compromise between these two extreme
cases must be found by adjusting the distance cutoff.

The acceptable tolerance for false positives or negatives
depends on the application. For example, in R-carbon-based
elastic network models, which exhibit a level of detail similar
to our side-chain model, the tolerance for false positives is
high. Hence, long cutoff distances of 10-15 Å are typically
applied in elastic networks, about twice the separation of
adjacent R-carbons.17 Ideally, however, we select in our
coarse model only those contacts that correspond to atomic
contacts between side chains, requiring us to use a shorter
cutoff and leading to a risk of false negatives (Figure 2B) in

the resulting contact graph. The distance cutoff criterion also
assumes that the side chains are densely packed and that the
packing density remains invariant, which is true only for
tightly folded proteins.

2.4. Generalized Masked Delaunay Tetrahedralization.
The Voronoi diagram (Figure 2D) and the related Delaunay
triangulation (Figure 2E) are well-known proximity measures
that automatically adapt to the packing density and do not
require cutoff parametrization. Voronoi cells correspond to
a nearest-neighbor tessellation of the embedding space:18

each Voronoi cell contains one representative atom (repre-
senting a single side chain) and the region of space that is
closer to that representative atom than to any other. A

Figure 2. Idealized depiction of computational geometry
concepts: (A) Coarse model (black, representative side-chain
atoms) superimposed over the “protein” (gray); (B) contacts
selected by distance cutoff (too short); (C) contacts selected
by distance cutoff (too long); (D) Voronoi cells; (E) Delaunay
triangulation; (F) Delaunay triangulation superimposed over
protein; (G) masked Delaunay triangulation graph superim-
posed over protein; (H) masked Delaunay triangulation graph.
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Delaunay graph is the “dual graph” of the Voronoi graph
for the same set of representative atoms; one obtains the
Delaunay graph by connecting representative atoms whose
Voronoi cells share a face or edge. It is straightforward to
generalize the first-order Voronoi cells in Figure 2D to higher
order; a second-order cell, for instance, corresponds to the
regions of space closest to a particular pair of representative
atoms. In general, kth-order cells correspond to regions in
space that are closest to a particular k-tuple.19 Such higher
order cells might be very small in size (for a depiction see
Figure 2 in ref 19).

The Delaunay graph (Figure 2E) appears to be well-suited
for our identification of adjacent contacts among representa-
tive atoms in three dimensions, but only a subgraph of the
Delaunay graph is embedded in the protein structure
(schematically shown in Figure 2F). We thus use the so-
called “masked Delaunay” tetrahedralization introduced by
Martinetz20 to represent the protein shape more accurately
(Figure 2G,H). The Martinetz masking algorithm takes
advantage of a theorem (theorem 3 in ref 21) stating that
the existence of a second-order Voronoi cell between two
representative atoms is equivalent to the presence of a
Delaunay edge between them (Figure 2E). An edge-defining
second-order Voronoi cell is identified when it contains at
least one point of a discretely sampled masking manifold.
In our application, the proposed mask is the protein structure
and the required discrete sampling is provided naturally by
the protein atoms. Figure 3A illustrates the three-dimensional
masked Delaunay tetrahedralization for villin.

The original masked Delaunay approach identifies a
second-order graph (Figure 3A), connecting pairs (1-sim-
plices) of adjacent representative atoms. We generalize the
masked Delaunay approach to higher order, connecting
triangles (Figure 3B), tetrahedra (Figure 3C), or, in general,
(k-1)-simplices, where k is the order of the generalized
masked Delaunay graph. This higher order generalization is
motivated by the need for a discrete metric for the separation
of arbitrary pairs of representative atoms in the GMD context;
we use as a metric the minimum order k of the GMD graph
for which the pair forms an edge. This discrete k-metric
enables us to establish a recrossing filter for accurate
detection of contact transitions (further discussed below). The
recrossing filter aims to suppress any time-dependent spuri-
ous variations in the graph and will also suppress the effect
of sampling granularity, i.e., the spacing of generic atoms
in the system that might lead to missing GMD edges. To
our knowledge, the GMD graph is a new concept, but the

related Voronoi cells have already been generalized to higher
order, as described above.

Following Martinetz’s original definition of the masked
Delaunay graph,20 and sampling the protein mask by the full
atom representation, we arrive at a compact formulation of
the order-k GMD as applied to biomolecular systems:

(i) Begin with the empty graph G, atom positions Vbi ∈ R3

(i ) 1, 2, ..., N), and representative side-chain atom positions
Vbj ∈ R3 (j ) 1, 2, ..., M).

(ii) For each atom position Vbi, identify a set of k indices
Si ) {j1, j2, ..., jk} and its complement Si

C, Si ∪ Si
C ) {1, 2,

..., M} with

(iii) Add the (k-1)-simplex with vertices (wbj1, wbj2, ..., wbjk)
to G; continue with (ii) until all atoms have been explored.

For a general order k, rule (ii) implies that an edge in the
GMD corresponds to a nonempty kth-order Voronoi cell,
where in our case the nonempty property refers to the
sampling by at least one atom in the system. The rule requires
only a partial sorting of the wbj, which can be efficiently
implemented with complexity O(NkM) per trajectory frame.
The proposed GMD algorithm is efficient since it does not
require an expensive geometric construction of Voronoi
polyhedra or Delaunay tetrahedra.

The effect of the GMD order k on the pair distance
distribution of the representative side-chain atom model is
demonstrated in Figure 4. The tail of the distribution arising
from the second-order GMD (a subgraph of the traditional
Delaunay tetrahedralization) reaches to distances as high as
10 Å. Figure 4 shows that a 10 Å cutoff would be too
permissive and would include many higher order (i.e.,
redundant) contacts. As a trade-off between false positives
and false negatives in cutoff-based graphs, we thus recom-
mend cutoff values of ∼7 Å, which would include the peak
of the second-order GMD and only a small number of third-
order GMD contacts.

2.5. Suppressing High-Frequency Motion. MD time
series exhibit a considerable amount of fluctuation on short
time scales, introducing noise in the conformational analysis.
This noise complicates the reliable identification of significant
“level shifts” in the distribution of representative atom pair
distances that are relevant over longer time scales (the term
“level shifts” is used in time series analysis for low-frequency
changes of a nonstationary signal22). Such shifts are impor-
tant both for the cutoff and GMD graphs since they affect

Figure 3. General masked Delaunay (GMD) tetrahedralization of side-chain contacts (blue) in villin (brown, PDB entry 2F4K;
see text): (A) Order 2 contacts; (B) order 3 contacts; (C) order 4 contacts. Molecular graphics were created with VMD.27

|Vbi - Vbj1
| < |Vbi-Vbj2

| < ...< |Vbi - Vbjk
| < |Vbi-Vbj| ( j ∈ Si

C)
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the time-dependent distance matrix and thereby determine
the formation and breaking of graph edges. Figure 5A shows
a separation distance time series of two representative atoms
exhibiting typical level shifts. The two side chains form a
contact from 600 to 1400 ns, but a direct assignment of
contact formation and breaking using a cutoff of, for example,
8 Å would yield many spurious transitions within this time
window due to the noise present on short time scales.

An abundance of alternative low-pass filtering and shift-
detection methods have been proposed.22,23 We tested two
well-known and efficient filters for smoothing the time series,
the moving average and the median, both defined within a
sliding window. In this work, the median is defined as the
smallest number in a series such that at least half the numbers
are no greater than it. The median is influenced only by the
ranking in the sample, making it robust against outliers. The
moving average, on the other hand, is a linear filter, and
thus it can be easily parallelized if desired. Figure 5B shows
the performance of the moving average and median filter as
applied to the level shift near 600 ns, indicating that the
nonlinear median filter offers a satisfactory preservation of
the shift.

In the following section, we implement the median filter
for suppressing high-frequency noise in the distance matrix
time series. The window half-width, δ, is an important time
scale parameter defined by the user which controls the
number of events that are detected. In preliminary testing,
we have found that half-widths on the order of 10-100 ns
provide a reduction of spurious transitions by 2-3 orders
of magnitude (Supporting Information Figure 1) relative to
the absence of a filter. The choice of δ depends on the time
scale of the molecular process investigated by the user.

2.6. Suppressing Trivial Recrossings. One of the well-
known problems in transition-state theory24 is the overcount-
ing of spurious recrossings at the boundary between two
states.12,25 Such recrossings may occur even after median

filtering, e.g., in the case of cutoff-based contact graphs when
the cutoff is close to the mean of a distance distribution.
The “event log” file (see Supporting Information) gives an
example of repeated formation and breaking of the same
contacts in the absence of any suppression of such recross-
ings. An overcounting of transitions occurs also for GMD-
based events, since the Delaunay tetrahedralization is sen-
sitive to representative atom motions. Several approaches
have been proposed to remedy this problem, including the
“almost Delaunay” triangulation by Bandyopadhyay and
Snoeyink.26 Here we take a different approach, exploiting
the time dependence of the underlying model.

A large number of recrossings is simply an indication that
a classification into contacts and noncontacts is not sufficient
for the intended purpose of tracking “significant” level shifts.
To compensate for these unwanted effects, we have devel-
oped a “trivial recrossing suppression” scheme (see Sup-
porting Information). The idea, discussed in the “stable states
picture” of chemical reactions25 and recently used in the
construction of Markov models from MD simulations,12 is
to introduce a buffer region and to track crossings until this
buffer has been crossed completely. Figure 6 provides an
overview of the nine possible paths crossing the buffer and
identifies the remaining “nontrivial” contact formation and
breaking events (green and red arrows, respectively), after
application of the recrossing filter. Numeric labels assigned
to the regions by our algorithm (Supporting Information) are
also shown.

The use of a buffer requires the definition of a “contact
metric” that separates the buffer from contacts and noncon-
tacts. The metric may be continuous, as in the case of cutoffs,
or discrete, as in the case of GMD graphs, where we use the
minimum GMD order of an edge as metric (the smallest
number k whose GMD includes the edge). The width of the
buffer region is a free parameter defined by the user. In tests
using cutoff-based contacts and the stationary trajectory 2
(which exhibits little activity and is thus a good test system
for detecting spurious recrossings), we have found that even
very small buffer zones of 0.3-0.5 Å are highly effective
in eliminating unwanted recrossings (Supporting Information
Figure 2). In the case of GMD, we found the smallest
possible buffer with a minimum order 2 (contacts), 3 (buffer),
and 4 or higher (noncontacts) to be effective; it will be
denoted as the “k ) 3” crossing buffer in the following
discussion.

2.7. Kernel-Based Activity Measure. The analysis de-
scribed so far yields a detailed listing of K broken and formed
contacts at corresponding times ti (i ) 1, ..., K). The cutoff-
or GMD-based activities (rates of events) are computed from
the event times by smoothing with a Gaussian kernel:

The activity a(t) is not normalized to unity as in probability
density estimation, but to K, the total number of events, such
that a gives the number of events per frame. The kernel
standard deviation σ is matched to the median half-width δ
as follows. The median filter can be considered a low-pass

Figure 4. Pair distance distribution histograms for the
representative side-chain atom model (see text). Histograms
are sorted by the minimum GMD order of a representative
atom pair (the smallest number k whose GMD includes the
edge). Shown in color: minimum GMD order 2 (green), 3 (red),
4 (blue), and >4 (gray). The frequency values were sampled
from trajectory 2 (peak distances and shapes of the pair
distribution functions are trajectory invariant).

a(t) ) 1

√2πσ
∑
i)1

K

e-(t - ti)2/2σ2
(1)
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filter that attenuates frequencies above (2δ)-1 (the inverse
of the median window width). The minimum sampling rate
(or Nyquist rate) should be twice this frequency, or δ-1,
according to the Nyquist-Shannon sampling theorem. The
“full width at half-maximum” (fwhm) parameter is com-
monly used to describe the resolving width of a kernel. This
width must be small enough to resolve Nyquist rate samples.
For the Gaussian kernel, the fwhm ) 2(2 ln 2)1/2σ is thus
matched to the inverse Nyquist rate: fwhm ) δ.

Although it would, in principle, be possible to sample
above the Nyquist rate (i.e., δ could be considered an upper
bound for the kernel fwhm), we note that the smoothness of
the activity curves is critical for estimating basin minima
and basin transitions corresponding to local extrema of a(t),
so the maximum fwhm ) δ is chosen in our application to

ensure the maximum smoothness of a(t) (see Results and
Discussion). The smoothing parameter δ thus corresponds
to both the half-width of a median filter and the fwhm of a
Gaussian kernel in our application.

2.8. Output. Our implementation provides a number of
output files for inspection, plotting, and visualization of the
methods described above: (a) a detailed log file of formation
and breaking of contacts (for an example, see Supporting
Information); (b) an activity time series data file containing
the frame number, combined activity a(t), and separate
activities derived from either formation or breaking events;
(c) trajectory files containing basin minima and basin
transitions corresponding to local extrema of the combined
activity a(t); (d) a VMD-readable27 contact graph for each
frame (Figure 3A), enabling animation of contact graphs.

In the following section, we illustrate the use of the
proposed analysis tools in practical MD applications.

3. Results and Discussion

The major idea associated with the tools introduced in the
previous section is their ability to decompose the overall
dynamics (expressed by the activity curves a(t) of eq 1) into
constituent individual events related to the breaking and
formation of amino acid side-chain contacts. Before assessing
the utility of detailed event logs in the practical analysis
workflow, it is useful to compare the activities a(t) to more
traditional rms alignment techniques. Any similarities with
the traditional techniques are nontrivial due to the different
methodological paths taken by our methods. Differences, on
the other hand, will suggest application areas for which our
strategies are uniquely specified. We will describe two
especially advantageous applications, the visualization of
activity measures and the identification of activity basins and
transitions in the trajectory.

3.1. Comparison of Tools for Activity Analysis. Figures
7 and 8 show the results of GMD-based (A) and cutoff-
based (B) activity analysis applied to the “generic” trajectory
1 and the “folding” trajectory 4 (results for trajectories 2
and 3 are shown in Supporting Information Figure 2 and in
Figure 9, respectively). For comparison with traditional

Figure 5. Smoothing of a typical contact time series (black) by moving average (red) and median filters (blue): (A) Full time
window; (B) detailed view of a level shift at 600 ns. Shown is the separation of model atoms representing Asp5 and Phe10 in
trajectory 3. The moving average and median filters used a sliding window of half-width ) 100 ns.

Figure 6. Suppression of trivial recrossings using a buffer
zone (blue) between contact (green) and noncontact (red)
zones. Nine types of buffer boundary crossings (thin black
arrows) are theoretically possible. The colored arrows mark
the time of four designated crossings (green, contact forma-
tion; red, contact breaking). All other crossings are suppressed
(see text). Red numbers show initial numeric values used in
the bidirectional tracking (see Supporting Information). Blue
numbers are the final labels assigned to each of the nine
crossing types. The metric for assigning zone boundaries may
be continuous (distance cutoff) or discrete (GMD minimum
order).
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techniques, Figures 7 and 8 present also the rms fluctuation
(C) and rms deviation from the native structure (D). The
rms fluctuation in C measures the all-atom variability of
consecutive frames in the trajectory weighted by a sliding
Gaussian envelope function. To provide comparable detail,
we have again matched the fwhm of the Gaussian envelope
to the smoothing parameter δ (see above). We note that the
unusual choice of a Gaussian envelope function for smooth-
ing the rms fluctuations is critical for allowing comparison
between these curves. If we used a more traditional sliding
box envelope for the rms fluctuations, the curves in C would
exhibit high-frequency noise (not shown), reducing the
similarity with those in A and B.

The “generic” Src kinase trajectory 1 in Figure 7 represents
a frequently encountered MD scenario and is thus of
particular utility for the comparison of analysis tools. We
describe similarities of analysis techniques by the Pearson
correlation coefficient. The GMD-based (A) and cutoff-based
activities (B) are quite similar in this case (correlation 0.86).
Likewise, both activities are similar to the time-dependent
rms fluctuation (C; correlations 0.90 and 0.84 for GMD- and
cutoff-based activity, respectively). It is reassuring that the
three measures (Figure 7A-C) are consistent in their
characterization of traditional MD trajectories, even though
there are considerable methodological differences in their

design. A minor difference from the two activity measures
is the elevated background level exhibited by the rms
fluctuation (Figure 7C), but this is inconsequential for
analysis. Differences are more pronounced when comparing
the three measures (Figure 7A-C) to the rms deviation. The
first three measures show increased activity preceding a
pronounced conformational change evident in the rms
deviation (Figure 7D) after 100 ns (see also below). The
subsequent activity peaks are not seen to have any major
effect on the rms deviation. For example, the peak at 420 ns
is due to local fluctuations in the disordered C-terminus
which do not affect the rms deviation, since the structure
has already moved far from the native conformation at this
point.

The villin folding trajectory 4 in Figure 8 offers an
opportunity to analyze a trajectory going from an extended
to a compact, native state. The rms deviation (D) shows that
the protein folds at 1400 ns. The GMD-based (A) and cutoff-
based (B) activities yield a more detailed picture of the
dynamic activity of the system up to 1400 ns, although the
measures exhibit striking differences in this case (correlation
0.64). The major difference at the beginning of the trajectory
is due to the fact that most contacts are outside the cutoff
range in the initial extended conformation, but such folding
events are included in the GMD, which does not depend on

Figure 7. Comparison of conformational analysis tools
applied to trajectory 1: (A) GMD-based activity (k ) 3 crossing
buffer); (B) cutoff-based activity (6.0-7.0 Å crossing buffer);
(C) rms fluctuation in a sliding window; (D) R-carbon rms
deviation from PDB entry 1Y57. The smoothing parameter δ
setting Gaussian fwhm and median half-widths (see text) was
12.5 ns.

Figure 8. Comparison of conformational analysis tools applied
to trajectory 4: (A) GMD-based activity (k ) 3 crossing buffer);
(B) cutoff-based activity (7.5-8.5 Å crossing buffer); (C) rms
fluctuation in a sliding window; (D) R-carbon rms deviation from
PDB entry 2F4K (with “A” variants of dual occupancy rotamers).
The smoothing parameter δ setting Gaussian fwhm and median
half-widths (see text) was 100 ns.
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the cutoff. This difference highlights the adaptive property
of contacts employed by the GMD approach. The rms
fluctuation (C) is more similar (correlation 0.91) to the GMD-
than to the cutoff-based activity (correlation 0.46). Despite
the relatively high correlation, the local variations of the rms
fluctuation (C) are significantly attenuated in this example
compared to the variations of the GMD activity (A), in
contrast to Figure 7, where the two measures show similar
variability. Also, a small activity peak at 2200 ns is missed
by the rms fluctuation. As described in subsection 3.2, this
activity peak corresponds to substantial fluctuations of the
first helix.

Our results suggest that the rms deviation is the least
reliable predictor of conformational transitions because it
misses some events detected by the other measures once the
rms deviation reaches high numeric values. Also, GMD- and
cutoff-based activities provide some additional information
one could not obtain from rms fluctuations. The GMD- and
cutoff-based activities differ especially in the folding trajec-
tory 4. We explore differences between GMD- and cutoff-
based activities further in subsection 3.3.

3.2. Utility of Detailed Event Logs. One important
advantage of the proposed analysis is that it provides a
detailed listing of constituent events that facilitates an
underlying structural interpretation of the activity, beyond
detection of periods of high activity itself. Traditional
analysis tools based on Cartesian coordinates are not able
to provide such detail. The cases of trajectories 1 and 4
illustrate the utility of event logs provided by the new
algorithms. These can be particularly useful when combined

with expert knowledge, for example from mutagenesis data,
of which residues are believed to play an important role.

The event logs of the Src kinase trajectory 1 indicate that
Phe405 undergoes a conformational change that results in
its exchange of packing partner during the 90-140 ns time
period. Initially, Phe405 is in proximity of Glu310, Val313,
Leu317, and Met314, contacts which are broken at 89, 90,
96, and 136 ns, respectively. The loss of contacts is
compensated by the formation of a new contact with His384
at 96 ns simulation time. This conformational change mainly
involving Phe405, His384, and Met314 is highly intriguing
and potentially important, since Phe405 and His384 belong
to the well-known DFG and HRD motifs that are almost
universally conserved among protein kinases, and Met314,
Phe405, and His384 are all part of a critical structural “spine”
that was identified to stabilize kinase active structures.28

For the villin folding trajectory 4, formation of helical
(i,i+3) and (i,i+4) contacts contribute substantially to the
activity in the initial part of the trajectory. This is not directly
followed by folding, but rather the protein appears tempo-
rarily trapped due to the formation of nonnative interactions.
Specifically, after approximately 600 ns, a contact forms
between the oppositely charged N- and C-terminal residues.
This contact, together with an overextension of helix 1
through to residue Thr13, characterizes a persistent nonnative
state between approximately 900 and 1100 ns that is
associated with a dip in activity (Figure 8). Exit from this
state is accompanied by the loss of the nonnative helical
contacts in helix 1 and the subsequent formation of helix 2.
The final event in folding is the unraveling and re-formation
of helix 1, together with a reorientation of the loop between
helices 1 and 2. This is accompanied by a burst of contact
formation between hydrophobic residues, including the Phe6-
Phe17 contact in the core, which is formed at ∼1400 ns.
After folding, helix 1 occasionally undergoes substantial
fluctuations, leading to the rise in activity at approximately
2200 ns visible in Figure 8. This involves the partial transient
loss of helical structure from helix 1, reflected in changes
in the contacts in that helix, accompanied by a change in
orientation of helix 1 with respect to the rest of the protein
that is reflected in changing contacts between residues at
the beginning of helix 1 with those near the beginning of
helix 2.

Once the contact formation or breaking events are identi-
fied, geometric inspection tools such as those provided by
VMD27 may add to the interpretation. It would have been
impossible to extract this highly specific information with
one of the traditional rms deviation or rms fluctuation
measures.

3.3. Visualization of Activity Results. Given the differ-
ences between GMD and cutoff when applied to folding
trajectory 4 (Figure 8B), we have investigated the discrep-
ancy further using the “diffusive” trajectory 3. Since the
original level shifts that give rise to activities can be separated
into formation and breaking events, we considered separately
the formation and breaking activities derived from the two
classes. The differences were striking for cutoff-based activity
levels (Supporting Information Figure 3; correlation 0.07
between formation and breaking), whereas in the case of

Figure 9. Activity levels exhibited by the diffusive trajectory
3 during the first 1.25 µs: total GMD activity (gray); cutoff-
based contact formation activity (green); cutoff-based contact
breaking activity (red, plotted in negative direction to simplify
comparison). A median filter (see text) was applied, using a
half-width of 100 ns. Recrossing suppression used a buffer
of 6.0-7.0 Å (cutoff) or in the case of GMD, a buffer of k ) 3
(see text). Snapshots of the trajectory above the plot cor-
respond to the initial conformation and to three local minima
of GMD activity that represent the basins directly below them.
Molecular graphics renderings were created with VMD.27 An
animated AVI version of this figure, showing the full length of
the trajectory, is available in the Supporting Information.
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GMD the formation and breaking contributions were very
similar (Supporting Information Figure 4; correlation 0.77).
This indicates that, at least in the case of folding trajectories,
the formation and breaking of cutoff-based contacts are
asymmetric and at times either one may be dominating,
whereas in the GMD graph the total number of contacts is
nearly constant. We thus propose to visualize separate
formation and breaking activities in the case of cutoff
contacts, and only the total activity of the GMD.

Figure 9 displays such a “combination plot” of activities
together with snapshots of the trajectory at low GMD
activity. An animated AVI version of this visualization is
available in the Supporting Information. One can observe at
several times the pronounced asymmetry in the cutoff activity
levels. A dominant formation of cutoff contacts, such as at
250, 700, and 1000 ns, typically precipitates a stabilization
of the system (as judged by low GMD activity at 350, 750,
and 1100 ns). Likewise, a dominant breaking of cutoff
contacts, such as at 500 and 800 ns, clearly favors subsequent
folding transitions (corresponding to high GMD activity at
600 and 900 ns). The proposed combination plot thus
provides a nuanced characterization of folding activity, in
which periods of stabilization or destabilization of the overall
fold can be matched with more detailed changes in the side-
chain packing.

The results suggest that inactive periods observed in
folding trajectories are caused by preceding periods of contact
formation of the structure, whereas large-scale folding
transitions follow after periods of contact destabilization. The
observed dependence of structural stability on contact
formation could be used to enhance sampling in folding
trajectories.

3.4. Segmentation of Activity Basins and Transitions.
Figure 9 suggests a natural segmentation of the trajectory
into quiescent “basins” separated by “transitions.” We
assigned local minima (basin centers) and local maxima
(transitions) using a finite difference approximation of the
first derivative of the total (GMD- or cutoff-based) activity
a(t). The local maxima correspond to highly active periods
of the trajectory that separate basins of inactivity. The local
minima roughly correspond to the structures with the greatest
contact similarity to the average structure of the local basin.
These minima are shown in Figure 9 above the GMD activity
plot, representing the inactive basins directly below them.
This strategy can also be applied (after Gaussian smoothing)
to the traditional rms fluctuation.

For typical MD trajectories such as trajectory 1, the
maxima and minima of a(t) are not very sensitive to the graph
method used. For example, 75% of the minima and transi-
tions derived from the GMD activity (Figure 7A) can be
found to be within 5 ns simulation time of like extrema
exhibited by the rms fluctuation (Figure 7C). The similarity
with the rms fluctuation was somewhat less pronounced for
the cutoff-based activity (63%; Figure 7B). As can be
expected, the observed conservation of minima and transi-
tions agrees qualitatively with the above Pearson correlation
analysis. We propose to use the GMD activities for the
assignment of basins and transitions whenever possible, due

to the more pronounced undulations relative to the rms
fluctuation (Figure 8A,C).

4. Conclusion

We have introduced tools for automated event detection and
activity monitoring in MD simulations and demonstrated their
application to state-of-the-art trajectories. Our method in-
troduces intuitive parameters to be defined by the user, as
follows:

(a) The type of contact graph. We recommend a cutoff-
based graph to detect detailed side-chain contact formation
and breaking, or a GMD-based graph to detect global activity.

(b) The designated crossing buffer. We recommend 6-7
Å cutoffs or GMD order k ) 3.

(c) The temporal smoothing parameter δ. This value
depends on the length of the simulation and the desired level
of detail.

(d) The side-chain atom selection. We provide a default
profile for standard amino acid residues, which may be
modified for specific systems or nonstandard residues.

All other steps in the methodology are automated, includ-
ing median filtering, suppression of trivial recrossings, kernel
activity estimation, calculation of basin minima and transi-
tions, and data file output.

Our current serial implementation is sufficiently efficient
to allow for the analysis of microsecond-scale trajectories.
An analysis of 4496 frames of trajectory 3 took only a few
minutes of compute time on a standard Linux workstation.
For much longer trajectories, we expect that parallelization
of the analysis may be required; such parallelization should
be straightforward using, for example, the recently developed
HiMach framework.29

Our implementation brings together state-of-the-art meth-
odologies from time-series analysis, computational geometry,
graph theory, and biochemistry to address the activity-
monitoring and event-detection problem. The limitations of
our methods include the focus on global rearrangements in
the structure; some events of scientific interest leave only
very small footprints in the surrounding protein matrix. Ion
and solvent diffusion through membrane channels, for
example, would require different detection techniques. In
addition, the parameters of our method have not yet been
optimized for lipids and nucleic acids, although it would in
principle be possible to generalize the coarse-grained model
to nonprotein contactssespecially in the case of GMD, which
is independent of specific cutoff distances.

An additional limitation of our analysis is that events are
still relatively frequent for human interpretation (about
100-1000 events were observed per microsecond). For
longer trajectories, it may be helpful to further reduce the
complexity of the contact patterns using one or more of the
following strategies: (i) ignoring contacts formed by residues
with nonexistent or short side chains such as Cys, Pro, and
Ala; (ii) substantially increasing the crossing buffer; (iii)
ranking events by the sequence conservation of participating
residues, the energy levels of participating residues, or a
correlation analysis of the motion of participating residues.

Our tests on four trajectories have revealed a number of
advantages of our activity-based calculations relative to the
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more traditional rms fluctuation. These include (i) a higher
sensitivity at low activity levels (Figure 8A,C); (ii) a reduced
background noise contribution (Figure 7A, C); (iii) a detailed
listing of individual events underlying the observed activity;
(iv) coarse model calculations that are roughly an order of
magnitude faster than an all-atom analysis; and (v) a
functionally relevant diversification of the tool arsenal: the
GMD activities show an overall fold rearrangement, the
cutoff activities measure contact formation and breaking, and
the traditional rms fluctuation measures the variability of
Cartesian coordinates of neighboring frames. The importance
of automated analysis techniques will only grow as efforts
in high-throughput MD simulationssuch as the “Dynameom-
ics” project30smake large numbers of MD trajectories
publicly available for mining and interrogation.

4.1. Dissemination. All tools described in this article
will be documented and freely distributed as part of the
Python-based “TimeScapes” package at URL http://
www.DEShawResearch.com (Resources). TimeScapes is
capable of reading the trajectories produced by many popular
MD programs, including AMBER, CHARMM, NAMD,
X-PLOR, Desmond, LAMMPS, and GROMACS, making
the package widely applicable.

Supporting Information Available: Supporting meth-
ods, supporting figures, an events log file, and an animation
in AVI format. This information is available free of charge
via the Internet at http://pubs.acs.org.
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Abstract: A computer programs suite, SIMUFLEX, has been constructed for the calculation of
solution properties of flexible macromolecules modeled as bead-and-connector models of
arbitrary topology. The suite consists mainly of two independent programs, BROWFLEX that
generates the macromolecular trajectory by using the Brownian dynamics technique and
ANAFLEX that analyzes that trajectory to get solution properties of the macromolecule. In this
paper, we describe theoretical aspects about the macromolecular model and the Brownian
dynamics algorithm used and describe some of the numerous properties that can be evaluated.
In order to provide examples of the application of the methodology, we present simulations of
dynamic properties of DNA with length ranging from 10 to 105 base pairs. SIMUFLEX is able to
run simulations with more or less coarse-grained models, thus enabling such multiple-scale
studies.

1. Introduction

Solution properties of macromolecules (hydrodynamic coef-
ficients, intrinsic viscosity, radiation scattering-related quanti-
ties...) shed light about their shape and conformation1 and
therefore are a primary source of information to predict their
solution behavior. For example, the determination of such
properties are of fundamental relevance when treating with
biological macromolecules (DNA, proteins...), since their
physiological functions are closely related to the solution
conformations that they can adopt.2 A powerful tool that
helps to predict and understand macromolecular structure and
dynamics is computational modeling and simulation.3

There exist well developed procedures based on bead
modeling4-8 or alternative approaches9-12 to predict hydro-
dynamic properties of rigid macromolecules and nanopar-
ticles. However, most synthetic polymers and many biologi-
cal macromolecules are flexible and do not present a defined
shape. Therefore, the development of computational proce-
dures to predict the solution behavior of flexible and
semiflexible macromolecules is of great interest. The large
size typical of macromolecules and nanoparticles, and the
long times typical of their dynamics, precludes usually the
use of atomic-level models, and the conformational vari-
ability of flexible entities adds further complexity. Thus, the
prediction of solution properties requires simplified schemes,
based on more or less coarsely grained models. The classical
bead-and-spring model of polymer physics, in which the
model elements represents large pieces (subchains) of the
long polymer chain,13,14 is a very coarse grained model.
Nowadays, the coarse-grained modeling concept is being
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applied with more detail, with models whose elements
represent, for instance, the repeating units - amino acid or
nucleotide residues - of biomacromolecules.15 On the other
hand, useful schemes to build coarse-grained models have
been recently developed.16,17 Because of the widespread
utilization - over the past two decades - of atomistic
molecular dynamics simulations, there are many commercial
and public domain tools for that purpose. However, for
multiscale, coarse-graining simulation, one misses a wide
availability of similar tools. Thus, we have intended18 to
develop computational methodologies where flexible mac-
romolecules are represented at such a coarse-grained level
as bead-and-connector models and to predict their solution
behavior by simulation techniques as Monte Carlo (MC) and
Brownian dynamics (BD).18

When the simulation of flexible entities is restricted to the
prediction of conformational, equilibrium properties, and
some overall hydrodynamic coefficients, Monte Carlo meth-
ods are applicable. In order to provide a tool for the MC
simulation of quite general flexible bead-and-connector
models, we recently published the public-domain program
MONTEHYDRO,19 that implements an importance sampling
Monte Carlo procedure for the generation of random
conformations of flexible structures, which includes the
calculation of overall hydrodynamic properties in the so-
called rigid-body treatment,20-22 obtained as conformational
averages over the values calculated for instantaneous con-
formations considered as rigid structures.5,23

However, to study dynamic aspects of flexible macromol-
ecules in solution, such as relaxation processes and non-
equilibrium behavior, it is necessary to solve the equation
of motion that governs the macromolecular dynamics. This
can be done by using molecular dynamics (MD) or Brownian
dynamics (BD).24 Because of the above-mentioned draw-
backs, MD is not adequate for long time and size scales.
BD is a numerical technique to solve the stochastic equation
of motion that arises from considering the solvent as a
continuum, thus eliminating the solvent degrees of freedom
which allows for reaching longer times in the simulated
physical system. In other words, BD simulations describe
the Brownian motion of a collective of frictional elements,
beads in our model, which can interact with each other
through different potentials.

An essential aspect in the BD simulation is the inclusion
of the so-called hydrodynamic interaction (HI) effect, which
determines the solvent-mediated influence of the motion of
every element of the model on the others. Our group25-29

was among others30-34 who pioneered the use of BD
simulations including hydrodynamic interaction (HI) effects
to predict dynamic properties of macromolecules in solution.
As it is known from polymer hydrodynamic theory,14,35 and
confirmed by BD simulations,28,36,37 the rigorous inclusion
of the HI effect (avoiding approximations, like that of
conformational preaverage) is essential for the accurate
prediction of hydrodynamic properties results comparable
to experiments. Nevertheless, BD simulations without inclu-
sion of HI sample correctly the configurational space, so that
some authors have proposed that BD could be used as a smart
Monte Carlo method.38 This adds a further utility to BD

methodologies, providing an efficient way to obtain also
equilibrium conformational properties.

Along our previous works we have been developing a BD
simulation scheme that enables for the calculation of solu-
tion properties of flexible macromolecules with arbitrary
complexity. Our procedures take into account fluctuating
(nonpreaveraged) hydrodynamic interaction as well as the
possibility of including different types of intramolecular
potentials to represent excluded volume conditions (solvent
quality) and electrostatic interactions. That computational
scheme is implemented in a suite of public domain (freely
available from our Web server, see below), named SIMU-
FLEX, which is presented in this paper. The suite consists
mainly of two programs BROWFLEX and ANAFLEX. The
program BROWFLEX generates a Brownian trajectory of a
flexible bead-and-connector model with arbitrary connectiv-
ity, and the program ANAFLEX analyzes that trajectory to
obtain several steady and time-dependent macromolecular
quantities. In this way, many conformational and hydrody-
namic solution properties, from single-valued coefficients to
more complex experiments as well as different time cor-
relation functions, can be straightforwardly evaluated from
the Brownian trajectory. Furthermore, a most interesting
feature of the BD technique is that it allows the simulation
of the behavior of an individual molecule,39,40 which is of
great importance due to the emergence of single-molecule
experimental techniques.41 At this respect, SIMUFLEX is
an useful tool to study single-molecule behavior of flexible
macromolecules with arbitrary topology. Thus, our contribu-
tion joins those of other groups who have published
Brownian dynamics simulation programs with different scope
or structure42,43 and focused on particular macromolecular
systems (for instance the UHBD package42 is appropriate
for studying protein-protein association). On the other hand,
the SIMUFLEX package was devised to treat with a variety
of macromolecular models and physical situations, for
example the presence of external agents, as well as to analyze
easily an amount of macromolecular properties including a
number of commonly employed correlation functions.

In this paper, we first describe some theoretical aspects
of the modeling and BD simulation methodology imple-
mented in SIMUFLEX. Then, we present several examples,
all concerning the dynamics of DNA molecules in solution.
In order to illustrate the multiscale possibilities of SIMU-
FLEX, the examples span a wide range of DNA sizes and
cover both bulk-solution and single-molecule properties.

2. Models and Simulation Methods

In this section we specify the two main features in the
simulated model. The first one corresponds to the mechanical
or energetic features pertaining to the molecule itself and,
eventually, its interaction with external agents (e.g., fields,
walls, etc.). The second group of aspects comprise those
relative to the motion of the molecular model in the viscous
solvent, like viscous drag, hydrodynamic interaction, Brown-
ian motion, etc., which are key factors for the construction
of the simulation algorithm.

2.1. Mechanical Model: The Force Field. The simulation
model is composed by what we generically call elements,
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which will be later considered as spheres, or “beads”, for
the description of their hydrodynamic behavior. The N
elements interact in a number of ways, which give rise to a
potential energy that we decompose in several contributions

The terms in eq 1 correspond to each kind of interaction, as
described in the following paragraphs. A schematic overview
of the model is displayed in Figure 1.

Primarily, the elements are joined by connectors, which
describe the topology of the molecule or particle that is being
modeled. A common case is that of linear chains, in which
each element (except the terminal ones) is joined to its two
neighbors. In general, an element may be joined to an
arbitrary number of other elements. The sum extends over
all the pairs of connected elements. Connectors behave
mechanically as springs with an associated potential Vij

(conn)(lij)
that depends on the instantaneous distance between the two
joined elements, equal to the length of the spring vector, lij

) |rij| ) |rj - ri|, where ri is the position vector of the i-th
bead. Among others, BROWFLEX considers the following
spring potential devised in a previous work to simulate
dendrimer molecules44

In eq 2 subscripts ij, that should be attached to V(conn), l,
le, lmax, and H, are omitted for the sake of legibility. The
equilibrium length le (V(conn)(le) ) 0), the maximum elonga-
tion lmax, and the force constant H are the three parameters
of this general spring potential, which we call “hard-FENE”
because it includes, as particular cases, several commonly
used spring types. When lmaxf ∞ (in practice, a sufficiently
large number), it reduces to V(conn) ) 1/2H(l - le)2, proper
of a Hookean (Fraenkel)45 spring that is usually employed,
with a large value of H, to represent stiff connectors with
an equilibrium length le (the rms fluctuation in spring length,
(〈l2〉 - 〈l〉2)1/2 ) H/(kBT)25,46 is, for instance 10% of le for H

) 100kBT/le
2). Furthermore, with lmax f ∞ and le ) 0 we

have V(conn) ) 1/2Hl2, which is the potential associated with
a Gaussian distribution of the spring length, with 〈l2〉 )
3kBT/H as used in the Rouse model13 of linear polymer chains
composed by Gaussian subchains. The Rouse model with a
linear force and infinite extensibility is inappropriate when
external agents, particularly strong flows, stretch the chain
and the distribution is not Gaussian. For those cases, the most
popular choice is the FENE (finitely extensible, nonlinear
elastic; Warner)47 spring, whose potential, V(conn) ) -(1/
2)Hlmax

2 ln(1 - l2/lmax
2 ) is a particular case of eq 2 for le ) 0.

For the spring potential, as for the other pairwise potentials
depending on the distance between elements, the forces
acting on the two elements are Fi ) -Fj ) [dV(rij)/drij]rij/
rij, where the derivative of the potential adopts a long but
immediate expression (omitted) that allows an easy calcula-
tion of the forces.

The angles, Rijk, between two neighbor springs joining
beads i and j, and j and k, may have an associated potential
Vijk

(ang)(Rijk). A simple and useful potential for the bending
angle is the quadratic form, V(R) ) (1/2)Q(R - R0)2, where
R0 is the equilibrium value of the angle, and Q is a bending
force constant. Again, the subscripts ijk are omitted for
brevity, but we recall that there may be specific values of
the parameters for each angle in the model. In order to make
the program applicable to chemical entities (real molecules),
we have also included in SIMUFLEX torsional potentials
associated with hindered internal rotation. If ij, jk, and kl,
are three consecutive bonds, internal rotation around the jk
bond can be represented by a potential Vijkl

(tors)(φijkl), where
φijkl is the internal rotation angle. In the program we have
included a variety of V(φ) functions, corresponding to the
most frequent kinds of chemical bonds. The expressions for
the forces associated with bending and internal rotations can
be found in the literature.24,26

The force field includes two other kinds of pairwise
intramolecular potentials. One kind, denoted in eq 1 as
Vij

(EVpair) is usually for excluded-volume (EV) interactions,
for which BROWFLEX considers various possibilities,
including the useful and meaningful Lennard-Jones potential

where εLJ and σLJ are the Lennard-Jones parameters, along
with other forms, like hard-spheres, exponential or Gaussian
repulsion, etc. The second kind of pairwise potentials
indicated in eq 1 as Vij

(CHpair) is intended for any other
interaction that would superimpose to the excluded volume
effect. An example is the intramolecular electrostatic interac-
tion between charged elements, which can be properly
described by a screened Coulomb, Debye-Hückel potential

where A is related to the charge of the two elements and the
dielectric constant of the solution, and κ, the screening
parameter, is related to the ionic strength of the medium.48

Again, in eqs 3 and 4 the subscripts ij are omitted, and each
pair may have its own parameters.

Figure 1. Pictorial representation of the generalized bead-
and-spring model.

V(tot) ) ∑
conn

Vij
(conn) + ∑

ang

Vijk
(ang) + ∑

tors

Vijkl
(tors) +

∑
EVpairs

Vij
(EVpair) + ∑

CHpairs

Vij
(CHpair) + ∑

i

Vi
(E) (1)

V(conn) ) -1
2

Hlmax
2 ln(lmax

2 - l2

lmax
2 - le

2) -

1
2

Hlmaxleln[(lmax + l)(lmax - le)

(lmax - l)(lmax + le)] (2)

V(EVpair) ) 4εLJ[(σLJ

r )12

- (σLJ

r )6] (3)

V(CHpair) ) (A/r)exp(-κr) (4)
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Finally, Vi
(E) indicates any interaction between any indi-

vidual element and an external agent (or constrain), since
BD is an adequate technique to simulate macromolecules
in, for example, electric fields49,50 and in biomembranes.51

BROWFLEX includes various useful possibilities like in-
teraction of a charged element with an external electric field;
walls that the element cannot trespass; and anchorage, by
means of a hard spring, of an element to a fixed point. In
the BROWFLEX user guide there is a detail relation of the
forces included in the force field of BROWFLEX and how
they must be used to build the chain model.

2.2. Hydrodynamics and Brownian Dynamics: The
Algorithms. For the generation of Brownian trajectories of
the mechanical molecular model in the viscous solvent,
including hydrodynamic interaction effects, we propose the
use of a procedure, based on the Ermak-McCammon30,46 (E-
M) algorithm, proposed by Iniesta and Garcı́a de la Torre29

(I-GT). In the E-M algorithm, the final position ri of bead i
after at time step ∆t is calculated starting from its initial
position ri

0, according to

where Fj
0 is the total force on bead i, Dij is the 3 × 3 i,j-

block of the 3N × 3N grand diffusion tensor, D, and Ri is a
Gaussian random vector with zero mean and covariance

If the dynamics takes place in a flowing solvent, we include
in the E-M algorithm the term vi

0, which is the fluid velocity
in the position of the bead i due to the flow field.

As the E-M is equivalent (without the Brownian drift term)
to the first-order Euler algorithm for ordinary differential
equations, Iniesta and Garcı́a de la Torre proposed and
algorithm inspired in the second-order Runge-Kutta pro-
cedure. In the I-GT procedure, each step is taken twice, in
a predictor-corrector fashion. First, the predictor step is an
E-M step, taking according to eq 5 that conducts to
preliminary new bead positions r′i. Next, the forces, diffusion
tensors, and their gradients are evaluated at these positions,
and then the step is repeated, from the original initial position,
taking the means of the quantities calculated before and after
the predictor step (indicated with superscript ′); thus, the
second corrector step is given by

Although in the I-GT algorithm each step is taken twice,
which amounts to duplicating the computing time per step,
the time step ∆t can be remarkably (over 1 order of
magnitude) longer than in the first-order E-M procedure, so
that the computing time needed to simulate a trajectory of a

given duration is notably reduced. Several authors have
commented on the advantages of the I-GT procedure.52-55

Fluctuating hydrodynamic interactions between beads can
be accounted for by means of the Rotne-Prague-Yamakawa
tensor,56,57 valid when all elements or beads of the chain
are equal size. Garcı́a de la Torre and Bloomfield58 extended
that tensor to the case of nonequal elements. Using that HI
tensor, the diffusion tensor that enters in the Brownian
algorithm, Dij, reads

where rij is the distance between beads i and j, and I is the
unit tensor. If beads i and j overlap (rij < σi + σj), then

where σ ) σi ) σj if beads are equal size or σ ) (σi + σj)/2
otherwise.59

Using this representation of the HI effect in the diffusion
tensors instead of the original Oseen tensor, the gradient ∂Dij/
∂rj terms in eqs 5 and 7 vanish and the simulation algorithm
becomes simpler.

The most time-consuming process in BD with HI is the
generation of the random displacement vectors, which require
the calculation of a matrix B that satisfies D ) B ·BT. For
this purpose, McCammon and co-workers30,46 used Cholesky
decomposition, with computing time proportional to Na with
a ) 3, and Fixman32 proposed an alternative procedure,
based on a Chebyshev polynomial approximation, that has
been implemented by some authors,60-62 with a ≈ 2. It is
clear that for sufficiently large N, the Fixman procedure will
be more efficient, although (depending on details of the
numerical implementation) for the moderate N employed in
many instances, the procedure of McCammon may be faster.
BROWFLEX will implement both methods, and a detailed
comparison is to be published separately.

As in most dynamic simulation techniques, the time step
∆t must be sufficiently small so that the forces do not change
much in the step. When hard springs and other strong
interactions are present in the model, this requires quite short
steps. However, the fluctuations in hydrodynamic interaction
are much slower than those interactions, and during such
short time steps the change in the diffusion tensor is quite
small. Then, in an efficient strategy,43,63 the D tensor is not
calculated at each time step; instead, it is kept fixed for a
block of (say, 5-50) consecutive time steps, during which
the same B is used.

As indicated above, BROWFLEX includes also the
simulation of Brownian dynamics in a flowing solvent, which
allows the prediction of rheological properties and single-
molecule phenomena in flows.37,39,64 In a homogeneous flow,
the velocity of a fluid element can be written as

ri ) ri
0 + ∆t

kBT ∑
j)1

N

Dij
0 · Fj

0 + ∆t ∑
j)i

N (∂Dij

∂rj
)0

+ Ri + (∆t)vi
0

(5)

〈RiRj〉 ) 2Dij∆t i, j ) 1, ..., N (6)

ri ) ri
0 + ∆t

kBT
1
2 ∑

j)1

N

(Dij
0 · Fj

0 + D′ij · F′j) +

∆t
1
2 ∑

j)i

N [(∂Dij

∂rj
)0

+ (∂Dij

∂rj
)′] + Ri′ + ∆t

1
2

(vi
0 + vi′)

(7)

Dij )
kBT

8πη0rij[I +
rijrij

rij
2

+
σi

2 + σj
2

rij
2 (1

3
I -

rijrij

rij
2 )]

(8)

Dij )
kBT

6πη0σ
(1 - 9

32

rij

σ )I + 3
32

rijrij

rijσ
(9)

vi
0 ) G · ri (10)
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where ri is the position vector of the fluid element, and G is
the velocity gradient tensor that characterizes the flow. Table
1 gives the expressions65,66 of that tensor for three common
type of flows which, among others, are included in our
program.

3. BROWFLEX, the Simulation Program

As commented on above, BROWFLEX is the program
devised to perform both equilibrium and nonequilibrium BD
simulations of bead-and-spring chains with any topology and
with the possibility of selecting among several interaction
potentials associated with connectors, angles, torsions, and
nonbonded beads.

The information required to control the simulation is
organized in several input files having a simple, clear format,
so that long input files that are required in some situations
can be written by other user-supplied ancillary programs.
Thus, as other available software from our lab, BROWFLEX
is a data-file driven program, and it is not necessary to have
any script for running the simulations. The main input data
file just contains the collection of names of both the other
input files and the output files, as appreciated in Figure 2A.
One of the output files will provide a run-time simulation
report and the other one will contain the trajectory, i.e. the
Cartesian coordinates defining the macromolecular confor-
mations along the time.

Three compulsory input files are those containing (i) the
initial conformation (initcfile.txt) that consists just of a list
with the beads Cartesian coordinates; (ii) information on
molecular features as number of beads and their radii,
connectivity, and parameters of the forces (moleculefile.txt);
and (iii) information on simulation features as its duration,
the sample size (number of molecules), the time step value,
and the type of algorithm used (brownfile.txt). In Figure 2,
we show two examples of moleculefile.txt, one for a 12 base
pairs double-helical DNA model (Figure 2B), and another
one for a 471 base pairs bent DNA model (Figure 2C) (point
lines indicate that content is larger but it was omitted to save
space). As appreciated, the molecular file is formed by
several blocks of information that allow for defining indi-
vidually the different components of the model. Thus, we
have a list with the beads hydrodynamic radii, next a list of
bonds where the indices of the two connected beads and the
connector force parameters are supplied, next the list of
bending interactions with the indices of the three beads
involved and the bending force parameters, then a block for
torsions that in this case are not present, and finally the list
of excluded volume interactions with the indices of the pair
of beads not involved in bonds or angles and the excluded
volume force parameters.

4. Analysis of Trajectories and Calculation
of Properties. ANAFLEX, the Analysis
Program

The other program that forms part of the SIMUFLEX suite,
named ANAFLEX, was designed to analyze the trajectories
generated by BROWFLEX. Separating the generation and
the analysis of trajectories has the obvious advantages of
speeding up the trajectory generation and allowing for
analyzing the trajectory in as many ways as desired.

Table 1. Velocity Gradient Tensors for Different Types of Flows

tensor simple shear uniaxial elongational planar elongational

veloc. grad., G (0 γ̇ 0
0 0 0
0 0 0

) (ε̇ 0 0
0 -ε̇/2 0
0 0 -ε̇/2

) (ε̇ 0 0
0 0 0
0 0 -ε̇ )

Figure 2. Examples of two of the user-supplied input data
files for BROWFLEX: (A) main input file and (B,C) molecular
input files for the 12 base pairs double-helical DNA model
and for the 471 base pairs bent DNA model (point lines
indicate that content is larger but it was omitted to save
space).
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Actually, ANAFLEX analyzes the Brownian trajectories
in a number of ways:

• One of the analysis modes consists of the evaluation, as
averages over a trajectory of a molecule simulated at
equilibrium (steady-state) conditions, of overall properties,
either conformational, like the radius of gyration, or hydro-
dynamic coefficients, in the above-mentioned rigid-body
Monte Carlo approach (RBMC),20-22,67 such as intrinsic
viscosity or diffusion coefficient.

• In another mode, the trajectories of a number of
molecules can be analyzed obtaining the averages, over the
sample, of the properties as a function of time, thus predicting
the time evolution of bulk solution properties upon the
cessation of external agents (e.g., electrical or flow fields).
Of course, it is possible to follow the evolution of each single
molecule in order to characterize molecular individualism
in single-molecule properties.39,41,68,69

• The equilibrium BD trajectories can be also analyzed to
study the translational, rotational, and internal dynamics of
rigid and flexible particles through the calculation of various
time correlation functions, C(t) ) 〈F(t0,t0 + t)〉t0, where F(t0,t0

+ t) is a quantity that depends on macromolecular conforma-
tion at time t0 and at a later time t0 + t, averaging over all
possible choices of the initial time t0. Some relevant
correlation functions computed by ANAFLEX are as follows:

Translational Correlation.

That is the Einstein equation for the center of mass (cm)
mean-squared displacement, where the quantity rcm is the
position vector of the center of mass. From a linear fit of
Ctrans(t), the translational diffusion coefficient can be obtained.

Correlation of Any Interelement Vector, Including
the End-to-End Vector for Linear Topology.

In this case, the correlated quantity is the scalar product
of the value of some characteristic vector, rij, defined between
elements i and j of the macromolecular model, at time t0

times its value at time t0 + t. Similar correlations can be
carried out for linear combinations of the rij’s, such as those
involved in the Rouse modes13,14 of flexible polymer chains.
Thus, the longest relaxation time of the chain can be
computed from the decay of the correlation function of the
first Rouse mode.28,70 For the specific case of a linear chain,
the information on the relaxation time is also contained in
the correlation function of the end-to-end vector r1N.

P2 Function of Some Characteristic Vector. The internal
dynamics of a flexible macromolecule can be characterized
by the Brownian reorientation of some unitary vector defined
inside the molecule, u. In such a case, the correlated quantity
will be the angle θ (indeed its cosine) formed by two
successive orientations of the vector when a time t has
elapsed, i.e. the scalar product of u at two times separated
by t. The correlation functions so defined are the Legendre
polynomials. Particularly, a quite common correlation func-
tion, involved in the time-dependence of various observable
properties (transient electric or flow birefringence and

deformation, NMR relaxation, etc.)30,71 is the second Leg-
endre polynomial, P2

P2 decay is usually fitted to a multiexponential in order to
obtain relaxation times associated with macromolecular
internal dynamics. In the case of P2-related electro-optic
properties (birefringence, dichroism...) of rigid macromol-
ecules, theory predicts that a set of up to five reorientational
relaxation times can be found.72,73

DDLS Correlation Function. Another interesting function
based on a second Legendre polynomial is the depolarized
dynamic light scattering correlation function, CDDLS

74,75 (also
related to the electric birefringence decay that is proportional
to the birefringence decay),76,77 from which information on
rigid-body rotation and internal dynamics can be extracted

As observed, CDDLS is related to P2 and the scalar product
uj(t0) ·uj′(t0 + t) that is the cosine of the angle subtended by
the connector vector j at instant t0 and the connector vector
j′ at instant t0 + t.

DLS Correlation Function. The (polarized) dynamic light
scattering correlation function, CDLS, may allow the simul-
taneous determination of the translational diffusion coefficient
and quantities related to the internal dynamics of flexible
particles28,74,75 and the macromolecular global size

where the modulus of the scattering vector, |q| ) (4π/λ)sin(θ/
2), is determined by the wavelength of light, λ, and the
scattering angle, θ.

Thus, dynamic coefficients (as translational diffusion
coefficient) and time properties (as relaxation times) can be
obtained by linear, polynomial, or multiexponential fits of
different time correlation functions. Those fits are also carried
out by ANAFLEX. In particular, ANAFLEX uses routines
adapted from the program DISCRETE78,79 to make multi-
exponential fits. It is well-known that fitting multiexponential
functions with three or more components is an ill-posed
problem. Simpler situations are those of rigid and symmetric
particles or weakly bending rods. In any case one can hope
to extract the longest or a mean relaxation time.73

As BROWFLEX, the ANAFLEX program is driven by
simple data files. Figure 3 is an example of the only and
simple input file for ANAFLEX. The three first lines are
the names of different output files, then it comes a sequence
of numeric codes or “flags” to inform ANAFLEX about the

Ctrans(t) ) 〈[rcm(t0) - rcm(t0 + t)]2〉t0
(11)

Cij(t) ) 〈rij(t0) · rij(t0 + t)〉t0
(12)

〈P2(t)〉 )
3〈[u(t0) · u(t0 + t)]2〉 - 1

2
)

3〈cos2θ(t0, t0 + t)〉t0
- 1

2
(13)

CDDLS(t) )
1

(N - 1)2 ∑
j)1

N-1

∑
j′)1

N-1

〈P2[uj(t0) · uj′(t0 + t)]〉t0

(14)

CDLS(t, q) ) 1

N2〈 ∑
i)1

N

∑
j)1

N

e-iq · [ri(t0)-rj(t0+t)]〉
t0

(15)
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properties to be calculated and the type of analysis to be
performed, and finally the name of the trajectory file is
supplied.

5. High-Performance Simulation in Multicore
Platforms

In many instances, BD simulation problems are suitable for
high-performance computing in multicore servers or clusters,
because they may involve somehow independent simulations.
The case is trivial when simulation is carried out for each
of a sample of many molecules, as in the above-mentioned
studies of time-dependency of bulk properties or single
molecule behavior. Steady-state averages can be calculated
either from a very long trajectory of one molecule or as mean
values of the averages of the values computed for a number
of molecules, and something similar happens when comput-
ing correlation functions C(t). One can either obtain C(t) from
a single, very long simulation or determine the function for
a number of independent trajectories, averaging C(t) for each
time t. The multiple trajectories can be made practically
independent, if they are sufficiently long, by changing the
sequence of random numbers - in practice, changing the seed
of the sequential generator. Truly independent trajectories
are those starting from different, initial conformations that
would be generated a priori, for instance by Monte Carlo
procedures, or even with an inexpensive BD simulation
without HI.

In order to take advantage of multicore computers and
clusters (even a computer with two Quad processor has eight
cores), we have set up a scheme to run such multimolecule
simulations, based on two ancillary tools. First, Multi-
BROWFLEX “clones” what would be the files for a single
simulation, producing multiple copies changing either the
seed of the random numbers or the file containing the initial
coordinates. It also generates a batch file for all the execution
that is submitted to a load-balancing manager such as Sun
Grid Engine. The outcome consists of multiple results files,
one for each trajectory. Then, there is another tool, Multi-
ANAFLEX, which is in charge of collecting and reading all
those files, producing the final results as the proper averages
over those of each molecule.

6. Examples: Multiscale Simulations of DNA

In order to demonstrate the usefulness and versatility of the
mechanical model, BD algorithms and other methodologies
implemented in the BROWFLEX suite, we have chosen a
well-known and most relevant macromolecule, DNA, in sizes

ranging from ∼10 through ∼105 base pairs. With a conve-
nient, more or less coarse-grained bead-and-connector model,
simulations of the dynamics in such multiple scales are
possible employing the same methodology. Next, we show
how BROWFLEX works by applying it to study the
dynamics of several DNA models, always in experimentally
observable situations.

6.1. A Double-Helical Model. There are macromolecular
solution properties related to the local dynamics and structure
of the molecule. In case of B-DNA this implies the
convenience of modeling the double-helix properly. It is clear
that atomic level simulations are quite expensive in CPU
time. Then a suitable mesoscale model is built by considering
the nucleotides in each strand as repetitive units. That model,
proposed years ago by Horta and Garcı́a de la Torre,80,81

contains the characteristic double-helix parameters: number
of base pairs, pitch, phase angle, helix diameter, etc. This is
a highly valuable model to represent short fragments of DNA.
Our group has already employed that model, where for
simplicity beads lie only on the outside, in order to study
hydrodynamic properties of double-helical DNA63 (later, in
the spirit of this kind of mesoscale simulations, similar
models have been employed by other workers).82,83 If larger
DNA fragments were to be simulated, possible interpenetra-
tion of double helices can be avoided by using the hard-
sphere excluded volume included in our program or alter-
natively some other DNA model.84,85

In this model, nucleotides are modeled by beads all of
them with the same hydrodynamic radius, σ. Then, the
number of beads will be N ) 2Nbp, where Nbp is the number
of base pairs (bp). In addition, some degree of flexibility is
incorporated by using hard Hookean, elastic connectors
(Fraenkel springs, defined in paragraph after eq 2). For the
sake of minimizing the amount of interactions but keeping
the double-helical shape and the stiffness at short scale, we
found it adequate to connect each bead i to

1. its first neighbors along its strand (beads i ( 1), which
keeps connectivity and bond equilibrium length.

2. its second neighbors along its strand (beads i ( 2),
which accounts for bending interactions.

3. its third neighbors along its strand (beads i ( 3), which
accounts for torsional interactions.

4. its counterpart in the other strand (bead i + Nbp), which
accounts for interactions between nucleotides forming the
base pair.

5. the first neighbors of its counterpart in the other strand
(beads i + (Nbp ( 1)), which is necessary in order to keep
the strands together.

Figure 4 shows this model (in the straight, equilibrium
conformation) displaying all the connectors involving one
of the innermost beads (indeed, these are the connectors
whose data have been kept in Figure 2B).

As described in ref 86, we performed BD simulations by
using program BROWFLEX for double-helical DNA models
representing oligonucleotides with a different number of base
pairs Nbp, all of them with the following features: helix radius,
r ) 10 Å, pitch ) 3.4 Å, phase angle either φ ) 180o (a
symmetrical helix, Figure 4) or φ ) 120o (a nonsymmetrical
helix, more akin to the Watson-Crick structure), H )

Figure 3. Example of the user-supplied input data file for
ANAFLEX.
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200kBT/b1
2, where b1 is the equilibrium length of the connector

binding bead i to its first neighbor in its own strand, T )
293 K, ηs ) 0.01 poise, hydrodynamic bead radius σ ) 3.5
Å, and equilibrium spring length b1 ) 7.0 Å. The trajectories
generated by the Brownian dynamics simulation were
analyzed with program ANAFLEX in order to compute the
translational diffusion coefficient, Dt, and the rotational
relaxation time of the end-to-end vector, τee. Within the
statistical uncertainty of the simulations, the results for the
two choices of φ are identical. Table 2 shows a comparison
between the values of those dynamic properties obtained by
simulation and the experimental values obtained by Eimer
and Pecora.87 As appreciated, the agreement is quite good.
It is noteworthy that Dt and τee are indeed quite close to the
predictions of a rigid-body hydrodynamic calculation, using
the HYDRO++ program8 for the straight equilibrium
conformation, demonstrating, thanks to BD simulations, the
validity of the RBMC treatment for overall properties of quite
stiff molecules. However, the relaxation time for the 〈P2(t)〉
function for a vector perpendicular to the helical axis differs
remarkably from the rigid-body prediction. While bending
is scarcely noticeable in such short oligonucleotides, torsion
of the helix, which influences the diffusivity of such

transversal vector, is much more influential (for more details,
see refs 63 and 86).

Mesoscale models, with one, two, or a few elements per
amino acid residue15,88 are now being considered as an
alternative to atomistic simulation to predict dynamics of
natively unfolded (intrinsically disordered) proteins or that
of the folding process. Such models, and the important,
recently demonstrated,89 HI effects in protein dynamics, can
be very adequately covered with our methodology.

6.2. A String of Touching Beads. A higher level in the
coarse-graining procedure results from considering the mac-
romolecular chain from a global perspective for which the
precise local structure is not relevant and assuming that its
flexibility is more or less uniformly distributed along its
backbone. These assumptions give rise to the well-known
wormlike chain model (or Kratky-Porod chain). In such a
model, the double-helical structure of B-DNA is not explic-
itly considered. The wormlike chain can be represented with
the generalized bead-and-spring model by setting constant
the connector lengths, as in the case of a freely jointed chain,
and allowing for the bond angles to fluctuate around their
equilibrium values (0o for an actual wormlike chain) with
an amplitude that depends on the flexibility of the chain.
Thus, the model can be used to represent from rigid to
flexible structures just by playing with the bond angle
parameters. In the same way, the model can be used to
represent structures with local bents just by setting the bond
angle located at the bent position to its characteristic value.

A limiting case of the wormlike chain model would be a
string of nearly touching beads each embracing a piece of the
double helix (see Figure 5). This macromolecular representation,
which could be termed as a “fine-grained” model, was initially
suggested by Schellman,90 implemented in Monte Carlo
simulations by Hagerman and Zimm22 and in Brownian
dynamics simulation by Allison and McCammon,30,91 and is
useful in representing short fragments of DNA of a few
hundreds of base pairs. The bead diameter, which is the same
as the connector length, is set to b ) 24.5 Å. In that way, the
diffusion coefficients of a straight string of beads are practically
identical to those of a cylinder with a diameter of 20 Å, which
is the hydrated diameter of DNA deduced from cylindrical
models.92 Then, the contour length of a model chain with N
beads would be L ) Nb ) 24.5N Å. On the other hand, the
length of a double-helical B-DNA related to the number of base
pairs is L ) 3.4Nbp Å so that the relationship between N and
Nbp is N ) 0.14Nbp. In the Schellman-Hagerman-Zimm model,
the flexibility of the chain is represented by a bending potential
quadratic in the bending angle, R, subtended by two successive
links between neighbor beads. The bending force constant is
related to the persistence length, P, by Q ) kBTP/b. Therefore,

Figure 4. Double-helical model for DNA (A) showing the
connectors supported by one bead and (B) showing only the
connectors between neighbors in each strand.

Table 2. Diffusion Coefficients and Orientational
Relaxation Times of DNA Oligonucleotides Obtained via
Brownian Dynamics Simulationsa

Nbp simul. φ ) 1800 simul. φ ) 1200 exptl

Dt × 107(cm2 s-1)
8 16.3 ( 1.8 16.7 ( 1.6 15.3
12 13.2 ( 0.4 13.4 ( 1.2 13.4
20 10.6 ( 0.3 10.8 ( 0.5 10.9

τee (ns)
8 3.3 ( 0.2 3.9 ( 0.5 3.2
12 6.1 ( 0.7 7.8 ( 0.8 6.4
20 16.7 ( 1.7 19.0 ( 1.3 16.2

a Comparison to experimental values obtained by Eimer and
Pecora.87

Figure 5. Sketch of a nearly touching beads model where
each bead embraces a piece of the DNA double helix.

SIMUFLEX: Algorithms for Flexible Molecules J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2613



for a typical P ) 500 Å and a T ) 293 K, Q ) 8.24 × 10-13

erg. The connector length is kept more or less constant (∼10%
in length fluctuation) by using stiff Fraenkel springs with a
spring constant H ) 100kBT/b2 ) 67.4 erg/cm2.

According to the above specifications and values of the
model parameters, a DNA of 207 bp was modeled by 29
touching beads as illustrated in Figure 6. We simulated two
variants of such a DNA molecule: a) an unbent DNA, with
the equilibrium value of all the bond angles equal to zero,
and b) a bent DNA, with the equilibrium value of the bond
angles zero except for the central one that was set to 40o.

This comparison is intended to analyze the effect of such
sharp bents, induced by some special base sequences, in the
diffusivity of short DNA molecules.73,93 For both model
chain, BD simulations with HI were carried out by using
BROWFLEX. From the generated trajectories, the transla-
tional diffusion coefficient and the orientational longest
relaxation time of the end-to-end vector coming from both
the correlation function based on depolarized dynamic light
scattering (applicable to electric birefringence decay) and the
correlation function based on the second Legendre polyno-
mial P2 were computed by using ANAFLEX. As noted
above, Hagerman and Zimm22 anticipated, other works67,94

confirmed that the RBMC treatment (implemented in MON-
TEHYDRO)19 works well for quite stiff semiflexible mac-
romolecules in the prediction of not only translational
diffusion but also overall rotational diffusion. Table 3
demonstrates that the RBMC results are in very good
agreement with those of the BD simulations.

6.3. Coarse-Grained Model of the Wormlike Chain. A
cruder coarse-grained representation of the wormlike chain
mentioned above consists of a string of nontouching beads
connected by stiff springs, including a bending potential
between successive connectors that determines the persis-
tence length of the chain (see Figure 7). BD simulations on
this kind of model were presented years ago by Allison and
co-workers.31,76,91,95

The only free parameter of this model is the number of
beads, N. As long as N is large enough the results are
independent of its exact value. Thus, we can assign values
to the parameters of our bead-and-spring chain by previously
choosing a value for N (it is remarkable that a DNA molecule
with 2311 base pairs can be modeled as a chain of only 10
beads).95 Then, the connector length is fixed by the relation-
ship b ) L/(N - 1). The constant of the stiff springs is set
to H ) 100kBT/b2, and the equilibrium bending angle is set
to R0 ) 0. Finally, the constant of the bending potential, Q,
is chosen to adjust the persistence length, P, or the radius of
gyration, Rg, of the real macromolecular chain, and the bead
radius, σ, is chosen to adjust its translational diffusion
coefficient, Dt. Using the just described parametrization
procedure, we modeled an unbent DNA of 471 bp with N )
21 beads and a bent DNA of 471 bp with both N ) 11 and
N ) 21 beads. The central bent was set to 45o in order to
reproduce the kind DNA worked out by Stellwagen and co-
workers.93 Figure 8 shows the evolution of the depolarized
dynamic light scattering correlation function for the three
simulated DNA model chains. Those correlation functions
were obtained after analyzing with ANAFLEX the corre-
sponding Brownian trajectories with a duration t ) 2000 µs
(much longer than the longest relaxation time) generated with
BROWFLEX. As observed, the value of N does not influence
the results. On the other hand, the difference in dynamics of
bent and unbent DNA is easily characterized. That figure is
in agreement with Figure 2(b) in ref 93.

6.4. Single-Molecule Stretching of Long DNA in a
Flow Field. It is well-known that flexible polymer chains
subjected to extensional flows with a rate of strain greater
than a certain critical value experience the so-called “coil-

Figure 6. Nearly touching beads model for a DNA of 207
base pairs.

Table 3. Diffusion Coefficients and Orientational
Relaxation Times of Bent and Unbent DNA Obtained via
Brownian Dynamics and Monte Carlo Simulations

bent unbent

Dt × 107 (cm2 s-1) (RBMC) 2.35 2.33
Dt × 107 (cm2 s-1) (BD) 2.34 2.32
τee (µs) (BD-P2) 2.8 3.2
τee (µs) (BD-DDLS) 2.5 3.1

Figure 7. Bead-and-connector model for a wormlike chain.
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stretch” transition.96 This phenomenon consists of the abrupt
unraveling of the random coil to a stretched conformation.
In an already classical series of single-molecule experiments
carried out with DNA, Chu and co-workers showed that the
coil-stretch transition occurs in a particular manner for each
chain in a given sample.41,97,98 This is called molecular
individualism.68 Brownian dynamics simulation has been
revealed to be an adequate technique to reproduce such a
behavior.17,39,40

We show that BROWFLEX is able to reproduce the
experimental results of a sample of DNA molecules as those
employed in one of the pioneering experiments by Chu et
al.41 In that experiment a circular λ-DNA with 48.5 × 103

base pairs was converted into a linear chain by thermal
treatment. Then, each macromolecular chain was stained
fluorescently, subjected to elongational flow, and its stretch-
ing behavior was monitored by means of fluorescence
microscopy. According to the authors of that work the stained
DNA employed had a contour length L ) 22 µm and a radius
of gyration 〈s2〉1/2 ) 0.73 µm (as estimated from the measured
translational diffusion coefficient, Dt ) 0.47 µm2/s). Thus,
assuming a characteristic persistence length for DNA of P
) 0.05 µm, the ratio L/P = 440 ensures that DNA is a
flexible chain with random coil equilibrium conformation.
Finally authors inform that the solvent viscosity is ηs ) 41
cP and the working temperature is T ) 22.7 °C. Since we
are interested in reproducing the global conformation and
dynamics of a quite large and flexible DNA chain, we can
use a rough coarse-grained model. The model consists of a
linear chain of N ) 20 beads connected by N - 1 ) 19
FENE springs that are able to capture both the Gaussian
statistic that appears at low strain rate and the finite
extensibility that plays a role at high strain rate. Thus, each
bead represents a large DNA segment. Taking into account
that L ) lmax(N - 1), we get a maximum spring length lmax

) 1.16 µm. Then, by using the experimental radius of
gyration, we get a value for the equilibrium spring length
that, after some fitting refinements, turns out to be b ) 0.448
µm.

We performed BD simulations of that FENE chain under
elongational flow without EV interactions, which implies
theta conditions, and including fluctuating HI, with a value
of the hydrodynamic parameter h* ) 0.25, which corre-
sponds to a hydrodynamic bead radius σ ) 0.257b.

One of the optional input files, intended to describe steady
or time-dependent flows (see BROWFLEX user guide), is
used to specify a steady elongational rate ε̇ ) 0.86 s-1. That
is the maximum elongational rate employed in ref 41, a value
for which the molecular individualism is more clearly
appreciated. The property monitored in the experiments by
Chu and co-workers was the chain extension along the flow
direction; therefore, we studied also the time evolution of
that chain property. In order to get a good ensemble, we
simulated 1500 molecules. In this study, ANAFLEX works
in the multimolecule mode, supplying the time evolution of
the sample-average and single-molecule properties (the
extension as measured by Chu and co-workers is among the
numerous properties that the program can analyze).

Figure 9 is a comparison of the evolution of the molecular
extension computed from our simulations to that obtained
experimentally.41 The molecular individualism is appreciated
as the particular paths followed by the time evolution of the
chain extension: different chains experience coil-stretch
transition at different times and reach different amount of
extension. As observed, simulation results are in agreement
with experiments as well as with other computer simula-
tions.99 Furthermore, in Figure 10 we compare the time

Figure 9. Time evolution of the extension of individual DNA
molecules subjected to elongational flow. Comparison of
experimental (left graph adapted from ref 41) and simulation
(right graph) results.

Figure 10. Time evolution of the distribution of the extension
of a sample of DNA molecules. Comparison of experimental
(left graph adapted from ref 41) and simulation (right graph)
results.

Figure 8. Evolution of the DDLS correlation function for the
three DNA molecules modeled as wormlike chains.
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evolution of the histogram representing the probability
distribution of the molecular extension obtained from simula-
tions with that reported by Perkins et al. (Figure 1(B) in ref
41). Both histograms series are in excellent agreement.
Initially, when the Hencky strain is small ε̇t ) 2.5, most of
the chains are close to their coil conformation although some
of them can be stretched, and therefore both histograms are
slightly broad and present a maximum at low extension (∼5
µm). As time goes by and strain increases, histograms start
to get broader and eventually a peak at a extension corre-
sponding to the fully stretched conformation starts to develop
owing to the increase number of chains that become
stretched. That peak occurs at the same strain value in both
experiment and simulation. Interestingly, at a higher strain
a second peak at half the maximum extension arises. That
second peak corresponds to folded “hairpin” conformations,
which have an extension approximately half of the contour
length. Again, the simulation was able to reproduce the
experimental evidence.

7. Concluding Remarks

We provide a useful tool for the Brownian dynamics
simulation and analysis of flexible and semiflexible bead-
and-spring macromolecular chain models, SIMUFLEX,
whichconsistsof twoprograms,BROWFLEXandANAFLEX.
The programs are easy to use and were designed to be quite
general. Thus, BROWFLEX can handle macromolecular
models with any topology and include a number of common
interaction potentials that can be easily extended in future
versions. A key feature of this BD simulation tool is
the inclusion of fluctuating HI, that allows to perform more
realistic simulations. On the other hand, ANAFLEX is quite
simple to employ and contemplates the analysis of a number
of solution properties (in both steady-state and time-
dependent conditions) and time correlation functions, which
can also be extended in future versions. The examples
employed in this paper have tried to show how the programs
work and have in common to correspond to simulations of
DNA dynamics in different scales. Thus, it was shown how
SIMUFLEX is able to produce results comparable to
experiments for different DNA problems that require to
model the DNA chain with a different coarse-grain level.

8. Computer Methods

The SIMUFLEX suite that includes the BROWFLEX and
ANAFLEX programs, as well as MONTEHYDRO and other
related public-domain software, can be freely downloaded
from our Web site at http://leonardo.inf.um.es/macromol.
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Abstract: We demonstrate that a video gaming machine containing two consumer graphical
cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than
180× in Hartree-Fock energy + gradient calculations. Such performance makes it possible to
run large scale Hartree-Fock and Density Functional Theory calculations, which typically require
hundreds of traditional processor cores, on a single workstation. Benchmark Born-Oppenheimer
molecular dynamics simulations are performed on two molecular systems using the 3-21G basis
set - a hydronium ion solvated by 30 waters (94 atoms, 405 basis functions) and an aspartic
acid molecule solvated by 147 waters (457 atoms, 2014 basis functions). Our GPU implementa-
tion can perform 27 ps/day and 0.7 ps/day of ab initio molecular dynamics simulation on a single
desktop computer for these systems.

Introduction

The idea of using graphical hardware for general purpose
computing goes back over a decade.1-3 Nevertheless, early
attempts to use GPUs for scientific calculations were largely
stymied by lack of programmability and low precision of
the hardware. The recent introduction of the Compute Unified
Device Architecture (CUDA) programming interface4 and
hardware capable of performing double precision arithmetic
operations by Nvidia significantly simplified GPU program-
ming and has triggered an increasing number of publications
in different fields, such as classical molecular dynamics5-9

and quantum chemistry.10-15 Our initial implementation of
two-electron repulsion integral evaluation algorithms13 and
the entire direct self-consistent field procedure on the
GPU14,15 demonstrated the large potential of graphical
hardware for quantum chemistry calculations. In this article,
we continue exploring the use of GPUs for quantum
chemistry, including the calculation of analytical gradients
for self-consistent field wave functions and the implementa-
tion of ab initio Born-Oppenheimer (BO) molecular dy-
namics. We compare the GPU performance results to the
GAMESS22 quantum chemistry package running on an Intel
Core2 quad-core 2.66 GHz CPU workstation, a state-of-the-

art desktop computing system. Our “machine to machine”
rather than “GPU to CPU core” comparison provides a
realistic estimate of the actual speedup that can be obtained
in real calculations. Comparison of the total time required
to calculate energies and gradients on these two platforms
shows that the GPU workstation is 2 orders of magnitude
faster than the CPU workstation. This allows us to carry out
ab initio molecular dynamics of large systems at more than
a thousand MD steps per day on a desktop computer.

Analytical Energy Gradient Implementation. The gen-
eral formula for nuclear gradients follows directly from the
expression for the Hartree-Fock energy including a term
accounting for the basis set dependence on molecular
geometry16

where A labels an atomic center, Wµν is the energy weighted
density matrix, Sµν is the overlap matrix, Dµν is the density
matrix, and [µν|λσ] are two-electron repulsion integrals over
primitive basis functions* Corresponding author e-mail: todd.martinez@stanford.edu.

∇AEHF ) ∑
µν

Dµν(∇AHµν) - ∑
µν

Wµν(∇ASµν) +

∑
µνλσ

(DµνDλσ - 1
2

DµλDνσ)[∇A(µν)|λσ] (1)
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where rb ≡ {x,y,z} is the electronic coordinate, Rbµ ≡
{Xµ,Yµ,Zµ} is the position of the atomic center associated
with the µth basis function, and Rµ determines the width of
this basis function. The total angular momentum of �µ is
given by the sum of the three integer parameters l ) nx + ny

+ nz and is equal to 0, 1, 2, for s-, p-, d-type functions, etc.
Our program currently supports only s- and p-functions,
although we are working on implementation of higher orbital
momentum functions. The first two sums in eq 1 require little
work compared to the last one and are calculated on the CPU
in our implementation. All calculations on the CPU are
carried out in full double precision, while calculations on
the GPU are carried out in single precision unless otherwise
indicated. The last sum, which is evaluated on the GPU,
combines Coulomb and exchange contributions and runs over
only those µν pairs where at least one of µ or ν is centered
on atom A. As in our implementation of direct SCF,14,15 we
treat the Coulomb and exchange terms separately, generating
all required two-electron integrals and gradients from scratch
using the McMurchie-Davidson algorithm17

where Λp (Λq) is a Hermite Gaussian product centered on
Rbµν
+ (Rbλσ

+ ), and Ep
µν (Eq

λσ) are the expansion coefficients of the
Cartesian Gaussian product µν (λσ) over the Hermite
functions, i.e.

The nuclear gradients ∇A and ∇B can now be represented in
the new variables Rbµν

+ and Rbµν
-

where A and B label the atomic centers of the functions �µ

and �ν, respectively. In the following, we will use the notation
[p|q] as a shorthand to indicate the integral over Hermite
functions in eq 4, i.e. [Λp|Λq]. Thus, the indices p and q are
pair indices corresponding to µν or λσ, respectively. This
notation follows that introduced earlier in a comprehensive
article by Gill on two-electron integral generation.18

A. Coulomb Contribution. The Coulomb contribution
to ∇AE is generally given by

Following established practice, we expand the Cartesian
Gaussian primitive pair products over Hermite Gaussian basis
functions and preprocess the density matrix elements
accordingly19,20

Substituting eq 8 into eq 11 leads to the final result for
∇A

CoulEHF

In the cases under consideration here (s and p basis functions
and no special treatment of sp-superblocks), there is only
one pair of indices µν for a given p, and we indicate this
with the notation µ(p) in eq 13. This dependence is
suppressed for notational convenience in the following. We
calculate Jp and J′p on the GPU, while the preprocessing of
eq 12 and the postprocessing of eq 13 are carried out on the
CPU.

Evaluation of Jp and J′p is performed in a way very similar
to our GPU implementation of the Coulomb matrix formation
algorithm.15 Here we use the so-called 1T1PI mapping
scheme where one GPU thread calculates one primitive
integral (or a batch of integrals if higher than s angular
momentum functions are involved). This has proved to be
the best choice if all required quantities are calculated directly
from primitive integrals.13 The fundamental data organization
used for calculating Jp and J′p is represented in Figure 1,
using the same notation as in our previous article.15 The left
and upper triangles represent the index-symmetry pruned lists
of the ([p|, [3p|), and |q] pairwise quantities (PQs) with
doubled off-diagonal terms. The PQs are first organized into
three groups according to the total angular momentum of
the pair products, ss, sp, or pp. Furthermore, the [p| and |q]
lists within each angular momentum grouping are sorted
according to their Schwartz upper bounds

where we also use the maximum Cartesian density matrix
elements among all angular momentum functions in a batch.

[µν|λσ] ) A �µ( rb1)�ν( rb1)
1

r12
�λ( rb2)�σ( rb2)drb1

3drb2
3

(2)

�µ( rb) ) cµ(x - Xµ)nx(y - Yµ)ny(z - Zµ)nz ×

exp(-Rµ( rb - Rbµ)2) (3)

[µν|λσ] ) ∑
pq

Ep
µνEq

λσ[Λp|Λq] (4)

�µ( rb - Rbµ)�ν( rb - Rbν) ) ∑
p

Ep
µν(Rbµν

- )Λp( rb - Rbµν
+ )

(5)

Rbµν
+ )

RµRbµ + RνRbν

Rµ + Rν
(6)

Rbµν
- ) Rbµ - Rbν (7)

∇A )
Rµ

Rµ + Rν
∇R+ + ∇R- (8)

∇B ) ∇R+ - ∇A (9)

∇A
CoulEHF ) ∑

µνλσ
DµνDλσ[∇A(µν)|λσ] (10)

∇A
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Following the usual practice,19 we calculate the Schwartz
upper bound in eqs 16 and 17 assuming p and q have zero
angular momentum. The grouping and sorting of the lists of
PQs as well as the calculation of the relevant quantities is
carried out on the CPU.

When combined, ([p|, [3p|), and |q] lead to the ([p|q],
[3p|q]) integrals required by eqs 14 and 15. These are
depicted by blue-green bordered squares in Figure 1 with
one square denoting all ([p|q], [3p|q]) integrals computed
simultaneously by one GPU thread. For example, there are
4 × Nq such integrals ([Λ0|q], [Λx|q], [Λy|q], and [Λz|q]) if
both µ and ν functions have zero angular momentum, and
the |q] batch has Nq PQs (Nq ) 1, 4, 10 for ss-, sp-, pp-type
batches, respectively). Because of the grouping by angular
momentum, the resulting [p|q] integral grid consists of nine
rectangular segments of different integral types ([ss|ss],
[ss|sp], and so on, up to [pp|pp]). Each of these integral grids
is handled by a different GPU kernel, optimized for the
specific angular momentum. For simplicity, only one such
grid segment is presented in Figure 1. The pink-blue
coloration in Figure 1 represents the density-weighted
magnitude of the Schwartz bounds for the pair-quantities and
the resulting [p|q] integrals.

It can be easily seen from eqs 14 and 15 that Jp and J ′p
can be computed by summing all integral contributions in
one row p. Because we use the 1T1PI mapping, each blue-
green bordered square in Figure 1 is mapped to a GPU thread
depicted as a small orange square. For simplicity, four such
GPU threads are depicted, organized into a 2 × 2 thread
block. In practice, we use 8 × 8 thread blocks in the

implementation. One such block then processes two rows
of the integral matrix in column-by-column fashion, ac-
cumulating partial results in the corresponding GPU threads
with double precision accuracy. Thus, the integrals and
integral derivatives are computed in single precision, but the
accumulation is done in double precision (on the GPU). As
shown previously,15 this procedure avoids unnecessary
precision loss with minimal cost. After the block reaches
integrals with a Schwartz upper bound smaller than 10-11

au, the scan is aborted, and subsequent intrablock row-wise
sum reduction leads to two Jp and J ′p elements. The PQ
presorting step guarantees that integrals omitted during the
scan are even smaller than 10-11 au and thus can be safely
disregarded. Because Jp is exactly the same quantity calcu-
lated in our previously described Coulomb matrix formation
algorithm,15 while J ′p merely adds some additional terms to
be calculated, we simply modified the J-matrix GPU kernels
to incorporate these additional terms.

B. Exchange Contribution. The exchange contribution

does not allow easy splitting of the work into the Dp[p| and
|q]Dq product representation and thus requires different data
organization. Therefore, we generate all required PQs and
integrals from scratch without reusing any data from the
Coulomb step. In addition, we do not preprocess the density
matrix elements on CPU. Instead, the density matrix is
preprocessed “on the fly” for each integral

Figure 1. Jp and J ′p calculation algorithm. Each blue-green-bordered square represents four sets of primitive Hermitian integrals
([p|q] and [3p|q]), which need to be contracted with density matrix elements along a p-row in order to obtain Jp and J ′p. The
upper and left triangles denote the bra- and ket-pair quantities, sorted according to their Schwartz upper bound (represented by
the pink-blue coloration). A GPU 2 × 2 thread block is delineated by a large orange-bordered square comprised of four smaller
yellow-bordered squares (GPU threads). The yellow arrows labeled “memory loads” represent elements of the [p| and |q] linear
arrays loaded into local memory by the corresponding GPU threads. The blue arrows show the direction along which the block
scans the two neighboring rows, leading to two {Jp, J ′p} pairs of elements. The scan is aborted once each thread in a block
encounters a [p|q] integral whose Schwartz upper bound is smaller than 10-11 au.

∇A
ExchEHF ) -1

2 ∑
µνλσ

DµλDνσ[∇A(µν)|λσ] (18)
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Substituting eq 8 into eq 19 leads to the final result for the
exchange contribution to the energy gradient

Unlike in the Coulomb energy gradient calculation, here only
the [µν| pair list is pruned according to µν T νµ symmetry
(doubling off-diagonal pairs as appropriate), while the |λσ]
list contains all O(N2) pairs, where N is the total number of
primitive Gaussian-type basis functions. This organization
is dictated by the need to carry out prescreening of small
integrals in a way that is commensurate with memory access
and load balancing requirements on the GPU. Because the
|λσ] list is not pruned by index-symmetry, there are four
rather than three different angular momentum type λσ pairs
– ss, sp, ps, and pp. Thus, the final integral grid contains
twelve segments of different integral types (and requires
twelve GPU kernels to handle them). Figure 2 provides more
details on the GPU implementation of the exchange contri-
bution to energy gradients. For simplicity, only one segment,
e.g. ss|ss, is represented. Other segments are treated in the
same way. We group [µν| and |λσ] pairs according to the
first index (µ or λ, respectively). This procedure leads to N
blocks, each with fixed [µi. . . | and |λi. . .]. Because the |λσ]
list is not index-symmetry pruned, all |λi. . .] blocks contain
N Gaussian pairs. The number of pairs in the [µi. . .| blocks
varies (with a maximum of N) because the [µν| list is index-
symmetry pruned. All [µi. . .| and |λi. . .] blocks are sorted
according to the Schwartz upper bound of corresponding [µiν|
and |λiσ] pairs. Note that no density matrix information is
used in this sorting step. These presorted [µiν| and |λiσ] PQs
are delineated by left and upper triangles in Figure 2, where
the pink-blue coloration represents the Schwartz upper bound
magnitude (as in Figure 1). After the PQs are sorted, Kp and
K′p are calculated on the GPU by a series of twelve
subsequent GPU kernel calls (one for each angular momen-
tum segment). Figure 2 provides details on the GPU
implementation. Here, a 2 × 2 GPU thread block (we use 8
× 8 blocks in our program) is tasked to calculate two Kp

and K′p quantities by scanning two nearby rows of the
integral grid and accumulating (in double precision, as in
the Coulomb algorithm) the partial results in the GPU
registers. During the scan, each thread monitors the product
of Schwartz integral upper bound and the maximum Carte-
sian density matrix elements among all angular momentum
functions in a batch, i.e.

When this product becomes smaller than 10-11 au, a GPU
thread aborts processing of the |λi. . .] row and resumes from

segment |λi+1. . .]. The fact that [p| and |q] pairs are organized
into |µi. . .] and |λj. . .] blocks guarantees that for all threads
in a GPU block the maximum density matrix element |Dµiλj

|max

is the same. Thus, all threads in a GPU block will abort the
scan of the |λi. . .] segment simultaneously, avoiding potential
problems due to load misbalancing. After the scan is
complete, the final result is obtained by intrablock sum
reduction.

C. Multi-GPU Parallelization. The energy gradient code
is parallelized using POSIX threads in order to use all
available GPUs in a workstation. For both Coulomb and
exchange contributions, the work is split into 8-row segments
and mapped to the devices cyclically. Each GPU thus
computes its portion of Jp, J ′p, Kp, and K′p and sends the
results back to the host CPU, where they are postprocessed
and the final energy gradient is calculated. This model also
seems well suited for implementation on a multiple GPU
node cluster (using the MPI framework,21 for example) since
the work is distributed in such a way that each node has
all the data required to calculate its portion of the integrals
from the very beginning, avoiding expensive internode
communication. Preliminary implementations support this
conjecture, and work along these lines is in progress.

A series of tests performed on a system with two GeForce
295GTX cards, each having two GPU processors, demon-
strated reasonable speedup of 3.0-3.5×, relative to a single
GPU processor. Reported timings include the time required
to calculate and sort the pair-quantities, which is currently
performed on a single CPU core, as well as the data transfer
time required to copy the PQs to the GPU and then copy
the results back to the CPU.

Results and Discussion

To assess the performance of the GPU code, we carried out
a series of benchmarks on a representative set of test
molecules and compared the results to GAMESS22 ver. 11
Apr 2008 (R1). The GAMESS code was executed on an Intel
Core2 quad-core 2.66 GHz CPU with 8GB main memory,
which represents a state-of-the-art desktop computing system.
All four CPU cores were used in parallel in order to obtain
maximum CPU performance. The GAMESS program was
compiled with the GNU Fortran compiler and linked with
Intel MKL ver. 10.0.3. Our GPU code ran on the same
workstation with two Nvidia GeForce 295GTX cards operat-
ing in parallel. All performance results in this article
correspond to this “workstation to workstation” comparison
rather than “a single GPU to a single CPU core” comparison.
This provides a realistic assessment of the real performance
gain one can obtain from a GPU system. For brevity, this
quad-core CPU machine and the dual-GPU machine are
referred to as “CPU” and “GPU”, respectively.

Table 1 presents the time required to calculate the
Hartree-Fock energy gradient vector for caffeine
(C8N4H10O2), cholesterol (C27H46O), buckyball (C60), taxol
(C45NH49O15), valinomycin (C54N6H90O18), and olestra
(C156H278O19) molecules using the 3-21G basis set. Among
these test systems, the largest has 2131 basis functions.
One can see that even for a small molecule such as
caffeine, the GPU outperforms the CPU by a factor of

∇A
ExchEHF ) -1

2
∇A( ∑

p

Ep
µν ∑

q

Dpq′ [Λp|Λq]) (19)

Dpq′ ) Eq
λσDµλDνσ (20)
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2( ∑
p

Rµ

Rµ + Rν
Kp′Ep

µν + ∑
p

Kp∇R-Ep
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([p|p][q|q])1/2|Dµν|max (23)
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6×. For medium-size molecules the speedup ranges
between 20× and 25×, while for large molecules it
exceeds 100×. In addition, in Table 2 we present the total
program execution time, energy + gradient, for the same
set of molecules. In both CPU and GPU calculations the
total number of SCF iterations required to converge the
wave function was exactly the same, although it differed
among the molecules. The resulting speedups range from
4× for small-, 30×-40× for medium-, and up to almost
200× for the largest molecules. Clearly, these results
represent a mixture of different coding styles, compiler

efficiencies, and hardware architectures. However, it is
also obvious that such speedups would never be achievable
without the impressive performance gain provided by the
GPU, which enables desktop calculation of ab initio
geometry optimization and molecular dynamics (MD)
simulations that were previously only possible on comput-
ing clusters with more than a hundred CPUs.

The increased performance of the GPU code clearly
improves the quality of molecular dynamics simulation
results by allowing longer runs and thus better statistics.
However, accuracy is another aspect that needs to be
considered, especially when part of the energy and atomic
force calculations are performed with single precision. To
assess the error introduced by the use of single precision for
integral evaluation, we performed three independent tests.

First, we directly calculated the root mean squared error
for all components of corresponding single precision (GPU)
and double precision (CPU) gradient vectors

for all the benchmark molecules. All molecular geometries
along with corresponding energies and gradients, calculated
on CPU and GPU, are provided in the Supporting Informa-
tion. The results, presented in Table 1, demonstrate that the
mean error is distributed around 10-5 au, which is close to
the typical convergence thresholds used in geometry opti-
mization algorithms. It is also important that there is no
obvious correlation between the mean error and the size of
a molecule, i.e. the error does not increase with the number
of atoms.

Figure 2. Kµν and K′µν calculation algorithm. Similar to the J calculation shown in Figure 1, but in this case all ket-pairs are
grouped into N segments according to the λi index. Two such segments are represented. The GPU thread block scans all the
segments sequentially. Once integrals which make contributions smaller than 10-11 au are reached, the scan of the particular
segment is aborted, and the block proceeds from the next segment.

Table 1. Analytical Energy Gradient Accuracy and
Calculation Time for Different Test Molecules Using the
3-21G Basis Set

molecule caffeine cholesterol C60 taxol valinomycin olestra

CPU, seca 0.7 7.6 38.5 28.9 66.3 785.1
GPU, secb 0.1 0.4 1.9 1.4 2.6 7.3
Speedup 5.8 19 20 21 26 108
rmserror/

10-5 auc
1.28 0.61 2.79 1.49 1.24 0.67

a GAMESS on Intel Core2 quad-core 2.66 GHz CPU. b 2 Nvidia
GeForce 295GTX cards. c Error in the gradient (atomic units) as
defined by eq 24.

Table 2. Total Energy and Gradient Computation Time
Using the 3-21G Basis Seta

molecule caffeine cholesterol buckyball taxol valinomycin olestra

CPU, secb 7.4 81.8 364 435 1112 22863
GPU, secb 2.0 4.8 11.6 15.7 25.5 125
Iterations 13 11 10 14 13 14
Speedup 3.7 17 31 28 44 182

a The number of SCF iterations performed to converge the
wave function was exactly the same for GPU and CPU. b CPU
and GPU are the same machines as in Table 1.

RMSerror ) � ∑
i)1

3NAtoms

(fi
CPU - fi

GPU)2/3NAtoms (24)
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Second, we carried out geometry optimization of a helical
hepta-alanine, i.e. (ALA)7, peptide on the CPU and GPU using
the 3-21G basis set. The corresponding SCF energy evolution
and resulting structures from GAMESS and our GPU code are
compared in Figure 3. In both cases, the same initial geometry
and energy minimization algorithm was used (trust region
method with BFGS Hessian update), although our implementa-
tion was written from scratch and therefore the codes are not
necessarily identical. However, we did employ exactly the same
trust radius update protocol as implemented in GAMESS. It
can be easily seen that the curves follow each other very closely
throughout the whole optimization procedure, slightly diverging
at the very end. This is a good indicator that GPU can be
efficiently used for solving molecular geometry optimization
problems. The final energy discrepancy is 0.50 kcal/mol, of
which 0.42 kcal/mol is due to different atomic configurations
and the rest is due to lower accuracy of single point energy
calculations on GPU. In addition, the optimized structures
overlap almost perfectly, as shown in the inset of Figure 3,
where the CPU-optimized and GPU-optimized structures are
portrayed in orange and multicolored representations, respectively.

Finally, conservation of total energy is a common metric
for assessing the energy gradient accuracy in a dynamics
algorithm. Therefore, we performed time-reversible23

Hartree-Fock Born-Oppenheimer molecular dynamics
simulation of an H3O+(H2O)30 cluster using the 6-31G
basis set and microcanonical ensemble. The Newtonian
equations of motions were integrated using the velocity
Verlet algorithm with a 0.5 fs time step for a total
simulation time of 20 ps. Figure 4 shows the resulting
time evolution of the kinetic (red), potential (blue), and
total (green) energies. Energy is conserved quite well, with
a small 0.022 kcal/mol · ps-1 total energy drift. Consider-

ing, for example, an upper limit of 5% of the initial kinetic
energy as a maximum acceptable total energy drift over
the entire simulation, this system can be simulated for
200 ps. Even longer time scales can be accessed if one
introduces Langevin thermostats and careful adjustment
of the damping parameter,24 although care needs to be
taken in this case to ensure that the dynamics is not
significantly modified by the damping parameter. To
further demonstrate that GPU-based ab initio molecular
dynamics can treat important phenomena of widespread
chemical interest such as proton transfer, we performed
AIMD simulations of two systems: a H3O+(H2O)30 cluster
and a neutral aspartic acid molecule solvated by 147 water
molecules.

A. Protonated Water Cluster. A 20-ps long NVT (T )
300 K) molecular dynamics simulation was performed on
the H3O+(H2O)30 cluster at the RHF/6-31G, BLYP/6-31G,
and B3LYP/6-31G levels using a 0.5 fs integration time step.
The density functional theory calculations (energy and
nuclear energy gradient), which run entirely on GPU and
use all available GPU processors in parallel, were recently
incorporated into TeraChem, the general purpose GPU-based
quantum chemistry package being developed in our group.
All three simulations started from an initial cluster geometry
where the hydronium ion was located on the cluster surface.

Figure 5 shows the time evolution of the distance
between the hydronium ion and the cluster center along
with the mean cluster radii represented by dashed lines.
The cluster radius was defined as the maximum distance
between any of the O-atoms and the cluster center. In all
three cases, the ion stayed close to the surface throughout
the entire simulation, as previously reported.25,26 Some-
what larger oscillations of the distance in the RHF

Figure 3. Evolution of the (ALA)7 helix SCF energy during
geometry optimization on the CPU (blue) and GPU (red) using
3-21G basis set. Both curves follow each other very closely,
demonstrating that the GPU accuracy is sufficient for solving
geometry optimization problems. The final energy difference
is 0.50 kcal/mol, of which 0.08 kcal/mol is due to lower
accuracy of single point energy calculations on GPU and 0.42
kcal/mol is due to different atomic positions. The inset portrays
the two optimized structures overlaid on top of each other
(orange: CPU, multicolored: GPU).

Figure 4. The SCF (blue), kinetic (red), and total (green)
energies of the H3O+(H2O)30 cluster during microcanonical
(<Ekin> 301 K) Born-Oppenheimer Hartree-Fock molecular
dynamics simulation using the 3-21G basis set on two Nvidia
GeForce 295GTX GPUs. Two electron integrals and their
derivatives are calculated on the GPU in single precision, and
their contributions are accumulated in double precision. The
total energy drift is 0.022 kcal/mol ·ps-1, which corresponds
to a 0.039 K ·ps-1 averaged temperature drift.
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simulation, compared to the DFT results, show that at the
HF level of theory the structure of the cluster surface is
subject to higher fluctuations. In addition, RHF and BLYP
provide similar structures of the first H3O+ solvation shell,
as can be seen from the oxygen-oxygen radial distribution
functions presented in Figure 6 (red and blue lines,
respectively). In both cases, the first peak is centered at
2.50 Å, which is smaller than the same value for bulk
water (2.8 Å) and is an expected signature of stronger
H-bonds. The B3LYP simulation (green line in Figure 6)
predicts a somewhat more diffuse first solvation shell, with
the first peak centered at 2.46 Å. In addition, the B3LYP
RDF reveals stronger bimodal character around the
maximum due to continuous interplay between Eigen and
Zundel structures. In all three simulations there was an

average of three water molecules in the first solvation shell
of the hydronium ion.

B. Solvated Aspartic Acid. We also performed a 7-ps
simulation of a single neutral aspartic acid molecule
solvated by a cluster of 147 water molecules using the
3-21G basis set. The total number of atoms and basis
functions in this system was 457 and 2014, respectively.
The C4NH7O4 molecule was first solvated in a cube of
water and equilibrated for 100 ps using the CHARMM
force field27 and periodic boundary conditions. Then, a
10 Å-sphere was sketched around the CR atom, and those
waters whose O-atoms were located inside this sphere (147
molecules) were selected for further modeling with AIMD.
The resulting system was equilibrated for 1 ps using
AIMD. In both classical and ab initio equilibration MD
simulations, a 0.5 fs integration time step and the Langevin
thermostat28 (T ) 300 K, τdamp ) 1 ps) were used, and
the atoms in the aspartic acid molecule were fixed in order
to prevent deprotonation of the carboxylic groups. Finally,
a 7-ps production AIMD run was performed on the system
in the NVT ensemble using a 0.5 fs integration time step.
Figure 7 portrays a snapshot of the system (left panel)
along with its highest occupied molecular orbital (HOMO,
right panel). The orbitals were calculated by the GPU-
accelerated Orbital plugin implemented in VMD.29

The aspartic acid molecule has two carboxylic acid
functional groups - backbone and side chain, referred to
as COOHbb and COOHsc in the following. Because both
the groups have low pKa, one might expect them to
deprotonate quickly in aqueous solution. The AIMD
simulation mostly confirms the expectations. Figure 8
displays the time evolution of the O-H distance for both
COOH groups. One of these (COOHsc, blue line in Figure
8) quickly deprotonates in approximately 400 fs through
formation of a short-lived (τ ∼ 50 fs) transient Zundel-
like structure. The resulting hydronium ion then quickly
(within 50 fs) shuttles to the surface of the cluster via
two subsequent proton transfer events and stays at the
surface for the rest of the simulation. The second
deprotonation event (of the COOHbb group) does not
occur until significantly later (t ≈ 5.5 ps) in the simulation,
presumably because of the high proton affinity of the
resulting doubly negatively charged amino acid ion. An
aborted attempt at deprotonation of COOHbb by forming
a quasi-stable COO- · · ·H3O+ complex is observed after
3.1 ps of simulation (green line in Figure 8). The presence
of positive counterions near the molecule (not accounted
for in our simulation) would be expected to facilitate faster
deprotonation of all carboxylic groups. The carboxyl-water
Ocarboxyl-Ow (including both oxygen atoms of each of the
COOHsc and COOHbb groups) and amino-water Namino-
Ow radial distribution functions, which are proportional
to the local water density around these groups, are
presented in Figure 9 and provide details on the solvent
structure around these functional groups. The Ocarboxyl-Ow

RDF (red line in Figure 9) has its first maximum centered
at 2.69 Å, and integration to the first minimum of the RDF
reveals that on average 2.5 water molecules are present
in the first solvation shell of each carboxyl oxygen. In

Figure 5. Time evolution of the H3O+ ion distance from the
cluster center. Each point on the plot is averaged over 100
successive MD steps. The dashed lines represent the cluster
radius, averaged over the whole MD simulation run. The
radius is defined as the maximum distance between an
O-atom and the center of the cluster.

Figure 6. The hydronium-water oxygen-oxygen radial dis-
tribution function for the H3O+(H2O)30 cluster, using various
levels of theory and the 6-31G basis set.
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contrast, the Namino-Ow RDF (blue line in Figure 9) indicates a
rather hydrophobic character of the amino group, although the
group periodically accepts and donates weak H-bonds. In many
cases, however, the solvent water forms a hydrophobic cage
around NH2, where waters prefer to donate/accept H-bonds to/
from neighboring waters. Those water molecules that sometimes
do accept an H-bond from the amino group, in most cases
become 5-coordinated. Because such a water solvation structure
is less energetically favorable than the 4-coordinated tetrahedral
configuration, these water molecules tend to break such H-
bonds. Quantitative analysis of the trajectory demonstrates that
the amino group donates 0, 1, and 2 H-bonds for 54%, 45%,
and 1% of the simulation time, respectively. Similarly, it accepts
0 and 1 H-bonds for 81% and 19% of the simulation time. An
H-bond was defined using 3.2 Å O-O distance and 30° (O/
N)OwHw angle cutoffs. The character of the distribution of
H-bonds donated by NH2 does not vary much during the
simulation which accesses three different charge states of the
aspartic acid (0, -1, and -2). However, the amino group reveals
stronger hydrophilic properties at the -2 charge state by
stabilizing the accepted H-bond and reducing the mean N-Ow

distance to the nearest water molecule from 3.1 Å (charge state
0 and -1) to 2.8 Å (charge state -2). Figure 10 shows the
time evolution of the N-Ow distance, where the COOH group
deprotonation events (for COOHsc and COOHbb) are marked
by red vertical lines. The black dashed line denotes the mean
N-Ow distance for all (0, -1, and -2) charge states of the
aspartic acid molecule before and after the deprotonation of
COOHbb. For both neutral and singly negative charge states
the distance oscillates around 3.1 Å, but it drops to 2.8 Å after
COOHbb is deprotonated and the molecule becomes doubly
negatively charged. The hydrophobic-like behavior of the amino
group in the partially deprotonated aspartic acid molecule does
not seem to preclude protonation. In a preliminary simulation
(not shown), the NH2 residue is rapidly protonated if there is a
hydronium ion in its first solvation shell. However, we leave
detailed analysis of this for future, more extensive, studies.

Conclusions

We have demonstrated that it is possible to achieve up to
200× speedup in energy + gradient calculations by
redesigning quantum chemistry algorithms for the GPU.

Figure 7. Left: snapshot of the AIMD simulation of the aspartic acid molecule solvated by 147 waters. Right: HOMO along with
nearby water molecules among which the orbital is mostly delocalized. The isosurfaces correspond to � ) (0.01 au .

Figure 8. The O-H distance in backbone (COOHbb, green)
and side chain (COOHsc, blue) carboxylic acid functional
groups. The dashed line represents the O-H distance cor-
responding to the COO- · · ·H3O+ complex.

Figure 9. The aspartic acid oxygen (red) and nitrogen (blue)
- water oxygen radial distribution functions. The neutral amino
group reveals prominent hydrophobic character.
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The performance gain was assessed by comparing a state-
of-the-art Intel Core2 quad-core 2.66 GHz CPU worksta-
tion with the same workstation containing two Nvidia
GeForce 295GTX graphical cards. Both Hartree-Fock and
density functional theory (including generalized gradient
and hybrid functionals with exact exchange) electronic
structure methods can be used in AIMD simulations with
our implementation. The remarkable speedups attained by
executing all computationally intensive parts of the code
on the GPU rather than on the CPU make it possible to
carry out ab initio molecular dynamics simulation of large
systems containing more than 2000 basis functions at 1400
MD steps/day speed on a single desktop computer.

We show in an example H3O+(H2O)30 cluster MD simula-
tion that total energy drift due to limited hardware precision
is minor and 100 ps MD simulations can be performed with
total energy conservation errors of less than a few percent
of the initial kinetic energy. Furthermore, even this minor
drift can be compensated by employing a Langevin thermo-
stat and properly adjusting the damping parameter,24 meaning
that even longer ab initio MD runs can be performed on the
GPU.

We have presented results for preliminary AIMD simula-
tions of proton transfer and transport in solvated clusters that
were facilitated by the developments described here. Further
study of these phenomena, collecting significant statistics,
is underway.
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Abstract: The energy landscape of protonated water clusters H+(H2O)n is thoroughly explored
at the first-principle level using a hierarchical search methodology. In particular, the distinct
configurational isomers of OSS2 empirical potential for n ) 5-9 are uncovered and archived
systematically using an asynchronous genetic algorithm and are subsequently refined with first-
principle calculations. Using the OSS2 model, quantitative agreements in the thermal properties
between Monte Carlo and harmonic superposition approximation (HSA) highlighted the reliability
of the latter approach for the study of small- to medium-sized protonated water clusters. From
the large sets of collected isomers, finite temperature behavior of the clusters can be efficiently
examined at first-principle accuracy with the use of HSA. From the results obtained, evidence
of structural changes from single-ring to treelike (n ) 5-7) and multi-ring to single-ring structures
(n ) 7-9) is observed, as expected for the empirical model. Finally, the relevance of these
findings to recent experimental data is discussed.

I. Introduction

Protonated water clusters have attracted much study for a
long period of time because of their important roles in ionic
media and chemical reactions.1-16 To date, significant
progress has been made in experiments6,7,9,12,13 and theoreti-
cal simulations.3-5,8,11,14-19 In the latter, one of the core
focuses is studying the dynamic structural transitions to
reveal the complicated thermal behavior of water clusters.
Using Monte Carlo (MC) simulations, Singer and co-
workers8 identified the topological transitions of H+(H2O)8

and H+(H2O)16 to treelike structures at high temperatures,
using the OSS2 model.2 On the other hand, Christie and
Jordan,1 with the use of the MSEVB model,20 identified two
sharp transitions of H+(H2O)8, whereas that of H+(H2O)6 was

devoid of sharp structures. Kuo and Klein4 carried out basin
hopping18,21,22 and a parallel tempering algorithm23,24 to
systematically examine the low-energy structures and struc-
tural transitions of H+(H2O)n for n up to 21. In a similar
work, James and Wales25 employed a modified empirical
valence bond potential to study the properties of selected
small- to medium-sized clusters. With the advance of
computation power and methodology, several studies have
been conducted in an attempt to study water clusters at ab
initio levels.15,16,26-28 Iyengar and co-workers proposed the
ab initio atom-centered density matrix propagation method
to investigate systematically the structures, dynamics, and
vibrational properties of H+(H2O)n for the magic size of n
) 21,15,16 as well as other systems.29 Recently, Nakayama
et al.26 considered the use of an approximate potential to
speed up the ab initio MC simulation on small protonated
water clusters (H+(H2O)n)1,2).

Most of the existing theoretical simulations have engaged
either molecular dynamics (MD) or MC-based algorithms
in predicting the structural transitions of H+(H2O)n.

1,4,8,17

Even though some techniques such as J-walk25,26 and parallel
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tempering are established as useful for resolving the issue
of quasi-ergodicity, they remain to be plagued with problems
of slow convergence, high energy barrier crossing, and poor
sampling of the potential energy landscape, especially in
large-scale or large-sized systems. An alternative approach
to MD and MC is superposition approximation (SA), where
the observed quantities of the system are approximated from
a statistical set of basins instead of performing sampling and
averaging of the entire potential energy surface (PES). To
date, SA has been used widely in a variety of systems, from
liquids to solids, glasses, clusters, and so forth. It was first
considered by Stillinger et al. for studying hidden structures
in liquids30 and subsequently also liquid-solid transitions.31

Wales examined the coexistence of solid-like and liquid-
like forms in a finite atomic cluster, with harmonic ap-
proximation employed in SA for the first time.32 Calvo et
al.33 also used SA to calculate the physical and chemical
properties of several atomic clusters and highlighted the close
agreement between SA and MC simulations. Generally, SA
is established to yield higher efficiency than conventional
MC simulations in predicting thermal properties,33-35 thus
making SA feasible and practical for studying the thermo-
dynamics of molecular systems at the quantum chemistry
level. Since the accuracy and success of SA depends strongly
on how well the PES is explored and how many isomers
are taken into account for the approximation, a sampling
algorithm for the effective and efficient discovery of true
distinct isomers is crucial. Note that this is not a trivial task
due to the large numbers of isomers that exist and the high
computational costs of ab initio calculations.

Recently, Ohno and co-workers5,11 proposed the “anhar-
monic downward distortion following” (ADD) algorithm, a
full first-principle-based approach, to explore the PES and
then examined the thermodynamics of H+(H2O)n for n up
to 7 via harmonic superposition approximation (HSA). The
sets of 9, 24, and 131 isomers collected for n ) 5, 6, and 7,
respectively, at B3LYP/6-31+G** level were reasonably
large. However, the requirement on second-order derivative
calculations and the serial searching regime limits the ADD
from sampling widely for high-energy isomers on the
quantum chemistry PES, especially for larger-sized systems.

In the present work, instead of a complete reliance on ab
initio calculations, we employ a hierarchical methodology
with the OSS2 model employed as a prescreening process
to construct the archive of potential distinct isomers for n )
5-9 to be subsequently examined and refined by first-
principles calculations at the B3LYP/6-31+G* level. The
synergy between the empirical model and first-principles
method permits extensive and efficient exploration of the
PES, dealing with large-sized systems (up to n ) 9), and
studying the systems at multiple distinctive levels of theory
simultaneously. To deal with the issue of exponential growth
of the number of isomers, a parallel asynchronous genetic
algorithm is deployed for the searching and archiving of
distinct configurational isomers in H+(H2O)n. The archive
of isomers is then analyzed to investigate the thermodynamic
properties and structural transitions of H+(H2O)n, n ) 5-10,
for both the OSS2 model and ab initio calculations. From
our obtained results, HSA is shown to be reliable in small-
sized systems since it reproduces well the feature of heat
capacity curves and structural transition of H+(H2O)n in MC
simulations of the OSS2 model. The structural transition
trends of protonated water clusters in ab initio calculations
also revealed close agreement with that of the OSS2 model.
The vibrational spectra are derived from the results of HSA
and compared with recent experimental study. The details
of our computational methodology are described in section
II, followed by the results and discussion in section III.

II. Methodology

1. A Hierarchical Approach for Exploration of PES.
Our hierarchical approach has been previously explored and
applied to the study of pure water clusters.36 Here, we briefly
discuss the main ideas of our methodology as depicted in
Figure 1. Instead of searching directly on the PES of ab initio
calculations (red curve), which is computationally very
expensive, we locate the isomers, denoted here as Bi, of the
empirical model (black curve), which serves as a “prescreen-
ing” stage. All distinct isomers Bi are subsequently refined
to the nearest isomers Ai via ab initio optimizations. The
low computational cost of the empirical model allows
possible extensive coverage and exploration of the PES for
unique isomers. To speed up the entire isomer search process,
the ab initio refinements representing the most time-consum-
ing tasks are parallelized on multiple computed clusters.

2. Empirical Models. In this work, the OSS2 model is
chosen as the first level of exploration. OSS2 is one of three
versions of the OSS family developed by Ojamäe and co-

Figure 1. Sketch of hierarchical approach. Ai and Bi refer to
the local minima of the empirical model (black curve) and ab
initio calculations (red curve), respectively. The local minima
Bi have been identified with the genetic algorithm to serve as
appropriate starting points for further refinement or locally
optimized using the ab initio calculations to arrive at the
respective Ai.

Figure 2. Several new isomers of H+(H2O)5. The numbers
are denoted as relative energies in kcal/mol.
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workers2 to simulate water as a participant in ionic chemistry.
It was established from the interaction between polarizable
O2- anions and protons, with pairwise and three-body terms,
and is suitable for studying H+(H2O)n system since it permits
the disassociation of water molecules. The potential was
parametrized by fitting to ab initio MP2 calculations, and it
can reproduce well the structures and binding energies of
small-sized protonated water clusters, including neutral ones.
For details on the functional forms and thermodynamic
simulations of OSS2, the reader is referred to refs 2 and 4.

3. Asynchronous Genetic Algorithm. Archiving isomers
is a nontrivial task due to the exponentially increasing
number of isomers with increasing cluster sizes. To deal with
this issue, we conducted a steady-state genetic algorithm
(GA) with an asynchronous scheme for locating isomers,
which we have previously used to study the PES of water
clusters.36

The basic workflow of our GA is outlined as follows: After
initialization, parent structures are selected from the popula-
tion according to their ranks and undergo the genetic
operators (crossover and/or mutation) to generate new
offspring, which are sent to a slave node for local optimiza-
tion. The locally optimized structure is then sent back to the
master node, which is then updated into the GA population
with the spirit of Lamarckian Learning37,38 and also archived
for further analysis. This entire process repeats until a
maximum number of iterations is reached. More specifically,
the search algorithm is commonly known as a memetic
algorithm, hybrid evolutionary algorithm, Lamarckian evo-
lutionary algorithm, cultural algorithm, or genetic local
search.39

Throughout the archiving process, a significant number
of structures, including the low-energetic isomers, may be
archived more than once. These duplicate structures not only

Figure 3. The 10 lowest-energetic isomers of H+(H2O)n, n ) 5-9, found in B3LYP/6-31+G*, sorted by increasing order of
binding energies (in kcal/mol).
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enlarge the archive unnecessarily but also make the simula-
tion results unreliable since the contribution by some isomers
could be artificially amplified. To ensure that only unique
structures are archived, the ultrafast structure recognition
(USR) algorithm40 is used to sieve out potential duplicate
structures. The similarity of two structures is computed and
represented by an index of values ranging from 0 to 1. A
value of 0 indicates that two structures are totally dissimilar,
whereas the other extreme represent a perfect match. In our
study, a newly discovered structure is deemed as a duplicate
if the similarity index to existing structures in the archive
exceeds a threshold of 0.96.

4. Ab Initio Calculation. All archived distinct isomers
of the OSS2 model then undergo geometrical optimization
using Becke’s three-parameter hybrid method41 with the Lee,
Yang, and Parr (B3LYP) functional42 and the 6-31+G* basis
set. The convergence criteria are defined as a root-mean

square and a maximum component of gradient lower than
0.0003 and 0.00045 hartree/Å, respectively. To ensure that
the optimized structures are true isomers, vibration analysis
is subsequently performed, and only those having nonimagi-
nary frequencies are accepted for harmonic superposition
approximation. Note that all calculations have been com-
pleted using the Gaussian 03 package.43

III. Results and Discussions

1. Isomers of Protonated Water Clusters. It is worth
highlighting that our GA has reproduced successfully all of
the most stable structures of H+(H2O)n, n ) 5-9, that were
found by the basin-hopping algorithm reported in previous
related works.4 In addition to that, we have uncovered and
archived large numbers of distinct isomers which are
summarized in Table 1. Since a threshold value of 0.96 was

Figure 4. The 10 lowest-energetic isomers of H+(H2O)n, n ) 5-9, found in B3LYP/6-31+G*, sorted by increasing order of
binding energies with ZPE correction (in kcal/mol).
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employed in the USR technique to remove duplicate isomers
automatically, an overelimination of unique isomers may
happen. The resultant archive therefore may not represent
the complete set of isomers on the PES. However, from our
results, the number of distinct isomers, Nisomers, is observed
to increase exponentially with the number of atoms, N, in
the range of n ) 5-9, as expected in both theoretical and
numerical studies.34,44 Nisomers can be approximated as A ×
exp(RN), where both A and R are constants depending on
the system considered. From the database of Lennard-Jones
clusters, A and R have been approximated as 0.00397 and
0.9897, respectively, for N e 16.45,46 In the present work, A
and R are approximated as 0.5849 and 0.3918, respectively.
The significantly larger A for H+(H2O)n might arise from
the fact that the water cluster system is less symmetric than
atomic counterparts. This explains the larger number of
isomers identified in the small-sized water clusters and,
hence, a larger “A” value. Thus, A might represent the
measure of asymmetry in the system. In contrast, the smaller
value of R of the water cluster system would imply its smaller
degree of freedom due to the bonds.

The uncovered sets of archived OSS2 isomers subse-
quently serve as input structures that are optimized at the

B3LYP/6-31+G* level. At the end of each successful
optimization, the local optima at B3LYP/6-31+G* undergo
vibrational analysis, which is performed to retrieve the
vibrational frequencies. For H+(H2O)5, H+(H2O)6, and
H+(H2O)7, a total of 21, 135, and 707 isomers have been
uncovered and archived, respectively. For H+(H2O)8 and
H+(H2O)9, because the numbers of isomers found using the
OSS2 model are large, a stricter similarity threshold of 0.85
is used to filter out a greater number of potentially duplicated
OSS2 isomers before undergoing DFT optimization. On the
basis of the given criterion, resultant sets of 422 and 877
isomers for H+(H2O)8 and H+(H2O)9, respectively, have been
identified. In comparison to other recent works reported in
the literature from similar studies,5,11 the archives represent
the largest sets of isomers reported at the quantum chemistry
level to date. For instance, several isomers of H+(H2O)5 that
are missing in the recent reported work11 are depicted in
Figure 2.

The 10 lowest-energetic isomers of each cluster size have
been sorted according to their binding energies and are
depicted in Figure 3. As observed, the ground-state structures
of both H+(H2O)5 and H+(H2O)6 belong to the family of four-
membered rings, as observed in the OSS2 model. In

Figure 5. Canonical heat capacity Cv (upper panel) and population (lower panel) of five topologies for H+(H2O)n, n ) 5-10, that
is, multi-ring (MR), double-ring (DR), single-ring (SR), linear (L), and tree-like (T), calculated using C-HSA with the OSS2 model.
Solid-red and dashed-blue lines in the upper panels represent heat capacity curves from a previous parallel tempering Monte
Carlo (PT-MC) simulation4 and our C-HSA, respectively. For the sake of brevity, the heat capacity is plotted with a dimensionless
unit (NkB).
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H+(H2O)5, several other families of isomer shapes are also
found to exist, as depicted in Figure 3. These include five-
membered ring isomers and tree-like or cage isomers which
are well separated at the energy level (∼1 kcal/mol). On the
other hand, the family of four-membered ring isomers is
observed to dominate, with near iso-energetic vakues at a
small energy gap of less than 0.2 kcal/mol. For H+(H2O)7

and large-sized clusters, the structures tend to be more
compact, and all ground-state and low-energetic structures
are of multi-ring shapes. The cubic isomers of H+(H2O)8

are also relatively stable with a small energy gap of
approximately 0.9 kcal/mol to the ground-state counterpart.
Note that this is in line with the observation reported by
James and Wales25 where the lowest cubic-like minimum
of the modified MSEVB potential is approximately 0.8 kcal/
mol higher than the most stable structure.

Figure 4 depicts the structures of H+(H2O)n sorted ac-
cording to the energy after zero-point energy correction. It
is worth noting that the resultant structures of all sizes are
observed to be more open. For H+(H2O)5 and H+(H2O)6, tree-
like isomers have the lowest energy instead of single-ring
isomers, whereas for H+(H2O)7, the single-ring structures
dominate. For H+(H2O)8 and H+(H2O)9, the lowest-energetic
isomers are no longer cages, and few single-ring isomers
are found. Besides the fact that open isomers are more
favored, they are also more iso-energetic since the energy
gaps between them are smaller (<1 kcal/mol) than those
without zero-point energy.

2. Thermodynamic Transitions. a. Harmonic Superpo-
sition Approximation. HSA represents an effective approach
for acquiring the diverse physical properties of a system
from a collection of isomers instead of directly exploring
the potential energy landscape. In HSA, each local
minimum is treated as a harmonic and infinite basin, which

Figure 6. Canonical heat capacity Cv (upper panel) and population (lower panel) of five topologies of H+(H2O)n, n ) 5-9,
calculated using C-HSA with B3LYP/6-31+G* calculation. The full details have been described in Figure 5.

Figure 7. Population plot of the five lowest-energetic isomers
of H+(H2O)9 calculated using C-HSA with B3LYP/6-31+G*
isomers. The transition from the lowest-energetic isomer
(W9+).I to the next lowest-energetic ones resulted in the first
heat capacity peak of Figure 6e.
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is characterized only by its vibrational frequencies and
relative energy. From that, observable quantities are
subsequently calculated by summing up the contributions
of all isomers.

The total partition function Z(�) of an N-atom system at
temperature T is given by

where � ) 1/(kBT) and kB is the Boltzmann constant. The
degeneracy factors na in the case of H+(H2O)n (consisting
of two kinds of atomic elements, O and H) are derived as
2NO!NH!/mi, where mi is the point group order of symmetry.
In classical superposition theory (classical harmonic super-
position approximation, C-HSA), the harmonic approxima-
tion associated with local minima a, Za(�), is given by33,34

where ωa ) (∏f ) 1
Nf ωaf)1/Nf denotes the mean geometrical

vibration frequencies of local minimum a and Nf ) 3N - 6,
representing the number of normal modes. In quantum
superposition theory (quantum harmonic superposition ap-
proximation, Q-HSA), where the contributions of the vibra-

tion modes are treated in quantum mechanical footing, Za(�)
assumes the following form:

To observe the structural transformations, isomers of
H+(H2O)n are classified into five categories of topological
families, namely, multi-ring, double-ring, single-ring, tree-
like, and linear. The population or the canonical probability
of the system to fall under topology A is calculated as PA(T)
) (∑a∈A Za(�))/(Z(�)). Other observables including specific
heat capacity and free energy can also be easily derived on
the basis of the details available in refs 34 and 46.

b. Comparison with Parallel Tempering Monte Carlo
(PTMC) Simulation. In Figure 5, the temperature depend-
ences of heat capacity and the populations of five topological
families obtained for H+(H2O)n, n ) 5-10, are depicted.
For possible comparison, the heat capacity trends obtained
by the parallel tempering Monte Carlo (PTMC) simulations
as reported in ref 4 are reproduced in Figure 5 with the use
of cubic-spline smoothing.

From Figure 5, HSA is observed to reproduce the transition
peaks of the heat capacity trace well, on both sizes 5 and 6.
Both methods predicted similar transition temperatures in

Figure 8. Canonical heat capacity Cv (upper panel) and population (lower panel) of five topologies of H+(H2O)n, n ) 5-9,
calculated using quantum HSA (Q-HSA) with B3LYP/6-31+G* calculation. The full details have been described in Figure 5.

Z(�) ) ∑
a

naZa(�)

Za
C(�) ) exp(-�Ea)/(�pωa)

Nf

Za
Q(�) ) exp(-�Ea) ∏

a

exp(-�pωaf/2)

1 - exp(-�pωaf)
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the proximity of 100 K and 150 K for H+(H2O)5 and
H+(H2O)6, respectively. An analysis of the populations of
topologies also indicated the domination by single-ring
structures dominating at low temperatures and their trans-
formations to tree-like forms. On the other hand, linear
structures significantly populating the archive appear only
at high temperatures with low probability. A similar observa-
tion was also recognized in PTMC simulations.

For n g 7, where multi-ring structures pose as the most
stable, there are two maxima corresponding to two structural
transitions: an exceptionally sharp peak for the rapid changes
of multi-ring to single-ring structures and a broad and shorter
peak for the gradual changes of single-ring to tree-like
structures. In the case of H+(H2O)7, the transition tempera-
tures predicted by HSA are again in close agreement with
those obtained by PTMC; that is, a significant rise at a low
temperature of 40 K and a bump at a higher temperature of
∼230 K is observed in both. For H+(H2O)8, HSA produces
slight difference in the prediction of transition temperatures;
that is, the first peak (60 K) is lower in PTMC (70 K), as
expected, while the second peak shifts to a higher temper-

ature. Nevertheless, the overall feature and trend of the
population and heat capacity obtained using HSA correlates
well with that using PTMC.

For sizes 9 and 10, the transition temperatures become
more difficult to predict accurately since both PTMC and
HSA fail to converge well. Note that the increase in transition
temperatures due to cluster size in HSA matches that
predicted by PTMC previously. These results also revealed
transitions from single-ring to tree-like structures happening
for all of the cluster sizes investigated and the transition
temperature shifting higher with growing cluster size. It is
also worth noting the absence of double-ring structures for
n ) 5, 6, 7, and 8 in the population plots, even though
double-ring structures significantly populate the archive.

In most cases, except the first peaks of H+(H2O)8 and
H+(H2O)9, HSA seems to have overestimated the transition
peak when compared to PTMC, and the shapes of these peaks
are noted to be somewhat sharper. However, the overestima-
tion is relatively small and regarded as acceptable for n e
8, although there is a slight increase for n g 9. We believe
one of the core reasons is related to the underestimations of
contributions made by the high-energy local minima, since
our exploration of the PES for OSS2 using GA has placed
greater emphasis on the low-energy region than the high-
energy counterpart. Hence, the entropy of high-energy
topologies in the form of tree and linear shapes has generally
been underestimated. The resultant impact is a broadening
and shifting of the high-temperature transition peak to higher
temperatures, while it is a sharpening and swing in the low-
temperature transition peak to lower temperatures.

Figure 9. Vibrational spectra of free OH-stretching bands for H+(H2O)n, n ) 5-9, calculated using classical (C-HSA) and quantum
(Q-HSA) theories of harmonic superposition approximation. The experimental results of ref 7 are also plotted as a solid-red
curve for the purpose of comparison.

Table 1. Number of Distinct Isomers in OSS2 Potential for
H+(H2O)n, n ) 5-10

n OSS2

5 218
6 1192
7 4700
8 11820
9 24693
10 32469
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c. DFT Calculation. Employing conventional Monte Carlo
methods to simulate thermodynamics in DFT calculations
is impractical, even for small-sized systems, due to the high
computational cost involved. The use of HSA, on the other
hand, serves to be more appropriate due to its higher
efficiency compared to conventional MC approaches. Fur-
thermore, HSA has also been shown to yield good quantita-
tive agreement with Monte Carlo simulation on small-sized
systems, as demonstrated in the previous sections for the
OSS2 model. In what follows, we discuss the use of HSA
to study protonated water clusters with DFT calculation in
both classical (C-HSA) and quantum (Q-HSA) theory.

i. In Classical Theory. Using the archive of local minima,
we applied classical HSA to simulate the thermodynamic
transitions. It can be observed in Figure 6 that the heat
capacity trend obtained using DFT calculations correlates
well with those produced on the basis of the OSS2 model
for n ) 5-7. In the cases of H+(H2O)5 and H+(H2O)6, a
small maximum representing the transition from single-ring
to tree-like structures can be observed. The DFT results show
a higher transition temperature with a phase change that is
more gradual, as reflected by a flat and shorter peak. For
H+(H2O)7 and H+(H2O)8, on the other hand, the two
transition points found on DFT are similar to those of OSS2,
except with the first occurring at a higher temperature than
that in the OSS2 model and the other at a lower temperature.
Further, the two peaks of H+(H2O)8 are relatively close and
appear to merge as single peak in the case of H+(H2O)9.
Note also the small peak in the heat capacity trend of
H+(H2O)9 at ∼60 K, which corresponds to the transition of
the lowest-energetic isomer (denoted as W9+.I in Figure 3)
to the second (W9+.II), third (W9+.III), and fourth (W9+.IV)
lowest energetic isomers, as depicted in Figure 7. Double-
ring isomers appear to start from H+(H2O)9 but only survive
within a small range of temperature (around 150 K). The
overall trend of the structural transitions agrees very well
with the OSS2 model, except on the precise positions of the
transition temperatures. The size dependency of structural
transitions is also consistent with the OSS2 model. The shift
to higher temperatures from single-ring to tree-like structures
with increasing size is also observed for Tc ) 120, 135, 170,
240, and 275 K for H+(H2O)n, n ) 5, 6, 7, 8, and 9,
respectively.

ii. In Quantum Theory. The key difference between
quantum HSA and its classical counterpart lies in the
involvement of zero-point energy. As mentioned in section
III.2.c.i, the inclusion of zero-point energy changes the
relative stability of the structures, making open structures
such as tree-like and linear forms more favorable. In this
section, we discuss their impacts on thermodynamic properties.

The population and canonical heat capacity plots of
quantum HSA are depicted in Figure 8. For H+(H2O)5 and
H+(H2O)6, tree-like structures predominate the population
in the range of 0-400 K instead of single-ring forms. As a
result, there is almost no structural transition, as reflected in
the heat capacity plots. For H+(H2O)7, only one maximum
of the transformation from single-ring to tree-like structures
arises at around 150 K, and in contrast to classical HSA,
there is zero contribution by multi-ring structures. It is worth

noting that the observations made are consistent with the
recent work reported by Luo and Ohno.11

For H+(H2O)8 and H+(H2O)9, the transition characteristics
are similar to classical HSA. Two main transitions, namely,
from multi-ring to single-ring and from single-ring to tree-
like structures, displayed small contributions of double-ring
structures at around 150 K. In addition, the transitions seem
to occur at lower temperatures than classical HSA. This
makes sense since the zero-point energy correction has the
effect of decreasing the entropy of compact structures. As
explained earlier in section III.2.b, this causes the shift in
transitions to lower temperatures.

3. Vibrational Spectra in Free OH-Stretching
Region. From the results of vibrational analysis, the IR
spectrum Ia(ω) of each isomer a is approximated using the
Lorentz line shape. The total IR spectrum Itotal(ω,T) is then
calculated as the weighted sum of Ia(ω) with the canonical
probability pa(T) of each isomer a derived from thermody-
namic simulations, which is given by

In Figure 9, the IR spectra calculated using both C-HSA
and Q-HSA in the free OH-stretching region are plotted
together with the experimental results, which are reproduced
from the work of Lin and co-workers.7 For consistency and
fair comparison, the spectra are simulated at temperature T
) 170 K, which lies within the range of cluster temperatures
used in Lin and co-workers’ work,7 as deduced from the
Arrhenius equation.47 In addition, several relevant works5,11

have typically considered a temperature of 170 K in their
investigations on protonated water clusters. Note that all
calculated frequencies are also scaled by a factor of 0.973,
as suggested in a recent related work.48

Four groups of peaks in the free-OH stretching region are
highlighted in Figure 9, namely, symmetric free-OH, asym-
metric free-OH of one-coordinate H2O, free-OH of three-
coordinate H2O, and free-OH of two-coordinate H2O, which
are denoted as Is, Ia, II, and III, respectively. As inferred
from the figure, the theoretical spectra derived from both
C-HSA and Q-HSA also indicated size dependency, as
observed in experimental research. The intensities of peaks
Is (around 3650 cm-1) and peaks Ia (around 3750 cm-1)
decrease with increasing cluster size. Nevertheless, our results
underestimated the relative decrease of peaks Ia, especially
for H+(H2O)9, with C-HSA showing better approximation
accuracy than Q-HSA, even though the prediction is gener-
ally higher than in experimental research. The calculated
spectra also agree with the experimental observation that
peaks II associated to the free-OH stretching band of three-
coordinate H2O appeared at n ) 7, and the intensity continues
to rise consistently when n increases. As mentioned in the
study of Lin et al.,7 this trend can serve as evidence of a
structural transition to ring isomers. Note that this agrees
with the thermodynamic results discussed in the previous
section where the ring isomers started to predominate the
population at n ) 7. The blue-shift of the whole free-OH
stretching bands witnessed in the experiment is also observed
in our calculated spectra.

Itotal(ω, T) ) ∑
a

Ia(ω)pa(ω, T)
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IV. Conclusions

In this work, we have considered a hierarchical approach to
thoroughly explore the PES of H+(H2O)n, n ) 5-10, with
the OSS2 potential model and n ) 5-9 at the B3LYP/6-
31+G* level. The distinct isomer set uncovered using our
hierarchical methodology is the largest-ever archive found
to date. The archive is subsequently used for the investigating
the thermodynamic and structural transitions of H+(H2O)n

at two theoretical levels, namely, the OSS2 model and the
B3LYP/6-31+G* level using the harmonic superposition
approximation approach. In comparison with the PTMC
simulation involving the OSS2 model, our results revealed
good quantitative agreement between HSA and PTMC. The
consistency with PTMC results in structural transition and
features of the capacity curve are good indications of HSA’s
reliability. Further, the simulations with the ab initio method
also revealed the size dependency of H+(H2O)n in both
thermal behavior and vibrational spectra. The calculated
vibrational spectra in the free-OH stretching band when
compared to recent experimental results also arrived at good
agreement.
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112, 710.

(9) Wu, C. C.; Lin, C. K.; Chang, H. C.; Jiang, J. C.; Kuo, J. L.;
Klein, M. L. J. Chem. Phys. 2005, 122.

(10) Wu, C. C.; Chaudhuri, C.; Jiang, J. C.; Lee, Y. T.; Chang,
H. C. J. Chin. Chem. Soc. 2002, 49, 769.

(11) Luo, Y.; Ohno, S. M. K. J. Comput. Chem. 2008, 30, 952.

(12) Headrick, J. M.; Diken, E. G.; Walters, R. S.; Hammer, N. I.;
Christie, R. A.; Cui, J.; Myshakin, E. M.; Duncan, M. A.;
Johnson, M. A.; Jordan, K. D. Science 2005, 308, 1765.

(13) Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Science 2004,
304, 1134.

(14) Tuckerman, M.; Laasonen, K.; Sprik, M.; Parrinello, M.
J. Chem. Phys. 1995, 103, 150.

(15) Iyengar, S. S. J. Chem. Phys. 2007, 126, 216101.

(16) Iyengar, S. S.; Petersen, M. K.; Day, T. J.; Burnham, C. J.;
Teige, V. E.; Voth, G. A. J. Chem. Phys. 2005, 123, 084309.

(17) Mella, M.; Kuo, J.-L.; Clary, D. C.; Klein, M. L. Phys. Chem.
Chem. Phys. 2005, 7, 2324.

(18) Hodges, M. P.; Wales, D. J. Chem. Phys. Lett. 2000, 324,
279.

(19) Wei, D. Q.; Salahub, D. R. J. Chem. Phys. 1997, 106, 6086.

(20) Schmitt, U. W.; Voth, G. A. J. Chem. Phys. 1999, 111, 9361.

(21) Li, Z. Q.; Scheraga, H. A. Monte-Carlo-minimization approach
to the multiple-minima problem in protein folding. Proceed-
ings of the National Academy of Sciences of the United
States of America; National Academy of Sciences of the
United States of America: Washington, DC, 1987.

(22) Wales, D. J.; Hodges, M. P. Chem. Phys. Lett. 1998, 286,
65.

(23) Swendsen, R. H.; Wang, J. S. Phys. ReV. Lett. 1986, 57, 2607.

(24) Earl, D. J.; Deem, M. W. Phys. Chem. Chem. Phys. 2005,
7, 3910.

(25) James, T.; Wales, D. J. J. Chem. Phys. 2005, 122, 134306.

(26) Nakayama, A.; Seki, N.; Taketsugu, T. J. Chem. Phys. 2009,
130, 024107.

(27) Iyengar, S. S.; Day, T. J. F.; Voth, G. A. Int. J. Mass
Spectrom. 2005, 241, 197.

(28) Termath, V.; Sauer, J. Mol. Phys. 1997, 91, 963.

(29) Li, X. H.; Teige, V. E.; Iyengar, S. S. J. Phys. Chem. A 2007,
111, 4815.

(30) Stillinger, F. H.; Weber, T. A. Phys. ReV. A 1982, 25, 978.

(31) Stillinger, F. H.; Weber, T. A. Science 1984, 225, 983.

(32) Wales, D. J. Mol. Phys. 1993, 78, 151.

(33) Calvo, F.; Doye, J. P. K.; Wales, D. J. Chem. Phys. Lett.
2002, 366, 176.

(34) Wales, D. J. Properties of Landscape. In Energy Landscape,
1st ed.; Saykally, R., Zewail, A., King, D., Eds.; Cambridge
University Press: Cambridge, U. K., 2003; Vol. 1, p 364.

(35) Sharapov, V. A.; Meluzzi, D.; Mandelshtam, V. A. Phys. ReV.
Lett. 2007, 98.

(36) Nguyen, Q. C.; Ong, Y. S.; Soh, H.; Kuo, J. L. J. Phys. Chem.
A 2008, 112, 6257.

(37) Ong, Y. S.; Keane, A. J. IEEE Trans. EVol. Comput. 2004,
8, 99.

(38) Turner, G. W.; Tedesco, E.; Harris, K. D. M.; Johnston, R. L.;
Kariuki, B. M. Chem. Phys. Lett. 2000, 321, 183.

(39) Ong, Y. S.; Krasnogor, N.; Ishibuchi, H. IEEE Trans. Syst.,
Man, Cybernet., Part B: Cybernet. 2007, 37, 2.

(40) Ballester, P. J.; Richards, W. G. J. Comput. Chem. 2007,
28, 1711.

(41) Becke, A. D. Phys. ReV. A 1988, 38, 3098.

(42) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.

(43) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;

2638 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Nguyen et al.



Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,

J. A. Gaussian 03, revision D.01; Gaussian, Inc.: Pittsburgh,
PA, 2004.

(44) Stillinger, F. H. Phys. ReV. E 1999, 59, 48.

(45) Wales, D. J.; Doye, J. P. K. J. Chem. Phys. 2003, 119, 12409.

(46) Bogdan, T. V.; Wales, D. J.; Calvo, F. J. Chem. Phys. 2006,
124, 1.

(47) Lovejoy, E. R.; Bianco, R. J. Phys. Chem. A 2000, 104,
10280.

(48) Wang, Y.-S.; Chang, H.-C.; Jiang, J.-C.; Lin, S. H.; Lee, Y. T.;
Chang, H.-C. J. Am. Chem. Soc. 1998, 120, 8777.

CT900123D

J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2639



Simulated Tempering Distributed Replica Sampling,
Virtual Replica Exchange, and Other

Generalized-Ensemble Methods for Conformational
Sampling

Sarah Rauscher,†,‡ Chris Neale,†,‡ and Régis Pomès*,†,‡

Molecular Structure and Function, Hospital for Sick Children, 555 UniVersity AVenue,
Toronto, ON, Canada M5G 1X8 and Department of Biochemistry, UniVersity of

Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8

Received June 11, 2009

Abstract: Generalized-ensemble algorithms in temperature space have become popular tools
to enhance conformational sampling in biomolecular simulations. A random walk in temperature
leads to a corresponding random walk in potential energy, which can be used to cross over
energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce
two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica
exchange (VREX). These methods are designed to address the practical issues inherent in the
replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM)
algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function
efficiently when applied to complex systems. ST and SREM both have the drawback of requiring
extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential
energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations,
and for synchronization and extensive communication between replicas. Both methods are
therefore suitable for distributed or heterogeneous computing platforms. We perform an objective
comparison of all five algorithms in terms of both implementation issues and sampling efficiency.
We use disordered peptides in explicit water as test systems, for a total simulation time of over
42 µs. Efficiency is defined in terms of both structural convergence and temperature diffusion,
and we show that these definitions of efficiency are in fact correlated. Importantly, we find that
ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence
of structural properties compared to RE-based methods. Within the RE-based methods, VREX
is superior to both SREM and RE. On the basis of our observations, we conclude that ST is
ideal for simple systems, while STDR is well-suited for complex systems.

Introduction

Achieving complete (or even adequate) conformational
sampling is one of the key challenges in biomolecular
simulations.1 The energy landscape of most biomolecules is
“rugged”, and the source of this ruggedness is two-fold. The
energetic barriers separating accessible states are often larger

than the available thermal energy, and there are typically a
large number of states to be sampled. The time scales of
many biomolecular processes, such as protein folding, are
still far beyond the reach of our current computational
capability, which is generally limited to the 10-8 to 10-7 s
time scale for continuous simulations. For example, even
the folding of small domains or secondary structure elements,
such as �-hairpins and mini-proteins, occur on the 1-10 µs
time scale.1 Consequently, conventional or “brute force”
molecular dynamics (MD) alone is often insufficient to
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achieve complete Boltzmann sampling of the important states
of many biologically relevant systems. For this reason,
generalized-ensemble algorithms have become popular tools
for conformational sampling.

A variety of generalized-ensemble algorithms have been
developed with the common intention of overcoming ener-
getic barriers in order to enhance sampling of conformational
space. These methods use a generalized Hamiltonian for the
purpose of achieving uniform sampling along a reaction
coordinate of interest. Practically, one is faced with choosing
the most appropriate method and reaction coordinate for a
particular application. While the optimal reaction coordinate
is not known a priori, it may be possible to make generaliza-
tions regarding the optimal methodology. To this end, we
consider the following important question: given limited
computational resources, which algorithm is most efficient
at sampling a complex energy landscape? Some generalized-
ensemble methods employ a random walk in potential
energy, while others use different parameters which are
relevant to the system of interest.2 In this article, we compare
the efficiency of a set of algorithms which make use of a
random walk in temperature to enhance conformational
sampling of biomolecules. We focus on the following five
methods: simulated tempering (ST),3,4 replica exchange
(RE),5-9 the serial replica exchange method (SREM),10 and
two novel methods, virtual replica exchange (VREX) and
simulated tempering distributed replica sampling (STDR),
which is a combination of ST and distributed replica
sampling (DR).11-13

The generalized-ensemble algorithms compared in this
paper all rely on the fact that the free energy surface becomes
less rugged at high temperatures, increasing the frequency
of interconversion between conformational states.14 Simula-
tions performed at low temperatures often require a relatively
long time to cross the energetic barriers between states and
appear to be trapped. Transitions between regions separated
by barriers may not be observed over time scales accessible
to simulation. In this case, multiple simulations initiated in
different conformational basins may sample different subsets
of phase space. The result is that an ergodic system appears
nonergodic, a phenomenon known as quasi-nonergodicity.15

Utilizing generalized-ensemble algorithms that induce a
random walk in temperature may alleviate this source of
error.

The sampling enhancement of generalized-ensemble meth-
ods relative to canonical MD or Monte Carlo (MC) simula-
tions has been demonstrated for several systems,3,7,16,17

including peptides.6,14,18-24 Conversely, there have also been
studies that question the relative sampling efficiency of RE
compared to brute force MD,25 highlighting the importance
of a rigorous definition of efficiency which accounts for the
total computer time required for all temperatures.26-28 It is
important to note that data obtained at multiple temperatures
in generalized-ensemble simulations may be of interest in
some studies, such as protein folding.21,22 In general,
however, the data at high temperatures are not useful.
Furthermore, the observed speedup also strongly depends
on the lowest temperature.26 It is essential to assess the
convergence of both the conventional MD simulations as

well as the generalized-ensemble simulations in order to
perform a meaningful comparison, in addition to identifying
a meaningful quantity on which to base the comparison. Any
evaluation of sampling enhancement compared to single-
temperature MD is also likely to depend heavily on the
molecular system under study (depending on the number of
basins in the landscape and the heights of barriers). It is
therefore quite difficult to accurately quantify the sampling
enhancement due to the introduction of a random walk in
temperature.

We begin with a brief introduction of each of the
generalized-ensemble methods, including the presentation of
our two novel methods, STDR and VREX. We then perform
a thorough comparison of the algorithms in terms of both
practical implementation limitations and sampling efficiency
for a disordered octapeptide in explicit water, a molecular
system combining high relevance to protein folding and
moderate complexity. In addition to providing a comparison
between generalized-ensemble algorithms, we also provide
a comparison to conventional MD. We discuss efficiency in
terms of both convergence of structural properties and
temperature diffusion, and we show that these definitions of
efficiency are correlated. Finally, we compare the efficiency
of STDR and conventional MD for a 35-residue peptide with
a complex conformational landscape.

Theory and Methods

Simulated Tempering (ST). Simulated tempering was
originally introduced to enhance sampling of a random field
Ising model.3 This system has a rough energy landscape for
which spin-flips from the state favored by the magnetic field
to the opposite state are statistically rare events. ST facilitates
exchanges between these states, whereas the MC algorithm
remains trapped.3 ST has also been shown to be effective in
exploring the energy landscapes of biomolecules, which
similarly have multiple energy minima separated by barri-
ers.29

In the ST algorithm, temperature becomes a dynamic
variable3,4 that can take on discrete values labeled by an
index m (m ) 1, ..., M). ST makes use of a generalized
Hamiltonian, H(X,m), which depends on all configurational
degrees of freedom (X), in addition to temperature:

where �m is the inverse temperature, H(X) is the system’s
original Hamiltonian, and am is a constant which depends
on temperature.3 The generalized ensemble has a corre-
sponding generalized partition function, Z, given by:

where Zm is the partition function corresponding to the
temperature Tm.30 The partition function of the generalized
ensemble, Z, is the weighted sum of the partition functions
of the canonical ensembles at each temperature, Zm. We

H(X, m) ) �mΗ(X) - am (1)

Z ) ∑
m

∫ dX [e-H(X,m)] ) ∑
m

∫ dX [e-�mΗ(X)+am] )

∑
m

Zm eam (2)
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therefore refer to the constants, am, as “weight factors”.30

The probability of sampling a given temperature, Tm, is3

which depends on the generalized Hamiltonian, H, and
therefore depends on the weight factor, am. The goal in ST
is to perform a random walk in temperature such that all
temperatures are visited uniformly, that is, to choose weight
factors such that for any two temperatures (labeled i and j)

Since the partition function in the canonical ensemble, Zm,
is related to the Helmholtz free energy, Am, the optimal
weight factors are dimensionless Helmholtz free energies (the
Helmholtz free energy multiplied by the inverse temperature,
�):30,31

The use of accurate dimensionless Helmholtz free energies
as weight factors leads to sampling all temperatures with
equal probability. In principle, the weight factors may take
any value without resulting in biased, non-Boltzmann
sampling at the individual temperatures. However, inaccuracy
in the weight factors leads to corresponding differences in
the probabilities of sampling at each temperature.4,32

An ST simulation consists of a short canonical MD (or
MC) simulation at temperature Ti followed by an exchange
attempt to a neighboring temperature, Tj. The probability of
this exchange occurring is given by:

where E is the potential energy of the system at the end of
the previous simulation at temperature Ti, and �i and �j are
the inverse temperatures.2 The weight factors need only be
accurate up to an additive constant, since only differences
in weight factors are required to determine the acceptance
probability.30 Through many repetitions of these alternating
simulation and exchange steps, a random walk in temperature
is realized, corresponding to a random walk in potential
energy and efficient exploration of the energy landscape.31

In fact, ST has been shown to be as effective as the
multicanonical algorithm, which employs a random walk in
potential energy.33

The underlying challenge in ST is accurately obtaining
the dimensionless Helmholtz free energies, am. There have
been two general approaches to their calculation. The first
method involves making use of the weighted histogram
analysis method (WHAM)34-36 to obtain the density of states
and the weight factors. The second method, which we utilize
in this paper, was recently proposed as a fast and efficient
scheme to obtain an accurate estimate of the weight factors
based on average energies.30,37 The average potential energy
at each temperature, 〈E〉, is obtained from initial simulations,
and the differences in weight factors are calculated as
follows:

The weight factor for the lowest temperature can be set
to zero since only differences in weight factors are needed
in the exchange probability. The replica exchange simulated
tempering method (REST) may also be used to obtain weight
factors. In this method, an initial RE simulation is run for
the purpose of obtaining accurate weight factors, which are
then used in a ST simulation.36,38 REST may be used with
either WHAM or the method outlined in eq 7. Weight factors
may be updated throughout the ST simulation if required.14

Adaptive determination of weights using schemes like the
onedevelopedbyZhangandMa39 basedon theWang-Landau
algorithm40 were shown to be useful for a square lattice Ising
model, a bead model of a protein and a Lennard-Jones fluid.39

Biomolecular systems containing thousands of atoms rep-
resent a completely different level of complexity. Conver-
gence of weights is nontrivial14,30,31,39 and can be slow even
with adaptive approaches.30 Calculating weight factors has
been the main impediment to the widespread use of the
simulated tempering method.30

The accuracy of the weight factors (that is, how close the
differences in weight factors are to accurate dimensionless
Helmholtz free energy differences) can be assessed by
computing the deviation from sampling all temperatures
homogeneously in a sufficiently long ST simulation. In the
extreme case for which all weight factors are equal and all
differences in weight factors are zero, only the lowest
temperature is significantly sampled. This is because the first
term in the exponent of the exchange probability (eq 6)
depends on the potential energy, which is generally a large,
negative number for biomolecular systems. When multiplied
by the difference in inverse temperatures, the resulting
exchange probability dictates that moves to lower temper-
atures are accepted, while moves to higher temperatures are
rejected. Conversely, if the differences in weight factors are
equal to the differences in dimensionless Helmholtz free
energies, the temperatures in the ST simulation are sampled
uniformly, which is the optimal situation. In practice, weight
factors obtained for ST result in temperature sampling
inhomogeneity somewhere between these two extremes.
Calculating the dimensionless Helmholtz free energies for a
complex system such as a peptide in explicit water is
computationally expensive since it requires an accurate
estimate of the partition function. These calculations can
require tens of nanoseconds per temperature or more, and
the computational expense increases with both system size
and complexity.14

Replica Exchange (RE). Replica exchange has been the
most widely used of the methods we discuss in this paper to
enhance sampling of biomolecular simulations. It can be
thought of as a parallel version of ST, and it is also known
as parallel tempering5 or multiple Markov chains.8 In fact,
parallel tempering was applied to proteins even before ST.41

An RE simulation consists of M identical copies of the
system (replicas) which sample M canonical ensembles at
different temperatures. Exchanges are performed between
neighboring temperatures, Ti and Tj. The probability of

P(Tm) ∝ e-H(X,m) ≡ Zm eam (3)

Zi eai ) Zj eaj (4)

Zm ) e-�mAm ) e-am

am ) -ln Zm
(5)

p(Ti f Tj) ) min{ 1

e-(�j-�i)E+(aj-ai)
(6)

ai+1 - ai ≈ (�i+1 - �i)(〈E〉i + 〈E〉i+1

2 ) (7)
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making an exchange depends on the potential energies, Ei

and Ej, and the inverse temperatures, �i and �j:

RE is analogous to ST, but instead of using weight factors
in the exchange probability, the upward move of one replica
is coupled to the downward move of another. RE therefore
has the critical advantage of not requiring any initial
simulation for the calculation of weight factors. Importantly,
it also satisfies detailed balance.2

One drawback of the RE method is its significant
computational requirements. There is a one-to-one cor-
respondence between the number of replicas (M) and the
number of temperatures (M). The number of replicas needed
for a RE simulation is related to the number of degrees of
freedom, N, as O(N1/2).2,7,42 Systems with many particles
therefore require many replicas. Although it is not a specific
requirement of the RE algorithm, in its typical implementa-
tion, each replica is run on a dedicated central processing
unit (CPU). This setup minimizes the amount of information
that must be passed between nodes.31 Thus, M CPUs are
running simultaneously throughout the course of the RE
simulation. The use of M CPUs in RE can be overcome by
running multiple replicas per CPU. However, using one CPU
for multiple replicas does not effectively take advantage of
the parallelization inherent in the RE method.

The RE algorithm requires the synchronization of at-
tempted moves, which results in wasted CPU time if any
replica waits for other replicas to perform exchanges.
Inhomogeneity of CPU speeds affects the amount of wasted
time, since the speed of the calculation depends on the speed
of the slowest processor. Modified versions of RE have been
developed in an effort to minimize wasted CPU time,
including the multiplexed replica exchange method
(MREM)23 and asynchronous replica exchange.43 MREM
makes use of multiplexed layers of replicas (n layers, each
with M temperatures), with exchanges occurring both within
and between layers.23 MREM is even more computationally
demanding than RE, using n times as many processors.
MREM does not offer a significant advantage if there is a
shortage of CPUs, but it does offer a way of using more
CPUs without adding more temperatures. In asynchronous
replica exchange, only the replicas undergoing exchange are
synchronized, therefore increasing efficiency on heteroge-
neous computing platforms.43 More complex replica man-
agement schemes have also been proposed to increase the
efficiency of RE.44,45 However, modified RE algorithms do
not completely alleviate the need for synchronization and
frequent communication between replicas.14 This is espe-
cially important to users of distributed computing, such as
the massively parallel Folding@Home project,46 who must
contend with inhomogeneity of processor speeds.14

Serial Replica Exchange (SREM). The serial replica
exchange method10 was recently developed to address the
main practical limitations inherent in the RE method, namely,
the need for synchronization and a large number of proces-
sors. The exchange probability in SREM has an identical

form to that of RE (eq 8) for a replica at temperature Ti

attempting to move to a neighboring temperature Tj:

Unlike RE, the attempted move from Ti to Tj does not
simultaneously involve another replica moving from Tj to
Ti. In SREM, the potential energy, Ej,PEDF, does not come
from another replica at temperature Tj but rather is selected
at random from a potential energy distribution function
(PEDF) for that temperature. The PEDFs are determined
through initial simulations at each temperature, which may
use either constant-temperature MD or RE. These initial
simulations can be very computationally demanding for
biomolecular systems. For example, to obtain converged
PEDFs for a small RNA hairpin, approximately 100 ns per
temperature was required.47 PEDFs may also need to be
updated throughout the course of the SREM simulation.14,47

SREM also cannot be applied to temperature-dependent force
fields.48,49

In terms of practical implementation, SREM offers the
same advantages as ST. In both methods, there is absolutely
no communication required between independent simula-
tions. Neither method requires a fixed number of CPUs, and
there is no wasted CPU time in the synchronization of
attempted exchanges. In principle, both ST and SREM can
be run on a single CPU. SREM also presents the same critical
challenge as ST: an initial simulation is needed to determine
PEDFs, the length of which is highly dependent on system
complexity. The significant computational cost of calculating
accurate PEDFs is a key drawback of SREM, since an SREM
simulation is not strictly correct if unconverged or incorrect
PEDFs are used.10,14 In contrast, the weight factors of ST
can deviate from the accurate dimensionless Helmholtz free
energies and still yield correct results.3,10,14

Virtual Replica Exchange (VREX). The first novel
method we propose, virtual replica exchange, is based on
the principles of both RE and SREM. A replica at temper-
ature Ti attempts a move to temperature Tj, with the
probability of exchange given by the following equation:

Here, the potential energy, Ej,virtual, comes from a list of
stored energy values obtained at temperature Tj. This is
analogous to exchanging with a potential energy value
selected from a PEDF in SREM, or the current potential
energy of a replica at temperature Tj in RE. Like SREM,
only a move from temperature Ti to temperature Tj occurs,
with no simultaneous reverse move. In VREX, an energy
value that occurred at temperature Tj in the past is used, and
following the attempted exchange, the occurrence of this
energy value is removed from the potential energy list. This
constitutes a “virtual exchange”.

VREX is derived to obey detailed balance in a similar
manner to RE.2,14 Consider a state A in which a replica with
configuration X is at temperature Ti and a virtual replica with
configuration Xvirt is at temperature Tj. An exchange is

P(Ti T Tj) ) min{ 1

e-(�j-�i)(Ei-Ej)
(8) P(Ti f Tj) ) min{ 1

e-(�j-�i)(Ei-Ej,PEDF) (9)

P(Ti f Tj) ) min{ 1

e-(�j-�i)(Ei-Ej,virtual)
(10)
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attempted to a state B in which the replica with configuration
X is at temperature Tj and the virtual replica is at temperature
Ti. The detailed balance criterion is written

Transition probabilities that satisfy this criterion can then
be derived as follows:

This transition probability is satisfied by the Metropolis
criterion in eq 10. It also resembles the transition probability
for RE (eq 8). The VREX algorithm is completely analogous
to RE, except that one replica undergoes a virtual reverse
move. Similarly, SREM also involves a virtual reverse move,
in this case, by a replica whose energy distribution is
represented by the PEDF. In contrast, the RE algorithm
involves two real replicas undergoing temperature moves.

In practice, VREX requires very short initial simulations
in order to generate a preliminary list of energies for each
temperature. These lists are then updated as the simulation
progresses, with values being added from each short MD
simulation between exchange attempts and values being
removed as they are used in virtual exchanges. It is possible
to run out of potential energy values in the primary lists if
temperatures are sampled heterogeneously. In order to
address this possibility, implementations of VREX may
include the use of secondary lists, to which potential energies
from the primary lists are moved after a single use. Potential
energies from a secondary list may be used in the rare case
that the primary list for that temperature is completely used.
Further, recent values can be prioritized in the primary lists,
and relatively short and continually overwritten secondary
lists can be maintained in order to reduce the likelihood of
using pre-equilibration potential energies in post-equilibration
virtual exchanges.

The main advantage of VREX is that it avoids the need
to calculate converged PEDFs (like SREM) or weight factors
(like ST) and only requires a short list of potential energies
to begin sampling. It also addresses the main shortcoming
of RE because it completely eliminates the synchronization
between replicas, as well as the need for a fixed number of
replicas. It is theoretically very similar to RE, with the
addition of a variable time delay between the time when a
potential energy is produced and when it is used for an
exchange.

Distributed Replica Sampling (DR). Distributed replica
sampling11 is a general scheme for Boltzmann sampling of
conformational space in which multiple replicas undergo a
random walk in a reaction coordinate of interest. Individual
replicas are coupled through a generalized Hamiltonian
containing a potential energy term that depends on the
distribution of all replicas, which acts to enforce a desired
sampling distribution of the reaction coordinate. DR can
therefore be used to enforce uniform sampling along a

reaction coordinate of interest. This may be, for instance, a
nonphysical spatial “fourth” dimension12 or a dihedral
angle.13 We briefly summarize the DR algorithm with
temperature as the coordinate.11 The implementation of DR
in other coordinates has also been previously outlined.11-13

The generalized Hamiltonian of DR in temperature
contains a pseudoenergy term and depends on the current
inverse temperature and current configuration (q) of all
replicas:

where E is the potential energy. There are M replicas in total,
each labeled by an index m ) 1, ..., M. The distributed replica
potential energy (DRPE) can take any functional form that
depends on the distribution of replicas and fulfills the purpose
of enforcing homogeneous sampling of the temperature
coordinate. Importantly, although the DRPE is a pseudoen-
ergetic penalty, it is not a function of system complexity.11

The probability of a replica currently at temperature Ti

jumping to a temperature Tj is

which depends on the difference between the DRPE with
the replica at temperature Tj (DRPEj) and that at temperature
Ti (DRPEi).

11 DR can be analogously used to achieve a
random walk in a parameter of the Hamiltonian, �, with an
exchange probability:

DR was designed specifically to suit shared or distributed
computing platforms.11 In contrast to RE, in which pairwise
exchanges of replicas are attempted, DR considers stochastic
moves of individual replicas one at a time. The stochastic
move of one replica is coupled to the distribution of all other
replicas through the DRPE, and no direct communication
between replicas is required. In DR, synchronization of
exchange attempts is therefore completely eliminated, which
results in 100% CPU utilization.11 The algorithm also readily
accommodates fluctuations in CPU availability.11 DR in
combination with thermodynamic integration (TI) was shown
to sample conformational space more effectively than TI
alone in the calculation of the binding free energy of benzene
to T4 lysozyme, while simultaneously optimizing the use of
available computational resources.12 This approach was also
successfully employed to compute partial water occupancy
in the pathway of proton uptake in cytochrome c oxidase.50

In addition, DR has been combined with umbrella sampling
(DRUS) to allow equilibrium exchange between different
umbrella biasing potentials.13,50 When applied to alanine
dipeptide, umbrella sampling alone exhibited quasi-noner-
godic behavior, while DRUS alleviated this systematic
error.13

P(A) P(A f B) ) P(B) P(B f A) (11)

P(A f B)
P(B f A)

)

e-�jH(X)

Zj

e-�iH(Xvirt)

Zi

e-�iH(X)

Zi

e-�jH(Xvirt)

Zj

) e-(�j-�i)(E(X)-E(Xvirt))

(12)

H(q1, �1, q2, �2, ..., qM, �M) ) ∑
m)1

M

�m Ε(qm) +

DRPE(�1, �2, ..., �M) (13)

p(Ti f Tj) ) min{ 1

e-(�j-�i)E(qi)-(DRPEj-DRPEi)
(14)

p(�i f �j) ) min{ 1

e-�[(H(q,�j)-H(q,�i))+(DRPEj-DRPEi)]

(15)
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Application of the DRPE restores sampling homogeneity
of temperature only when the DRPE contribution is large
enough to balance the preference for sampling the lowest
temperature. When ST is conducted with all weight factors
equal, as outlined in eq 14, all replicas migrate with a strong
preference for the lowest temperature (as described above).
In this case, a very strong DRPE is required to achieve
sampling homogeneity. However, it has been demonstrated
that, as the energetic penalty of the DRPE becomes stronger,
replica mobility (as measured by acceptance ratio) de-
creases,11 and therefore some modification to the DR
exchange probability is necessary. This issue can be ad-
dressed by simply adding weight factors to the exchange
probability, analogous to the weight factors, f, in the DRUS
exchange probability:13

This form of the exchange probability results in good
replica mobility and nearly perfect sampling homogeneity
of the reaction coordinate.13 The efficiency and practical
advantages of DR in other coordinates have been well
established.11-13 It is therefore a central objective of this
study to develop and test an implementation of DR which
functions optimally in temperature space.

Simulated Tempering Distributed Replica Sampling
(STDR). Building on the success of the both the ST
method3,4 and DR sampling,11-13,50 we have developed a
new algorithm, STDR, which combines the two approaches.
STDR is essentially DR implemented rigorously in temper-
ature. The combination of these two methods was originally
suggested when DR was developed.11 In STDR, approxi-
mately homogeneous sampling of a set of temperatures is
enforced. The probability of accepting a move from a
temperature Ti to a neighboring temperature Tj is

This is the same as the exchange probability from ST, with
the addition of the difference in DRPE between the states
for which the replica is at temperature Ti (DRPEi) and
temperature Tj (DRPEj). The calculation of the DRPE is
straightforward. Its functional form depends upon the current
temperatures of all replicas as follows:12

Replicas are labeled by indices m and n, where M is the
number of replicas. The values of λm,linear refer to a linearly
spaced temperature coordinate. In this coordinate, the lowest
temperature has λm,linear ) 1, and the highest temperature has
λm,linear equal to the number of temperatures. This procedure
transforms the exponentially spaced temperatures into a

uniformly spaced coordinate. The factor ω, which we
introduce to the DRPE in this work, is the ratio of the number
of temperatures to the number of replicas. This factor allows
DR to be used with an arbitrary number of replicas. The
first term in eq 18 introduces an energetic penalty for two
replicas sampling the same temperature, while the second
term introduces a penalty for an overall drift of the replicas
toward high or low temperatures. The second term is not
essential when using DR in temperature. The constants c1

and c2 control the influence of the DRPE and can be tuned
to enforce homogeneous temperature sampling as required.11

In the case of accurate weight factors, the influence of the
DRPE only needs to be small such that values of c1 and c2

near zero can be used. With increasingly inaccurate weight
factors, larger DRPE values are required to maintain
homogeneous temperature sampling, and this reduces the
acceptance ratio to some degree. An example calculation of
the DRPE using the temperature as the reaction coordinate
is provided as Supporting Information.

If the weight factors, am, are inaccurate, ST results in
uneven sampling of the temperature coordinate. As we will
demonstrate, introducing the DRPE recovers homogeneous
sampling. The STDR method is therefore more generally
applicable than ST because it can make use of a poor estimate
of the dimensionless Helmholtz free energies and still yield
uniform sampling of the canonical ensembles at each
temperature. STDR is equivalent to ST in the limit of one
replica and is compatible with adaptive schemes for comput-
ing weight factors. Below, we show that STDR is the
preferred method for systems with a complex energy
landscape for which limitations on computational resources
preclude obtaining sufficiently accurate estimates of Helm-
holtz free energies for a ST simulation.

Test System. For the purpose of comparing different
generalized-ensemble methods, we use two related test
systems, the peptides GVGVPGVG and (GVPGV)7. These
peptides are both based on the pentapeptide GVPGV, which
is found as a repeat motif in the protein elastin.51 In our
previous study of (GVPGV)7 and other related elastin-like
peptides, we observed that this peptide is intrinsically
disordered, having many conformations and no extended
secondary structure in the form of R-helices or �-sheets.52

Understanding the structural heterogeneity of elastin-like
peptides is required to elucidate the structure-function
relationship of elastin, for which experimental characteriza-
tion is notoriously difficult due to its flexibility and insolubil-
ity. The peptide GVGVPGVG has also been studied previ-
ously and was suggested to exhibit an “inverse temperature
transition” with an increased probability of “closed” con-
formations (in which the N and C termini are closer than 8
Å) at higher temperatures.53 On the basis of this work, the
octamer is a simple yet appropriate peptide to study in the
aim of understanding the temperature-dependent behavior
of elastin. Because the main focus of this paper is the
thorough comparison of generalized-ensemble methods using
these peptides as test systems, we do not elaborate fully on
the structural details of either the octapeptide or the 35-
residue peptide in this paper. A full characterization of the
conformational landscape of these peptides will be the subject

p(�i f �j) ) min{ 1

e-�[(H(q,�j)-H(q,�i))-(fj-fi)+(DRPEj-DRPEi)]

(16)

p(Ti f Tj) ) min{ 1

e-(�j-�i)E+(aj-ai)-(DRPEj-DRPEi)

(17)

DRPE ) c1 ∑
m)1

M

∑
n)1

M

[(λm,linear - λn,linear) - ω(m - n)]2 +

c2[ ∑
m)1

M

λm,linear - ω ∑
m)1

M

m]2

(18)
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of future work. Both GVGVPGVG and (GVPGV)7 are
valuable test systems because of their structural complexity
and the fact that they represent a real scientific problem in
the sense that they are not well understood or characterized
a priori. Simple test systems are often used for comparison
purposes, such as alanine dipeptide,10,13 although general-
ized-ensemble methods are typically applied to systems
which are much larger and more complex. While simple test
systems are useful for the sake of demonstration and for the
elucidation of major problems, they are less likely to detect
the subtleties and practical issues experienced when studying
systems of biologically relevant complexity.

The conformational landscape of the octapeptide is
complex, with many energetically accessible states that must
be sampled in order to accurately compute free energies. A
representative selection of these conformations is shown in
Figure 1A, with “closed” states in which the N and C termini
are in close proximity, “hairpin”-like states, and extended
structures. Although it is a short peptide, GVGVPGVG

represents a challenging sampling problem due to the large
number of thermally accessible conformations. In Figure 1B,
we show the hydrogen-bonding contact map for this peptide
obtained using STDR. The only secondary structure consists
of hydrogen-bonded turns, with no R-helix or �-sheet. The
most populated turn is the VPGV � turn, with a hydrogen
bond between the CdO group of valine 4 and the N-H
group of valine 7. Several other turns form with lower
populations. As we will show, single-temperature MD, if run
for a sufficiently long time, provides a converged description
of the conformational landscape. This makes it an ideal test
system because we can verify that the generalized-ensemble
algorithms, given sufficient sampling, lead to correct Boltz-
mann-weighted sampling of conformational space, in addition
to an assessment of their relative efficiency.

The 35-residue peptide, (GVPGV)7, is used as a more
complex test system to demonstrate the sampling enhance-
ment provided by STDR for a landscape which not only has
many populated states but also has significant energetic
barriers between those states. The larger system is only
simulated using constant temperature MD, ST, and STDR
because of the extensive amount of computational resources
required. Of the methods we consider, STDR is better suited
to this particular application on the basis of its performance
for the octapeptide. It is as efficient and accurate as the other
methods, while offering the most practical advantages for a
large and complex system (see below).

Simulation Details. For all five methods (ST, STDR,
SREM, RE, and VREX), the same exponentially spaced
temperature list was used. This list is provided as Supporting
Information Table S1. The simulation system consists of the
GVGVPGVG octapeptide, capped with an acetyl group at
the N terminus and an NH2 group at the C terminus, in a 3
× 3 × 3 nm3 box with 872 water molecules. The same fully
extended starting structure was used for all temperatures and
all methods. Simulations were performed using the GRO-
MACS MD simulation package, version 3.3.1,54,55 with the
OPLS-AA/L force field56,57 for the solute and the TIP3P
model for water.58 Periodic boundary conditions were
applied. The switch function of GROMACS was used for
Lennard-Jones interactions, which corresponds to the usual
Lennard-Jones function until 1.3 nm is reached, after which
it is switched to reach zero at 1.4 nm. Covalent bonds
involving hydrogen atoms were constrained with the SHAKE
algorithm.59 Calculations of electrostatic forces utilized the
particle mesh Ewald summation method60,61 with a Fourier
spacing of 0.15 nm and a fourth-order interpolation. The real-
space Coulombic cutoff was 1.49 nm. All MD simulations
were performed in the canonical ensemble. Peptide and
solvent were coupled to the same reference temperature bath
with a time constant of 2 ps using the Nosé-Hoover
method.62,63 An integration step size of 2 fs was used, and
coordinates were stored every 1 ps.

In order to compare the generalized-ensemble methods,
the simulations were conducted as similarly as possible.
To this end, the same total amount of simulation time
(summed over all replicas) was performed. This amount
was 4.75 µs, with an average of approximately 144 ns
per replica. This time was used because it was sufficient

Figure 1. Conformational landscape and hydrogen-bonding
contact map of GVGVPGVG. (A) A selection of 35 random
conformations from the STDR simulation at 280 K, with glycine
in red, valine in yellow, and proline in blue. (B) Hydrogen-
bonding contact map at 280 K, with corresponding snapshots
showing the presence of significantly populated contacts. N-H
groups are on the horizontal axis, and CdO groups are on
the vertical axis. Each square in the matrix (i,j) corresponds
to a contact between the N-H group of residue i and the CdO
group of residue j. The color scheme of the legend indicates
the relationship between color and probability of contact
formation.
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for all methods to achieve statistical convergence, as
shown in the results. Stochastic exchanges using the
Metropolis Monte Carlo algorithm64 were attempted every
25 ps. Exchange probabilities were calculated using eqs
6, 8, 9, 10, and 17, as appropriate for the method. Details
of the calculation of weight factors and PEDFs are
discussed below. The constants c1 and c2 for the DRPE
in eq 18 were both 0.005. These values were found to
achieve an appropriate balance between homogeneity of
temperature sampling and replica mobility.11 The value
of the factor ω was 1.0, since the number of replicas
equaled the number of temperatures. The generalized-
ensemble algorithms were implemented using an in-house
bash script. Software for distributed replica sampling is
also available online at www.pomeslab.com.

The same simulation protocol was used for the simulation
of (GVPGV)7, which was simulated in a 4.5 × 4.5 × 4.5
nm3 box with 2856 water molecules using both ST and
STDR. Starting conformations and weight factors for each
temperature were generated using canonical MD for 15 ns
per temperature (storing 250 energy values per picosecond).
A total of 70 temperatures were used for each generalized-
ensemble simulation. The list of temperatures is provided
in Supporting Information Table S1. Temperatures were
spaced more closely than those of the octapeptide. This is
because it is a larger system, resulting in less overlap between
potential energy distributions of adjacent temperatures for a
given temperature separation. This system was simulated for
a total of 8.2 µs (117.6 ns per replica on average) using the
STDR algorithm. An ST simulation using the same weight
factors was also performed for 420 ns (6 ns per replica
on average). ST and STDR simulations were also per-
formed using weight factors calculated using the first 500
ps of continuous MD at each temperature for a total of
280 ns.

A conventional MD simulation of the 35-residue peptide
system in the isothermal-isobaric ensemble was also
performed using GROMACS, version 4.0.2.65 In this simula-
tion, a 4 fs time step was used, and constraints on bonds
and angles involving hydrogen were imposed using the
LINCS algorithm.66 This simulation was run for 200 ns at
261 K, which corresponds to the lowest temperature in the
STDR simulation. The pressure was kept constant at 1.0 bar
using the Parrinello-Rahman algorithm.67

The analysis of the data accumulated in the trajectories
was performed using an in-house script based on a modified
version of the Dictionary of Secondary Structure in Proteins
(DSSP).68 For each snapshot, possible backbone hydrogen
bonds were evaluated using both (a) the energetic criterion
of DSSP and (b) the following geometric criteria: (i)
donor-acceptor and hydrogen-acceptor distances are less
than 3.5 and 2.5 Å, respectively, and (ii) the value of the
acceptor-donor-hydrogen angle is less than 60°. Definitions
of turns and bends are the same as those in DSSP.68 End-
to-end distance (EED) is calculated as the distance between
the R carbons of the first and last residue. Root mean square
deviation (rmsd) was calculated using the g_rms program
in GROMACS.65 All molecular visualizations in the manu-
script were produced using VMD.69

Calculations of Weight Factors for ST and STDR,
PEDFs for SREM, and Potential Energy Lists for
VREX. The calculation of weight factors for eqs 6 and 17
required initial simulations of the octapeptide in the canonical
ensemble for each of the temperatures listed in Supporting
Information Table S1. These simulations were performed
using conventional MD for 19.5 ns (for a total simulation
time of 643.5 ns). Although obtaining these accurate weight
factors was resource-intensive, it involved a straightforward
procedure. The weight factors were computed using the
average potential energy at each temperature according to
eq 7.30 The accuracy of these weight factors was assessed
by using them in an ST simulation and observing the
temperature sampling uniformity, as shown in the results.
Since all temperatures were sampled with nearly equal
probability, as expected from eqs 3 and 5 for accurate
dimensionless Helmholtz free energies, these weight factors
were deemed to be sufficiently converged and correct.

Using the same data from the conventional MD simula-
tions, PEDFs were computed as described in the original
SREM paper.10 The convergence of the PEDFs was assessed
by calculating the �2 measure suggested by Hagen et al.:10

This measure computes the deviation of each bin in the
current distribution, Pi(t), from a reference distribution,
Pi,reference. The current distribution is cumulative, using the
data up to time t. For the reference distributions, we used
PEDFs computed using all of the data at each temperature.
By this assessment, the PEDFs appeared to be stationary, as
shown in Figure 2A. When �2 was plotted individually for
each temperature, we also observed that each PEDF was
stationary. However, an initial SREM simulation using these
PEDFs resulted in nonuniform sampling of temperatures. We
therefore proceeded to calculate the PEDFs using a different
data set. We used the first 25 ns at each temperature of the
RE simulation (for a total time of 825 ns), and these were
the PEDFs used for the SREM simulation. While this
procedure is similar to what would likely be done in practice
with SREM, we emphasize that making this selection of
PEDFs gave SREM somewhat of an advantage over ST,
since more data were used in the initial simulation. The use
of RE in the calculation of PEDFs is similar to REST.36,38

Although REST results in faster convergence of the weight
factors compared to conventional MD, it may be difficult or
impossible to obtain access to the required number of
homogeneous and dedicated CPUs for the initial RE simula-
tion. Thus, we did not use REST to obtain the weight factors
for ST to better represent the general case where it may not
be convenient to do so. In contrast, it was necessary to use
RE to obtain PEDFs for SREM in a reasonable amount of
time.

Figure 2B shows the error in the exchange probability for
both SREM and ST using the data from 19.5 ns of
conventional MD at each temperature. The method for
computing the error in exchange probabilities is provided in
Appendix 1. The weight factors of ST produce an average

�2(t) ) ∑
n)1

Nbins

(Pi(t) - Pi,reference)
2 (19)
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error in the exchange probability of less than 2% after 19.5
ns per temperature. Using the same amount of data, the
PEDFs produce a significantly higher error in the exchange
probability (more than 5%), which is why the weight factors
used in ST from conventional MD produced more homo-
geneous sampling than the PEDFs. In Figure 2C, the error
in the exchange probability for both ST and SREM is shown
using the data from the first 25 ns at each temperature of
RE. This data set was used to calculate the PEDFs for the
SREM simulation, producing an error in the exchange
probability of less than 4%. The convergence of the PEDFs
estimated using all of the data from RE is shown in Figure
2D. The error in the exchange probability had only decreased
to less than 2% after approximately 60 ns per temperature.
That is, SREM would have required preliminary simulations
which were half as computationally expensive as the entire
RE simulation in order to produce error in the exchange
probability equivalent to that of ST. The slow convergence
of PEDFs is likely why they have been updated throughout

the course of the simulation in other studies.10,14,47 However,
an SREM simulation is strictly correct only with accurate
PEDFs.14

Figure 2 demonstrates that the error in the weight factors
of ST leads to smaller error in the exchange probability than
the error in the average energy of PEDFs. This finding is in
qualitative agreement with a previous study comparing
SREM and ST for a helical peptide.14 The PEDFs of SREM
were observed to converge more slowly than the weight
factors of ST when starting from a coil conformation, but
not when both ST and SREM were started with a helical
conformation.14 In the original SREM paper, it was hypoth-
esized, but not shown, that the calculation of PEDFs should
be significantly easier than the calculation of weight factors
for ST.10 In fact, we observe that the opposite is true for
this system. The weight factors converge significantly faster
than PEDFs and lead to more homogeneous sampling of the
temperature. The difference in errors is likely because the
exchange probability in ST uses a difference in dimensionless
free energies, whereas the absolute value of the potential

Figure 2. Assessing convergence of weight factors and PEDFs. (A) The convergence of the PEDFs for SREM is quantified
using the �2 measure defined in eq 19. Using this measure, the PEDFs obtained using 19.5 ns of conventional MD at each
temperature appear to be stationary. (B) Convergence of the PEDFs and weight factors using data from 19.5 ns of conventional
MD per temperature, using the data from the complete RE simulation as a reference. (C) Similarly, data from the RE simulation,
using only the first 25 ns per temperature, with the data from the complete RE simulation as a reference. (D) Similarly, using all
of the data from the RE simulation (4.75 µs). Error in the acceptance ratio is shown in B, C, and D for both ST in yellow (computed
using eqs 25 and 29) and SREM in purple (computed using eqs 24 and 27).
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energy is used in the exchange probability of SREM.
Additionally, the method for computing the weight factors
uses only the average potential energy at each temperature.30

It is harder to converge a distribution of potential energies
than the average of the distribution. Since weight factors are
computed using average potential energies, they converge
more quickly than PEDFs. The accuracy of the potential
energy value selected from the discrete PEDF in SREM is
also affected by the number of bins and the bin width.10 The
accuracy is decreased by having too few bins, whereas the
convergence of the distribution is slower with a larger
number of bins. These errors must therefore be balanced.
Even if the PEDFs and weight factors converged at the same
rate, ST has the advantage of convenience, since it entails
storing a short list of weight factors rather than a distribution
of energy values for each temperature.

We also tested the effects of using a poor estimate of the
weight factors in ST. In order to generate suboptimal weight
factors, we used the data from the first 750 ps of the RE
simulation. This required a total of 24.75 ns summed over
all temperatures, compared to 643.5 ns used to generate
accurate weight factors. These weight factors produced
inhomogeneous sampling of the temperature, confirming that
they were inaccurate estimates of the dimensionless Helm-
holtz free energies (as is demonstrated in the results below).
The purpose of this exercise was to emulate the more general
case of a complex system for which one may not be able to
accurately calculate weight factors due to the prohibitive
computational cost. ST and STDR simulations carried out
with these inaccurate weight factors will hereafter be referred
to as STb and STDRb, respectively.

Potential energy lists for the VREX simulation were also
generated using the RE data. A list of 1000 energy values
from the first 1 ns was used for each temperature. We did
not run out of potential energy values in the primary lists
and therefore no secondary lists were used. However,
secondary potential energy lists may be necessary in the
application of this method to other systems. In summary,
we highlight the varying costs of the initial simulations for
each of the methods in terms of the simulations times: RE
(0 ns), VREX (33 ns), SREM (825 ns), STDR (643.5 ns),
STDRb (24.75 ns), ST (643.5 ns), and STb (24.75 ns).

Results and Discussion

Practical Implementation Issues. Before we begin a
detailed comparison of the efficiency of the temperature-
based generalized-ensemble methods, we briefly compare
them with regard to the practical issues encountered in their
implementation. A summary of this comparative discussion
is provided in Table 1. Prior to beginning an enhanced
sampling simulation, it is necessary to assess the available
computational resources, including the number of processors
available, the heterogeneity of their speeds, and their failure
rate (frequency of “crashes”).

In terms of the number of CPUs required, the RE algorithm
specifies that the number of replicas equal the number of
temperatures, which grows with system size. In the typical
implementation of RE, the number of processors equals the

number of replicas. If it is not possible to obtain access to
the required number of processors, an alternative method or
a more advanced RE implementation must be sought.
Another possible scenario is that extra processors are
available, which could be utilized to speed up the calculation,
but the RE algorithm does not allow the possibility of having
more replicas than temperatures. This particular issue is
addressed by the MREM algorithm, which utilizes multiple
layers of replicas.23 However, there is no general mechanism
to adapt RE to use available resources most efficiently. In
contrast, both ST and SREM completely eliminate the need
for a specific number of replicas. Multiple ST or SREM
simulations can be run independently to take advantage of a
computing cluster or distributed computing. The benefit of
utilizing several processors simultaneously, each running an
independent ST or SREM simulation, is simply reaching
convergence more quickly in terms of wall clock time.
Similarly, STDR and VREX algorithms do not require a fixed
number of replicas. However, the aim of the DRPE is to
enforce homogeneous sampling of temperatures for multiple
replicas. Using only one replica is therefore not optimal, and
ideally one would use a number of replicas comparable to
the number of temperatures, though there is no specific
requirement. A VREX simulation can in principle have any
number of replicas. However, there is likely some benefit to
having multiple replicas sampling different regions of
conformational space in the updating of the potential energy
lists (that is, running more than one replica at a time).

Of the generalized-ensemble methods we consider, only RE
prevents the number of replicas from fluctuating during the
course of the simulation. This may be a drawback in distributed

Table 1. Practical Advantages and Disadvantages of
Generalized-Ensemble Algorithmsa

a If a method is not affected by an implementation issue, the
corresponding square is colored in green. Yellow indicates that the
issue is somewhat of a concern, and red indicates that it is
potentially a major pitfall. The only major issues for SREM and ST
are the calculation of PEDFs and weight factors, respectively.
STDR and VREX are not severely affected by any implementation
issue. However, they do require very short initial simulations to
obtain weight factors and potential energy lists and, ideally, would
not be run with only one replica. RE, in its typical implementation
in which each replica is run on a dedicated CPU, is hindered by all
of the issues listed, except that it does not require any initial
simulation.
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computing platforms and shared computing clusters, for which
there is no way to predict the number of available processors
in advance. Furthermore, the efficiency of RE is significantly
affected by inhomogeneity of CPU speeds. Each exchange step
can only occur when all of the replicas have completed their
MD calculation. Any inhomogeneity in the computing environ-
ment results in a waste of computational resources, as some
replicas must wait for the replica with the slowest processor to
finish its calculation. This issue has been partly addressed by
the asynchronous replica exchange method, although some
degree of synchronization is still required for the replicas
undergoing exchange.43 Since none of the other methods require
any direct communication between replicas, they do not suffer
from this inefficiency. Another key drawback of the typical
implementation of RE is its sensitivity to CPU failure.10,11 If
one of the replicas is running on a processor that crashes, the
entire RE simulation is stalled until this replica can be restarted
on a functioning processor. The time wasted due to CPU failure
depends on the failure rate of the cluster and can be quite
significant. Failure rates also rise with the number of replicas,
and therefore the failure rate of RE is equal to the number of
replicas times the failure rate of either SREM or ST.10

In contrast to RE, the other four methods all have the
advantage of not requiring a fixed and synchronized cluster
of CPUs to function optimally. From a practical point of
view, these methods are all superior to RE, except in one
regard. Only RE does not require initial simulations at
multiple temperatures to obtain weight factors, PEDFs, or
potential energy lists. In particular, ST and SREM appear
to only be suited to systems for which accurate weight factors
or PEDFs can be calculated in a reasonable amount of
simulation time. For the test system in the present study,
accurate weight factors for ST were computed using single-
temperature MD, whereas SREM required more simulation
time and the use of RE in order to obtain sufficiently accurate
PEDFs (see methods section). We will demonstrate that
STDR can function with less accurate weight factors and
therefore requires less initial simulation time than ST. Finally,
VREX requires significantly less initial simulation than
SREM, STDR, or ST. Only short lists of potential energies
at each temperature are needed to begin a VREX simulation.

An ideal temperature-based generalized-ensemble method
would not require a significant initial simulation (as do ST
and SREM) but also would not involve the use of a large
cluster of homogeneous CPUs (as is common for RE). STDR
and VREX address both of these issues, and are the most
flexible algorithms in terms of practical concerns. These
issues are particularly important if one is using a distributed
computing platform with fluctuating numbers of heteroge-
neous CPUs in many different locations, or a shared
computing cluster, which may present similar limitations.

Diffusion in Temperature. We characterize the efficiency
of the temperature diffusion of each method using several
different metrics, which are summarized in Table 2. First,
we calculate the average acceptance ratio, which is a metric
commonly reported for RE simulations.70 The methods
separate into two categories based on their acceptance ratios:
the RE-based methods (RE, VREX, and SREM) and the ST-
based methods (ST, STb, STDR, and STDRb). ST has a

higher acceptance ratio than RE for the same set of
temperatures, in agreement with a previous comparison
of the methods.36 Similarly, ST has a higher acceptance ratio
than SREM.14 Zhang and Ma also observed that the rate
of traversing temperatures is faster in ST, and that this effect
becomes especially apparent if separations between adjacent
temperatures are large, or if exchanges are attempted less
frequently.32 Park proved that this is generally true for a
given set of temperatures37 and concluded with a question
as to whether the enhanced acceptance ratio affects the rate
of sampling different microstates, and therefore structural
convergence. We investigate whether the higher acceptance
ratios in serial tempering algorithms (both ST and STDR)
compared to those in parallel tempering (RE, VREX, and
SREM) do in fact lead to faster structural convergence in
the next section. It should be noted that the DRPE in STDR
decreases the acceptance ratio relative to ST, since it
increases the probability of rejecting moves that result in
inhomogeneous temperature sampling. The extent of this
effect depends on the constants c1 and c2 in eq 18.11

Next, we consider a quantity which we call “replica
speed”. Back exchanges can occur in which a replica accepts
a move to an adjacent temperature and at the next exchange
returns to its previous position. These back exchanges
contribute to the acceptance ratio, but they result in no net
change in temperature, and typically no crossing of signifi-
cant energetic barriers. In order to account for these
“unproductive” moves, we calculate the replica speed as the
average distance traveled after 50 exchange attempts. Values
of replica speed are reported in Table 2. All of the methods
have similar values for the replica speed, with SREM and
VREX being slightly slower. The higher acceptance ratios
of the ST-based methods do not correspond to significantly

Table 2. Evaluating Temperature Diffusion

The quality of the random walk in temperature for each
generalized-ensemble method is assessed using five criteria, and
an overall score is obtained by taking the normalized linear
combination. Normalization is performed by dividing each value by
the maximum value of that measure. The fifth measure was
included in the normalized linear combination as 1.0 - (average
deviation from sampling homogeneity)/100% for consistency with
the other measures of temperature diffusion. The overall scores
for each property are ranked from 1 to 7, representing decreasing
performance. Scores are colored as follows: 1 and 2 (green), 3-5
(yellow), and 6 and 7 (red).
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faster replica speeds. That is to say, the higher acceptance
ratios for the ST-based methods are partly due to an increased
frequency of unproductive moves.

Making an analogy with the replicas traveling in temper-
ature space as a type of diffusion in a one-dimensional
coordinate, we calculate the mean free path and diffusion
coefficient for each method. Mean free path is defined as
the average distance traveled between successive rejected
moves (“collisions”). The diffusion coefficient is defined as
the rate of change of the mean squared deviation of distance
over time. We notice that ST, both with accurate and
inaccurate weight factors, has the highest mean free path
and diffusion coefficient. Both STDR simulations behave
remarkably similarly and are slightly slower at diffusion in
temperature compared to ST. RE has a higher diffusion
coefficient than STDR, but a lower mean free path. It is also
slightly more efficient at temperature diffusion than VREX
or SREM.

Another important criterion is the deviation from sampling
homogeneity, which indicates the amount of deviation from
uniform sampling averaged over all of the temperatures:

where the number of samples at temperature m is Nm, the
average number of samples per temperature is 〈Nm〉, and M
is the number of temperatures. We report the deviation from
sampling homogeneity for each temperature in Supporting
Information Figure S1. The coupling of upward and down-
ward moves in the RE algorithm results in perfectly uniform
sampling of all temperatures. STDR produces nearly uniform
sampling, with deviations from uniformity of 2.50% and
2.98% for accurate (STDR) and inaccurate (STDRb) weight
factors, respectively. This is expected because the application
of the DRPE favors uniform sampling of the temperature
coordinate.11 Even with inaccurate weight factors, the
temperature sampling is still uniform, and the diffusion
coefficient is still approximately the same. This indicates that
STDR in the general case (i.e., with inaccurate weight
factors) still successfully produces uniform sampling and
good mobility in temperature. Our ST simulation also results
in nearly uniform sampling, confirming the accuracy of the
weight factors. ST with inaccurate weight factors (STb)
produces the least uniform sampling, by design (17.40%).
We intentionally selected weight factors to produce uneven
sampling to represent a more complex system for which
calculating weight factors accurately would be computation-
ally expensive. VREX produces relatively uniform sampling,
with an average deviation of 6.62%. Most of the inhomo-
geneous sampling in VREX occurs early in the simulation
when the potential energy lists were based on a small amount
of sampling, and the sampling is increasingly homogeneous
with time. In contrast, SREM does not produce uniform
sampling, with less sampling at the lowest temperatures and
an average deviation of 12.61%.

Temperature sampling efficiency is characterized by an
overall score. The five measures of efficiency defined in this

section are combined by averaging their normalized values.
The overall score for each method is reported in the last row
of Table 2. ST with accurate weight factors performs the
best overall, and all of the ST-based methods perform better
than the RE-based methods (especially SREM, which has
the lowest overall temperature diffusion score).

Convergence of Structural Properties. The octamer
GVGVPGVG is a disordered peptide with many thermally
accessible conformations, as shown in Figure 1. A useful
descriptor of the conformation of such a short and flexible
peptide is the end-to-end distance, EED. The EED probability
distributions obtained using each of the generalized-ensemble
methods at 280 K (the lowest temperature) are shown in
Figure 3. Also shown is the average distribution, which is
obtained by taking the average of all of the methods. There
is no systematic bias of either ST-based or RE-based methods
toward sampling particular conformations. For example, for
the peak at 5 Å, RE, STDRb, and SREM are above the
average while STDR, VREX, and STb are below. On the
basis of this observation and of the large amount of sampling
in the combined data set of all seven methods (nearly 35
µs), we take the average to be the “gold standard” for
comparison throughout the analysis of structural convergence
(it is hereafter referred to as the “reference”). We quantify
the deviation σeed, of the EED distribution of each method
Peed(n), from the reference EED distribution Peed,reference(n),
by computing

where the index n labels bins, and there are Nbins in total.
The values of σeed are reported in Figure 3. STDR exhib-
its the best agreement with the average distribution. In

average deviation from homogeneity ) 1
M ∑

m)1

M |Nm - 〈Nm〉|
〈Nm〉

(20)

Figure 3. Assessing the accuracy of the EED distribution.
The EED probability distribution is shown for each method
with colors indicated in the legend using data from 280 K.
The average distribution is computed as the average of all
seven methods and is shown in purple (dashed line). The error
of the distribution of each generalized-ensemble algorithm,
σeed, is shown next to the legend and was computed using
eq 21 with the average distribution as the reference.

σeed ) ∑
n)1

Nbins

(Peed(n) - Peed,reference(n))2 (21)
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general, the ST-based methods have lower values for σeed,
corresponding to more accurate EED distributions than the
RE-based methods.

In order to confirm that the ST-based methods produce
more accurate EED distributions when compared to the RE-
based methods, EED distributions for the lowest 10 tem-
peratures for each generalized-ensemble method are also
computed and compared to the reference using eq 21. The
EED distributions for each method and each temperature are
displayed in Figure 4, along with the σeed value which is the
average of the 10 temperatures. The ST-based methods
produce EED distributions which are quantitatively more
accurate than the RE-based methods at all temperatures.
STDR shows the best overall agreement with the reference
data set, with an average σeed value of only 0.006, and
distributions which clearly show the same temperature trend
as the reference distributions.

For a systematic comparison of the generalized-ensemble
methods, the convergence of several structural properties in

addition to the EED distribution is considered. A useful
ergodic measure is the 1,4 pair distance metric,71,72 which
quantifies the convergence of the distance between 1,4
residue pairs (residues with indices i and i + 3) over time.
We extend this metric to include all residue pairs and
therefore quantify the convergence of the R-carbon distance
matrix as follows:

where the indices i and j correspond to residue number and
the number of residues is Nresidues. The difference between
each average pairwise distance rij and the same average
pairwise distance from the reference R-carbon distance matrix
(rij,reference) is computed. In this equation, t refers to simulation
time accumulated at the temperature considered, and rij(t) is
a cumulative average. As with EED, the average of all seven

Figure 4. EED distributions at different temperatures. The EED probability distributions are shown for the lowest 10 temperatures
for each generalized-ensemble method, as well as the average of all seven methods. The average error of the distributions of
each generalized-ensemble algorithm, σ, is also shown. This was computed for each of the 10 temperatures using eq 21 with
the average distribution as the reference, and the average of these errors is shown on each plot. The RE-based methods are
shown in the top row and have larger errors than the ST-based methods, shown in the second and third rows. The average over
all methods is shown in the central plot.

ddCRmatrix(t) )
1

(Nresidues - 1)! ∑
i)1

Nresidues

∑
j)1

Nresidues

(rjij(t) - rjij,reference)
2

(22)
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generalized-ensemble methods is used as the reference. We
compute an analogous measure of convergence for the
hydrogen-bonding contact map, depicted in Figure 1b:

where Pij is the probability of a hydrogen bond forming
between the CdO group of residue i and the N-H group of
residue j, and Pij(t) is a cumulative average of all of the data.
The elements of the reference contact map, Pij,reference, are
computed using the data from all seven methods. We also
directly compute the probability of forming certain turns (γ,
�, and R turns, defined by hydrogen bonds between residues
i and i + 2, i + 3, and i + 4, respectively) as well as the
VPGV �-turn (shown in Figure 1, the most probable turn).
In addition, the average probabilities of forming a hydrogen

bond and a “bend” (as defined in the DSSP algorithm68) on
a per-residue basis are computed. The convergence of each
of these structural properties is considered individually and
compared to the reference data. Taken as a set, these
structural properties provide a detailed description of the
octapeptide’s complex conformational ensemble.

A representative example of how these structural properties
measure convergence is shown in Figure 5 for ST at 280 K.
The convergence of the R-carbon distance matrix, the
hydrogen-bonding contact map, and the EED distribution are
displayed in Figure 5A. The cumulative averages for the
different types of turns, as well as hydrogen bonds and bends,
are shown in Figure 5B. It is apparent from both of these
plots that selecting a particular time at which the simulation
has converged is ambiguous. Each structural property appears
converged at a slightly different time. This ambiguity
highlights the importance of considering multiple metrics
when discussing the convergence of a simulation. In order

Figure 5. Assessing structural convergence using multiple criteria. The data for A, B, and C are from ST at 280 K. The trajectory
is separated into 50 time intervals, and the quantities reported are calculated cumulatively. Time intervals are used to compare
all methods fairly, since each method results in a different amount of sampling time at the lowest temperature. (A) Structural
convergence is assessed using σeed (eq 21), dcontactmap (eq 23), and ddCRmatrix (eq 22, plotted on the secondary axis). (B) The
probability per residue of a γ-turn, �-turn, and R-turn are shown, as well as the population of the VPGV �-turn. The probability
of a hydrogen bond per residue and a bend per residue (plotted on the secondary axis) are also shown. (C) For each of the
structural properties shown in A and B, the time intervals at which they reached and remained within one and two standard
deviations of the reference data set are shown. The average of these times is also shown, corresponding to the average structural
convergence time, 〈tsc〉. One standard deviation is calculated on the basis of the values of each of the seven generalized-
ensemble methods at the end of the simulation and their standard deviation from the reference value. (D) The average structural
convergence times for one and two standard deviations are shown for all seven methods at 280 K in yellow and purple,
respectively. These times are provided for temperatures 288, 296, 305, 314, 323, and 332 K in Supporting Information
Figure S2.

dcontactmap(t) )
1
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to define convergence quantitatively, we consider the time
taken to reach the reference value of the structural property
of interest and remain within both one and two standard
deviations, shown in Figure 5C. Taking the average of these
times provides a composite measure of when structural
convergence is reached, and this average is a “structural
convergence time”, tsc. By comparing to the reference data,
both convergence and accuracy are simultaneously assessed.
The time at which each structural metric reaches the reference
value is significantly different. For example, the EED
distribution reaches the reference distribution faster than any
of the other structural metrics, while the population of R-turns
requires nearly the entire ST simulation to reach the reference
value to within one standard deviation. The structural
convergence times are provided in Figure 5D for each of
the generalized-ensemble methods at 280 K. At this tem-
perature, STDR converges fastest to the reference data,
closely followed by ST and STDRb.

For a systematic ranking of the structural convergence
times, tsc is also calculated for the lowest seven temperatures.
These times are provided in Supporting Information Figure
S2. While STDR converges faster than the other methods at
280 K, this is not a general trend for all temperatures. Each
temperature has a different tsc for each method. The ranking
of the methods varies between temperatures. For example,
at 305 K, RE reaches convergence faster than STDR. This
highlights the importance of evaluating more than the lowest
temperature when comparing the performance of the meth-
ods, in addition to considering several structural metrics. It
also suggests a way of quantifying the error in the measure-
ment of tsc. An average structural convergence time, 〈tsc〉,
for each method is obtained by averaging tsc for the lowest
seven temperatures, for both one and two standard deviations.
The error in 〈tsc〉 is then the standard error of these
measurements. Figure 6A shows a two-dimensional plot of
〈tsc〉 to within two standard deviations versus 〈tsc〉 to within
one standard deviation. Lower values for 〈tsc〉 indicate faster
structural convergence. A clear trend emerges: ST-based
methods reach structural convergence more quickly than RE-
based methods. The method that reaches convergence the
fastest is ST with accurate weight factors, while the method
slowest to converge is SREM. It is not possible to conclu-
sively rank the other methods due to error in 〈tsc〉. However,
it is important to note that both VREX and RE converge
faster than SREM. VREX is therefore not only a more
convenient method for removing the synchronization from
the RE algorithm than SREM, but is also faster at confor-
mational sampling.

We can now answer a key question: does faster diffusion
in temperature lead to a corresponding speedup in confor-
mational sampling? Figure 6B demonstrates that this is in
fact the case. The combined average structural convergence
time, obtained by taking the sum of 〈tsc〉 for one and two
standard deviations, is plotted versus the composite temper-
ature diffusion score from Table 2. The ST-based methods,
which have higher acceptance ratios and diffusion coef-
ficients, also exhibit faster structural convergence. This key
observation indicates that, in general, it is preferable to use
a ST-based method because it provides enhanced efficiency

in terms of conformational sampling. ST with accurate weight
factors is clearly superior in both temperature diffusion and
structural convergence, while SREM is the least efficient
method in terms of both of these metrics. In the case of a
simple system for which weight factors can be obtained
accurately with relatively little computational expense, ST
is the method of choice. In the case of a more complex
system for which sufficiently accurate weight factors might
be expensive to obtain, the best choice would be to compute
an initial estimate for the weight factors and use ST or STDR
(corresponding to STb and STDRb here). Using the octapep-
tide as a test system, it is not possible to conclude which of
these options is preferable. Inaccurate weight factors for this

Figure 6. Correlation between structural convergence and
temperature diffusion. (A) Average structural convergence
times, 〈tsc〉, obtained using the lowest seven temperatures are
shown. The 〈tsc〉 to reach two standard deviations is plotted
against the 〈tsc〉 to reach one standard deviation for each
method. Error bars represent the standard error of 〈tsc〉 for
the seven temperatures. Another version of this plot is
provided as Supporting Information Figure S3, with the 〈tsc〉
for each temperature shown. (B) The 〈tsc〉 times for one and
two standard deviations from A are added together to create
a structural convergence score, which is plotted against the
temperature diffusion score from Table 2 for each method. A
correlation is observed between structural convergence and
temperature diffusion. ST-based methods (in yellow) have
superior temperature diffusion, which leads to faster structural
convergence compared to RE-based methods (in purple).
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system yield comparable temperature diffusion and structural
convergence for both STb and STDRb. To investigate this
issue further, a more complex system, (GVPGV)7, is also
studied below.

Finally, another important question is whether inaccurate
weight factors or PEDFs still lead to accurate, Boltzmann-
weighted sampling at each temperature. It has been suggested
that simulations with incorrect weight factors still yield
correct statistics, only with suboptimal sampling of the
temperature.4 Analysis of the effect of suboptimal Helmholtz
free energies on the accuracy of the data demonstrates that
the resulting conformational populations are not biased by
the use of inaccurate free energies (Figures 3 and 6a). Both
ST and STDR with inaccurate weight factors (STb and
STDRb) converge to the reference data set, which indicates
that they achieve accurate, Boltzmann-weighted conforma-
tional sampling. Figure 6A shows that, even with inaccurate
PEDFs, SREM still leads to Boltzmann-weighted sampling
of conformational space (within one standard deviation) for
this system. However, it converges more slowly than RE
and all of the other generalized-ensemble algorithms con-
sidered in this study.

It has been pointed out that SREM is not rigorously correct
when employing PEDFs that are not representative of the
potential energies sampled during the simulation.10,14 In other
words, SREM is correct only when stationary potential
energy distributions are used, which may in the general case
require adaptation of the PEDFs. In contrast, VREX is
inherently adaptive due to the update of the potential energy
lists. All RE-based methods, including VREX and SREM,
require an initial equilibration phase to reach stationary
potential energy distributions. Quasi-nonergodicity due to
finite run length is a potential issue for any of the generalized-
ensemble algorithms but is most significant for SREM.
Systematic error associated with selecting potential energies
from unrepresentative conformations can be minimized in
VREX by maintaining short, frequently updated potential
energy lists. Reducing the size of the potential energy list in
the VREX approach decreases the equilibration lag. Both
VREX and RE use recent potential energy values for
attempted moves. In addition, another inherent advantage of
VREX over SREM is that, in VREX, potential energy values
utilized in the virtual temperature transitions are drawn from
the same ensemble as those utilized in the evaluation of
actual transitions, albeit with a stochastic time delay.

Comparison of STDR and Conventional MD. The
relative sampling enhancement of RE compared to conven-
tional MD has been the subject of significant controversy.20

For example, one study found that RE produced a speedup
of 71.5 times at 275 K for a 21-residue helical peptide with
implicit solvent, based on the autocorrelation function of
helicity.19 In another work, an RE simulation of met-
enkephalin in explicit solvent sampled 5 times more con-
formational space than a conventional MD simulation of the
same duration.18 It has also been shown analytically that the
expected speedup of RE is directly related to the activation
enthalpy for two-state protein folding. The efficiency of RE
is optimal when the maximum temperature is chosen just
slightly above the temperature at which the folding activation

enthalpy is zero.20 There are several key issues that emerge
when reviewing comparative studies of RE and conventional
MD. First, the observed sampling enhancement, or lack
thereof, is heavily system-dependent, as well as dependent
on the structural or thermodynamic parameter on which the
comparison is based. Second, an evaluation of convergence
for either the RE simulation or the MD simulation is often
neglected. Comparisons of other generalized-ensemble meth-
ods, including ST and SREM, and conventional MD have
also been performed.14

Here, we attempt to provide a rigorous comparison
between STDR and conventional MD for the octapeptide
(Figure 7). Figure 7A and B show a superposition of 200
structures obtained using STDR and MD, respectively, at
280 K. The amount of simulation time is the same for both
methods (144 ns for conventional MD and 144 ns in total
for all temperatures for STDR, corresponding to 4.4 ns at
280 K). The root-mean-square deviations (rmsd) of these two
collections of structures, 3.52 Å for STDR and 3.88 Å for
conventional MD, are comparable. By this measure, both
STDR and conventional MD produce a similar amount of
conformational sampling using the same amount of CPU
time.

We also show the convergence of the structural properties
described in the previous section for both STDR (in Figure
8C and E) and conventional MD (in Figure 7D and F). STDR
converges more quickly, approximately by a factor of 2-3
at 280 K. However, given that STDR requires sampling 33
temperatures for the same amount of time, it is much less
computationally efficient. Specifically, the STDR simulation
was 4.75 µs, compared to 200 ns for conventional MD.
Overall, for this particular system, there is no computational
advantage in using STDR over conventional MD when the
total cost of simulating all temperatures is considered.

However, in the present case, we are interested in the
conformational ensemble at both low and high temperatures
because of the predicted temperature transition of the
octapeptide GVGVPGVG.53,73,74 It is therefore still beneficial
to use STDR because it enhances sampling at the individual
temperatures. It is of key importance to note that we only
know that conventional MD is able to satisfactorily reproduce
the conformational ensemble of the octamer by simulta-
neously using generalized-ensemble algorithms. It is only
by comparing to STDR, as well as the combined data set of
all the generalized-ensemble methods, that we are able to
verify the convergence of the conventional MD simulation.
Pseudoconvergence can be observed for a structural ensemble
generated by conventional MD which is energetically
trapped.13 In this way, it is possible to achieve convergence
without simultaneously achieving accuracy. Using a general-
ized-ensemble method and allowing a random walk in
temperature allows the system to overcome energetic barriers.
Without knowledge of the energy landscape of the system
of interest, it is hard to predict the expected sampling
enhancement of a generalized-ensemble method. Similarly,
it is hard to assess the accuracy of an apparently converged
value, which is also expected to depend on the topology of
the energy landscape.
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Choosing Between ST and STDR. For relatively small
and simple systems, such as the octapeptide used in this study
or a short polyalanine peptide in water,30 the calculation of
dimensionless Helmholtz free energies is possible, although
computationally intensive. For these cases, ST is an ideal
method, since it alleviates the need for communication
between processors in parallel tempering and the subsequent
waste of computational resources. However, calculation of
the Helmholtz free energies increases in difficulty as system
size and complexity increase. When the system is sufficiently
large and complex, as is often the case for biomolecular
systems of interest, limited computational resources may
preclude the calculation of sufficiently accurate weight
factors. That is, it is only possible to obtain dimensionless
Helmholtz free energies which result in an acceptable level

of sampling uniformity with very extensive initial simula-
tions. Even with near optimal weight factors updated
throughout the simulation, Park and Pande still observed an
average deviation from sampling homogeneity of 4.9% for
a short peptide (calculated on the basis of the data in Table
1 of ref 30).30 With very inaccurate weight factors, sampling
of temperatures may be far from uniform. That is, there may
be too little sampling at certain temperatures to obtain a
reasonable estimate of the weight factors to facilitate
adaptation. ST may therefore not be an appropriate method,
even with adaptation of the weight factors throughout the
simulation. This may be the case for many biomolecular
systems of interest, which are larger than the small peptides
or peptides in implicit solvent commonly used to test

Figure 7. Comparing STDR and conventional MD for GVGVPGVG. (A) A total of 200 structures in ribbon representation obtained
using the first 4.4 ns at 280 K for STDR are shown, and (B) for 144 ns of conventional MD, along with the corresponding rmsd.
Glycine is in purple, proline is in yellow, and valine is in gray. C and D show σeed (eq 21), dcontactmap (eq 23), and ddCRmatrix (eq 22,
plotted on the secondary axis) for STDR and conventional MD, respectively. The trajectories are separated into 50 time intervals,
and the quantities reported are calculated cumulatively, as in Figure 5. E and F show the probability per residue of a γ-turn,
�-turn, and R-turn, as well as the population of the VPGV �-turn. The probabilities of observing an intramolecular hydrogen bond
per residue and a bend per residue (plotted on the secondary axis) are also shown.
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generalized-ensemble methods. We now describe a complex
system for which STDR is better suited than ST.

In addition to studying the octapeptide, GVGVPGVG, we
also studied a longer peptide based on the same motif,
(GVPGV)7. Accurate weight factors for this system could
not be obtained using a reasonable investment of computa-
tional resources (15 ns per temperature for 70 temperatures,
for a total of 1.05 µs). Even with this large amount of data,
the sampling of temperature in a ST simulation using these
weight factors is heterogeneous. The average deviation from
sampling homogeneity is 21.3% (computed using eq 20). In
contrast, when STDR and the same weight factors are used,
the average deviation from sampling homogeneity is only
3.4%. In Figure 8, the deviation from sampling homogeneity
at each temperature is shown for both ST and STDR. In the
ST simulation, sampling in the middle of the temperature
range is less than that at both low and high temperatures,
deviating from homogeneity by more than 60%. Since it is
unfavorable in this case to sample intermediate temperatures,
diffusion from high to low temperatures is impeded. In
particular, the ST simulation using these weight factors
experiences 56% fewer transitions between 417 and 454 K
compared to the STDR simulation using the same weight
factors. The sampling barrier in the intermediate temperature
range impedes the random walk. The application of the
DRPE results in a slight decrease of the acceptance ratio
from 0.43 in the ST simulation to 0.38 in the STDR
simulation. Importantly, the average replica speed in STDR
is higher than that of the ST simulation (0.058 and 0.053
for STDR and ST, respectively). This indicates that replicas
are able to efficiently explore temperature in the STDR
simulation. In this case, the addition of the DRPE does not

significantly impair replica mobility and allows nearly
uniform sampling of all temperatures. It is therefore a more
suitable method than ST for this particular system.

We performed another comparison between ST and STDR
using weight factors obtained with only 500 ps of canonical
MD at each temperature. These weight factors are more
inaccurate than those based on 15 ns of simulation at each
temperature, leading to an average sampling inhomogeneity
of 96.88% in a ST simulation. By applying the DRPE in a
STDR simulation, the average sampling inhomogeneity is
reduced to 8.84%. The acceptance ratio for the STDR
simulation with these inaccurate weight factors is 0.38. This
is exactly the same as the acceptance ratio of the STDR
simulation using the weight factors based on 15 ns at each
temperature. This observation is in agreement with the results
of the STDR and STDRb simulations of the octapeptide. As
shown in Table 2, both STDR and STDRb simulations
exhibit nearly identical temperature diffusion coefficients,
acceptance ratios, and mean free paths. Importantly, the
results for both the octapeptide and the 35-residue peptide
demonstrate that replica mobility in STDR simulations is
not significantly affected by inaccuracy of the weight factors.
Further, more accurate weight factors do not improve
temperature diffusion, or corresponding structural conver-
gence. Thus, we recommend that, when the STDR algorithm
is used, the computational investment for the initial calcula-
tion of weight factors should be minimized.

Performance of STDR for More Complex Systems. To
compare STDR with conventional MD, we also performed
a MD simulation at the lowest temperature of the STDR
simulation (261 K). A superposition of 200 structures,
obtained every 1 ns from a 200 ns trajectory generated using
conventional MD at 261 K, is shown in Figure 9A. These
structures have an average rmsd of 1.66 Å, indicating that
the peptide is trapped in one conformational basin and
undergoes only small conformational changes. This set of
structures contrasts with the set of 200 randomly selected
structures from the complete STDR simulation at 261 K
(Figure 9B), which represents completely different confor-
mations with an average rmsd of 8.40 Å. For clarity, we
also show six example structures in Figure 9D to demonstrate
the variety of conformations observed in the STDR simula-
tion. To make a more direct comparison between conven-
tional MD and STDR, Figure 9C shows 200 structures from
STDR using the same amount of simulation time as the
conventional MD simulation (200 ns summed over all of
the temperatures, corresponding to approximately 3 ns at 261
K). Finally, the radius of gyration distributions for conven-
tional MD, STDR, and the first 3 ns of STDR are shown in
Figure 9E. Both distributions from STDR show several
conformational states, while the conventional MD simulation
is trapped in one state. Even when using the same amount
of computational resources, STDR produces a more hetero-
geneous ensemble of conformations.

Figure 10 displays hydrogen-bonding contact maps at 261
K for STDR, STDR with 3 ns of sampling, and conventional
MD. STDR produces a conformational ensemble in which
many contacts are formed with low probability. In contrast,
conventional MD generates a contact map with only a few

Figure 8. Deviation from sampling homogeneity for the ST
simulation of (GVPGV)7. For each temperature, the devia-
tion from sampling homogeneity is computed as %deviation
from homogeneity ) (Nm - 〈Nm〉)/〈Nm〉 × 100%, where Nm is
the number of samples at temperature Tm and 〈Nm〉 is the
average number of samples per temperature. The ST simula-
tion used the same weight factors as the STDR simulation,
with 6 ns of sampling per replica (each started at a different
temperature), for a total of 420 ns of simulation. A decrease
in sampling between 410 and 460 K results in poor mobility
of the replicas between high and low temperatures in the ST
simulation.
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contacts, some of which are formed for nearly the entire
simulation. The contact maps are shown with two different
vertical scales to emphasize this point. If only the conven-
tional MD simulation had been performed, a completely
different understanding of the conformational landscape
would have emerged. Single-temperature MD severely
underestimates the heterogeneity of the conformational
landscape and exhibits both pseudoconvergence and quasi-
nonergodicity. Even when using the same amount of simula-
tion time as MD, the contact map from STDR has more
contacts, none of which has a probability of more than 30%.

It is not possible to quantitatively measure the speedup of
STDR versus conventional MD for this system because
limited computational resources preclude performing con-
ventional MD simulations for the time required to achieve
structural convergence. We observe that conventional MD
is trapped in one conformational basin for 200 ns. It is not
possible to accurately predict how long it would take to
sample all relevant states and reach convergence. Qualita-
tively, we observe a dramatic sampling enhancement due to
STDR. Using the same amount of computational resources,
STDR generates more unique conformations for this peptide.

This indicates that the random walk in temperature does in
fact lead to enhanced sampling, establishing the efficacy of
the STDR method for a complex polypeptide.

Before sampling the complete energy landscape of a
system of interest, there is no way to confidently predict the
height of the energy barriers, or the number of energetically
stable conformations (local minima of the energy surface).
By coupling to simulations at higher temperatures, high
energetic barriers can be overcome. However, if one is not
simultaneously interested in the behavior of the system at
multiple temperatures, it may be less computationally
expensive to run very long simulations, or a collection of
simulations, at a single temperature.75 In the present study,
conventional MD successfully produced the conformational
ensemble of the octapeptide but resulted in quasi-nonergod-
icity for the 35-residue peptide. In order to truly “enhance
sampling” relative to single-temperature MD simulations, an
enhanced sampling method must achieve convergence at a
rate which is greater than the product of the number of
replicas and the computer time for each replica.

The present study of (GVPGV)7 shows that it is possible
to observe pseudoconvergence using single-temperature MD

Figure 9. Comparing STDR and conventional MD for (GVPGV)7. A total of 200 structures in ribbon representation along with
their rmsd are shown for (A) the conventional MD simulation of length 200 ns at 261 K, (B) for the STDR simulation at 261 K
using all of the data (120 ns at this temperature), (C) and for the STDR simulation at 261 K using the first 3 ns (this is the same
simulation time summed over all replicas as A). Glycine is in purple, proline is in yellow, and valine is in gray. (D) A selection
of six example structures is shown from the structures in B to illustrate the structural diversity obtained using STDR. (E) Probability
distributions of the radius of gyration.
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(that is, to observe convergence of a quantity of interest
without observing the true value of that quantity, Boltzmann-
weighted by the populations of all possible conformations).
Long-time MD simulations do not yield the appropriate
conformational distribution, and the system remains trapped
in a local minimum of the energy landscape. In contrast, we
observe that conventional MD is able to satisfactorily
reproduce the conformational ensemble of the octapeptide
at a significantly reduced computational cost compared to
using a generalized-ensemble method. In light of this
apparent contradiction, how are the averages of quantities
obtained using MD simulations to be interpreted? On the
basis of this work, it appears that using generalized-ensemble
algorithms is a more prudent approach, even if in some cases
it may be less efficient overall to do so (for increased
confidence in the accuracy of the data). Several other
examples have shown that the enhanced sampling provided
by generalized-ensemble methods provides convergence that
would not be feasible with single-temperature MD.6,14,18-24

These observations underscore not only the need for en-
hanced sampling methods but also the shortcomings of
techniques such as block averaging over simulations initiated
in a single conformational basin in estimating the conver-
gence of results. The challenge in simulating complex
systems is that a priori one does not know the efficiency of
the generalized-ensemble approach relative to the “brute
force” MD approach. It may be advisible to use a general-

ized-ensemble algorithm, especially if conformational sam-
pling, and not dynamic information, is sought.

Conclusions

We now return to the original question: given limited
computational resources, which generalized-ensemble algo-
rithm is most efficient at sampling a complex conformational
landscape? The first important distinction between methods
is the separation between those based on ST and those based
on RE. In this paper, we demonstrate that ST-based methods
result in both faster temperature diffusion and faster structural
convergence. They are therefore preferable to RE-based
methods. This is the most general conclusion of the paper.

Within the family of RE-based methods, the computational
efficiencies of the various algorithms are not equivalent.
SREM should only be applied to systems for which PEDFs
can be accurately obtained. Therefore, due to limited
computational resources, SREM can only be applied to
simple systems. Like SREM, RE is not well-suited to
complex systems because of the need to synchronize simula-
tions of a large number of replicas (and typically, a large
number of processors). Although there is no theoretical limit
on the number of replicas that one can use for a RE
simulation, it is generally difficult in practice to obtain access
to a large, dedicated, and homogeneous computing cluster.
Even if one does have access to such a computational
resource, the wasted CPU time may also increase sharply
with the number of replicas due to both CPU failure and
inhomogeneity in CPU speeds.

VREX represents an attractive alternative to RE since it
completely eliminates synchronization and communication
between replicas. It produces more homogeneous sampling
of temperature compared to SREM, with much less initial
simulation time. It is therefore preferable to both SREM and
RE. Since RE-based methods suffer from slower structural
convergence and temperature diffusion compared to ST-
based methods, it is preferable to use a ST-based method in
temperature. This disadvantage may become less significant
for complex systems. VREX may also be a more suitable
method in another reaction coordinate other than temperature,
for which weight factors are much more difficult to obtain.
Moreover, initial simulations for weight factor calculations
may also benefit from the use of VREX.

In the case of relatively simple systems for which weight
factors can be accurately calculated using minimal compu-
tational resources, ST is the most appropriate method. We
have shown that ST with accurate weight factors exhibits
the fastest temperature diffusion and, correspondingly, the
fastest structural convergence. However, for more complex
systems, for which weight factors are costly to compute,
STDR becomes the preferred method. Even with infinite
resources, a long initial simulation to compute weight factors
accurate enough to yield homogeneous sampling in ST may
not be the most efficient use of computational resources. The
feasibility of a ST simulation is determined by the accuracy
of the weight factors, which can only be assessed by actually
performing a ST simulation. Importantly, we have demon-
strated that STDR can make use of inaccurate weight factors
to achieve homogeneous sampling of temperature and

Figure 10. Hydrogen-bonding contact maps from STDR and
conventional MD. Hydrogen-bonding contact maps are de-
picted as three-dimensional maps, where peak height repre-
sents the probability of contact formation. These plots are
shown on two scales. On the left, the scale has a maximum
of 0.8, and on the right, 0.01, for clarity in showing the contacts
formed with low probability. A and B, the STDR simulation at
261 K using all of the data (120 ns at this temperature). C
and D, the STDR simulation using the first 3 ns (this is the
same simulation time summed over all replicas as E and F).
E and F, 200 ns of conventional MD. Some contacts are
formed over 80% of the time.
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consequently structural convergence. Replica mobility is only
slightly impeded by the DRPE. By contrast, ST with
inaccurate weight factors produces heterogeneous sampling
of temperatures, which is also an impediment to the random
walk in temperature. STDR is suitable for any computing
cluster or distributed computing environment, since it
requires no fixed number of CPUs or synchronization of
exchanges. Complex systems can therefore benefit from the
STDR method, which is increasingly advantageous as system
size and complexity grow.

Frequently Used Abbreviations

CPU, central processing unit; DR, distributed replica sam-
pling; DRPE, distributed replica potential energy; EED, end-
to-end distance; MD, molecular dynamics; RE, replica
exchange; SREM, serial replica exchange method; ST,
simulated tempering; STDR, simulated tempering distributed
replica sampling; VREX, virtual replica exchange.
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Appendix 1. Computing Error in Exchange
Probabilities for ST and SREM

The PEDFs of the octapeptide are nearly perfect Gaussian
distributions, as expected due to the large number of degrees
of freedom of the system and the central limit theorem.14

Assuming that the PEDFs are Gaussian is in general a valid
assumption for biomolecular systems.76 As an estimate of
the error in the PEDFs, we considered the average deviation
of the average energy of each PEDF, 〈En〉, from the average
energy of a reference PEDF, 〈En〉reference, as follows:

where Ntemps is the number of temperatures. For the reference
PEDFs, we used potential energy distribution functions
calculated on the basis of all of the data from the RE
simulation (a total of 4.75 µs for all temperatures). We
computed the average error in the differences of weight
factors in an analogous way, also using the RE simulation
as reference data:

The selection of the RE simulation as a reference was
made because it was the only generalized-ensemble method
that we tested that did not make use of any initial simulation.

In order to make a fair comparison between the errors in
the weight factors used in ST and the PEDFs used in SREM,
it is important to consider the error in not only the potential
energy distribution functions and dimensionless Helmholtz
free energies but also the error in the resulting exchange
probabilities. The error in the exchange probability of SREM
(eq 9) was computed as follows:

We estimate this error by using the estimate for the error
in the PEDFs obtained in eq 24 and the average acceptance
ratio and average difference in inverse temperatures:

Similarly, the error in the exchange probability for ST
(given by eq 6) is

and this error is estimated using the average error in the
weight factor differences from eq 25 and the average
acceptance ratio:

Supporting Information Available: Supplementary
table (S1), supplementary figures (S1-S3), and an example
calculation of the DRPE are provided. This material is
available free of charge via the Internet at http://pubs.acs.org.
Distributed Replica Sampling software is available online
at www.pomeslab.com.
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Abstract: A new formulation of the second-order exchange-dispersion energy of symmetry-adapted
perturbation theory is presented. The proposed approach allows to study - for the first time for
many-electron monomers - the effect of intramonomer electron correlation on this energy correction.
In the new formalism the exchange-dispersion energy is expressed in terms of properties of interacting
molecules, such as dynamic density-matrix susceptibilities and one-electron reduced density matrices.
The resulting formula has been used to obtain the main (noncumulant) part of the exchange-
dispersion energy for monomers described by coupled cluster theory limited to single and double
excitations. A density fitting approach has been applied in order to reduce the computational effort
for obtaining coupled cluster density-matrix susceptibilities. The new coupled cluster exchange-
dispersion energy has been compared with other available values of this interaction energy
component, obtained with monomers treated on the level of Hartree-Fock or density-functional
theories.

1. Introduction

Symmetry-adapted perturbation theory (SAPT) (see refs 1–3
for reviews) is a well established alternative to the super-
molecular approach for calculation of interaction energies
between two closed-shell molecules A and B (called
monomers in the following). In SAPT, one divides the total
Hamiltonian H of a dimer AB into the unperturbed part H0,
being the sum of monomers’ Hamiltonians HA and HB, and
a perturbation V, which describes the electrostatic interaction
between monomers (NA and NB denote numbers of electrons
in the monomers A and B, respectively):

The intermolecular interaction operator V can be conveniently
rewritten in the form:

where a generalized interaction operator V(i, j) is defined
as4

V(i, j) ) 1
rij

- 1
NB

∑
�∈B

Z�

r�i
- 1

NA
∑
R∈A

ZR

rRj
+

1
NANB

∑
R∈A

∑
�∈B

ZRZ�

RR�
(3)

[In the following the coordinates (including spin) of the ith
electron will be denoted by a number i, while spatial
coordinates of this electron will be defined as ri.]

In SAPT, the interaction energy up to the second order
in V is defined as a sum of three Rayleigh-Schrödinger
corrections: first-order electrostatic (Eelst

(1) ), second-order
induction (Eind

(2)) and second-order dispersion (Edisp
(2) ) energies

and their exchange counterparts, accounting for electron
tunneling effects between monomers: first-order exchange
(Eexch

(1) ), second-order exchange-induction (Eexch-ind
(2) ), and

second-order exchange-dispersion (Eexch-disp
(2) ) energies. In

textbook derivations of perturbation theories it is always* Corresponding author. E-mail: tatiana.korona@chem.uw.edu.pl.
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i)1
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∑
j)1+NA

NA+NB
1
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i)1

NA

∑
�∈B

Z�

r�i
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j)1+NA
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ZR

rRj
+
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∑
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ZRZ�

RR�
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V ) ∑
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NA

∑
j)1+NA

NA+NB

V(i, j) (2)
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assumed that eigenvalues and eigenvectors of the H0 part
of the total Hamiltonian H are easy to calculate. However,
it is well-known that the exact solutions of the zeroth-
order Hamiltonian H0 ) HA + HB are not available (with
the exception of the smallest few-electron molecules).
Therefore, additional approximations are necessary in
order to obtain SAPT interaction energies for many-
electron monomers.

Since usually the eigenfunctions of the Fock operator can
be easily obtained, Hartree-Fock (HF) determinants are
commonly used as a zeroth-order approximation to the
unknown exact wave functions of monomers, giving rise to
the SAPT(HF) approach. [A convention will be adopted in
this paper to denote as SAPT(Z) the SAPT approach with
monomers treated in the level Z.] Obviously, SAPT(HF)
neglects the effect of Coulomb electron correlation inside
the monomers. In order to account for this effect, every SAPT
correction is expanded in terms of monomer fluctuation
operators WX ) HX - FX, X ) A, B, leading to the triple
perturbation theory.5 Effectively, in this approach the
Møller-Plesset (MP) expansion is utilized, so the method
can be labeled as SAPT(MP).4,6–12 Energy corrections in
SAPT(MP) are denoted as E(nij), where n, i and j are orders
of the perturbation operators V, WA, and WB, respectively.
The SAPT(MP) approach has been implemented into the
SAPT suite of codes13 and has proven to be an efficient
method for studying noncovalent complexes of small atoms
and molecules (for examples of applications see refs 14–17).
Levels of MP theory used for various SAPT corrections are
presented in Table 1. In particular, it can be seen from this
table that the exchange-dispersion energy in SAPT(MP) has
been so far treated on the uncorrelated and uncoupled level
(i.e., neither the electron correlation nor the orbital relaxation
effects are taken into account for this correction). A lack of

the intramonomer correlation for the exchange-dispersion
energy is potentially one of the main sources of errors in
SAPT(MP).

Yet another treatment of the intramonomer correlation
problem is based on a density-functional theory (DFT)
description of monomers.19,20 Two groups were involved
simultaneously in a development of SAPT(DFT): Misquitta,
Szalewicz, and Jeziorski21,22 (see also ref 23) and Jansen
and Hesselmann24–27 (the latter authors prefer to use the
abbreviation DFT-SAPT for their method). The implementa-
tion of SAPT(DFT), followed by the utilization of the density
fitting (DF) approximation28 to electron-repulsion integrals,29–32

allows nowadays the use of SAPT for large van der Waals
molecules, like dimers of cyclotrimethylene trinitramine33

and DNA bases34 or even for endohedral complexes of
fullerenes.35

Very recently a new SAPT(CC) approach has been
proposed.36–42 In this method the wave functions of
monomers are described by coupled cluster (CC) theory.43

So far the CC treatment has been applied to the
electrostatic,36,37 first-order exchange,40,41 induction,38,42

exchange-induction,42 and dispersion39 terms. A new
formalism proposed in this paper enables the calculation
of the second-order exchange-dispersion energy with an
account of intramonomer correlation. In practice, the
method has been implemented for the case of monomers
described by CC theory limited to single and double
excitations (CCSD).

The plan for this paper is the following: first the exchange-
dispersion energy will be expressed in terms of monomer
properties in an explicitly connected form. Next the orbital
working formula will be derived, and a DF approximation
will be applied. Finally, the illustrative results for the CCSD
exchange-dispersion energy will be presented and discussed.

2. Theory

2.1. Exchange-Dispersion Energy through Monomer Properties. The main goals of the derivations in the next sections
are to describe the exchange-dispersion energy in terms of monomer properties and to express the resulting formula in a
computationally convenient form.

It is known that if monomers are not too close to each other, then one can neglect multiple exchanges of electrons between
them, what leads to the so-called single-exchange or S2 approximation.44 The second-order exchange-dispersion energy in the
S2 approximation is given by the following formula:45,46

Table 1. The MP Level of SAPT(MP) Corrections (As Derived and Programmed in SAPT Program13)a

energy MP level notes

Eelst
(1) 3 relaxed (preferred) and unrelaxed versions available. The fourth

order is also present, although not used in practice
Eind

(2) 2 unrelaxed version (true tEind
(22)),2,10 the relaxed version is available

in the literature but absent in the SAPT program
Edisp

(2) 2 CCD+ST(CCD)12 dispersion energy is also available in SAPT; the
coupled Hartree-Fock (CHF) dispersion energy also exists in the
literature18

Eexch
(1) 2 usually CCSD monomer amplitudes are used instead of MP1 and

MP2 ones in formulas for the Eexch
(1ij) energy components11

Eexch-ind
(2) 0 relaxed (preferred) and unrelaxed versions available, the scaling

formula is used to estimate the intramonomer correlation effects
Eexch-disp

(2) 0 unrelaxed version

a Some corrections are available in relaxed and unrelaxed versions, depending on whether monomer orbitals are or are not allowed to
respond to the perturbation field of another monomer.
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In eq 4, ΨA
0 and ΨB

0 are the exact wave functions for the ground states of the monomers A and B, and P denotes the single-
exchange operator:

while the first-order dispersion wave function is obtained from the following equation:

where indices K(L) number the eigenstates of the monomer A(B), ∆EA
K and ∆EB

L denote excitation energies of the monomers
A and B from their ground states, and Vee is a pure two-electron part of the operator V. Finally, the symbol Xj denotes the
mean value of an operator X with the zeroth-order wave function, i.e., with ΨA

0 ΨB
0 (so, e.g. Vj ) Eelst

(1) ).
Let us consider the term:

which is obtained when eq 6 is inserted into eq 4 (electrons of the monomer B are denoted by primes, i.e., i′ ) i + NA). After
making use of the indistinguishability of electrons within the monomers the following four types of integrals are obtained
from eq 7:

In eq 8, the reduced one- and two-electron transition density matrices from the ground to the Kth (Lth) excited state of the
monomer A(B) can be identified. For the monomer A, these transition density matrices are given by the formulas,

Note that the ground-state density matrices FA(1|1′) and ΓA(12|1′2′) can be obtained by replacing ΨA
K by ΨA

0 in eq 9. The
definitions from eq 9 allow us to rewrite the term under study in the following way:

An analogous derivation for the integral present in the numerator of eq 6 leads to a similar result,

The final step needed to rewrite eq 4 through quantities belonging to the monomers A and B, is performed by utilizing the
equation for energy denominators:

Eexch-disp
(2) ) 〈ΨA

0 ΨB
0 |VPΨdisp

(1) 〉 - Vj〈ΨA
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0 |PΨdisp
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KΨB
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+ (NA - 1)(NB - 1)ΨA
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used by Longuet-Higgins47 to derive his famous formula for the second-order dispersion energy in terms of frequency-
dependent density susceptibilities of the monomers A and B, RX(r,r′|ω):

By combining eqs 4, 10, 11, and 12, one expresses the exchange-dispersion energy in terms of monomer properties, at the
cost of making an integration over the frequency ω. The monomer properties, which have been identified in this process, are
straightforward generalizations of frequency-dependent density susceptibilities and will be denoted as density-matrix
susceptibilities R and R̃. For imaginary frequencies (the only ones which are of interest in the context of this work), these two
new quantities are defined through transition density matrices and excitation energies in the following way:

(For the monomer B, the definitions are completely analogous).
It is noteworthy that the density-matrix susceptibility R can be defined in a way that is independent of the sum-over-state

expansion (eq 14). To this end, a quantity related to the polarization propagator, which will be denoted as a “half-propagator”
〈〈X; Y〉〉iω

+ should be defined for operators X and Y (the Y operator should be Hermitian):

where Q ) 1 - |Ψ0〉〈Ψ0| is the projection on the space orthogonal to Ψ0. Then the density-matrix susceptibility can be
defined as

where F̂(1) and F̂(1|1′) are the electron density and density-matrix operators. In the algebraic approximation these operators
are given by the equations:

The operator êq
p ) apaq entering eq 18 denotes the usual spinorbital replacement operator48 (ap and ap are the creation and

annihilation operators for the spinorbital φp). In the following, real spinorbitals will be assumed. It can be noted that a usual
density susceptibility R(1,2|iω) is obtained from eq 17 if 1 ) 1′ is set.

After making use of definitions from eqs 14 and 15, the second-order exchange-dispersion energy can be expressed as

Equation 19 describes the exchange-dispersion energy in terms of monomer properties, analogously to the Longuet-Higgins
formula for the dispersion energy.

1

∆EA
K + ∆EB

L
) 2
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2.2. Explicitly Connected Formula for the Exchange-Dispersion Energy. Equation 19 contains two explicitly disconnected
terms (the last two terms), and it is not clear from the form of this expression if they cancel with some parts of the main term
(they should cancel since the exchange-dispersion energy is size-extensive). In order to perform the explicit cancellation, the
concept of the transition density cumulant is utilized. The cumulant of the transition density matrix has been introduced in ref
42 where it has served to remove explicitly disconnected parts in the formula for the second-order exchange-induction energy.
Two-electron transition density matrices Γ0fK can be divided into five additive parts: four products of one-electron transition
and ground-state density matrices and a size-extensive cumulant part:

The specific formulas for quantities given in eq 20 can be obtained in the algebraic approximation if the matrices Γ0fK and
F0fK are expanded according to eqs 19 and 20 of ref 42. From eq 20 it follows that the R̃ density-matrix susceptibility can
be also decomposed into the same number of components. Four of these terms are constructed from products of the R density-
matrix susceptibility and one-electron density matrices, while the fifth term is a true two-electron part of R̃, so it will be
named a cumulant susceptibility and denoted as λ:

[Note parenthetically that if the summation in eq 15 is performed over Hartree-Fock determinants, then it is restricted
to singly excited configurations, so that the quantity λ in this case is equal to zero.] The partition given in eq 21 can be
utilized to divide Eexch-disp

(2) into the part containing only R’s and F’s (this part will be denoted as “(n)”), and the rest,
having at least one cumulant-like quantity λ (denoted as “(c)”). Two terms resulting from the fourth integral of eq 19
cancel with the explicitly disconnected terms, analogously as in the approach used in ref 42 for the exchange-induction
energy. The remaining expression for the exchange-dispersion energy does not contain products of integrals and is,
therefore, explicitly size-extensive, provided that proper (i.e., size-extensive) density-matrix susceptibilities are utilized.
For a brevity of the next formula for the exchange-dispersion energy, the following notation will be introduced: if a
product f(i|j)g(k|l) of functions f and g depending on electron coordinates i,j,k,l is given, then the symbol πik* permutes
the coordinates of f and g placed just before the vertical bar, while πjl permutes the electron coordinates just after the
vertical bar. Additionally, the symbols A ik* ) 1 - πik* and A jl ) 1 - πjl will be defined. Then, e.g., π12R(1|1;3|iω)F(2|2)
) R(1|2;3|iω)F(2|1), while π12* R(1|1;3|iω)F(2|2) ) R(2|1;3|iω)F(1|2). Finally, let πij

X and A ij
X (with or without an asterisk)

denote symbols acting on electron coordinates of RX and FX only (X ) A, B). These symbols will generate the parts of
the formula for the exchange-dispersion energy, which have not been written explicitly for the sake of conciseness.
With these definitions, the explicitly connected formulas for the noncumulant part of the exchange-dispersion energy
can be written in the following compact form:

Similarly, the cumulant-containing part is given by the following expression:

Equations 22 and 23 are the main formulas of the first part of this paper.
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+
1

2π ∫0

∞ ∫ λA(12|12′;3|iω)RB(1′|2;3′|iω)V(1, 1′)
1

r33′
dτ1dτ1′dτ2dτ3dτ3′dω

+ 1
2π ∫0

∞ ∫ V(1, 1′)(A 12
*AA 12′

A RA(1|1;3|iω)FA(2|2′)λB(1′2′|1′2;3′|iω)

+ λA(12|11′;3|iω)A 1′2′
*B A 1′2

B RB(1′|1′;3′|iω)FB(2′|2)

+ λA(12|11′;3|iω)λB(1′2′|1′2;3′|iω))
1

r33′
dτ1dτ1′dτ2dτ2′dτ3dτ3′dω

(23)
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It can be noted that a similar procedure can be employed to express the exchange-induction energy through static density-
matrix susceptibilities of monomers. The corresponding formula is given in the Appendix Section.

2.3. Spinorbital Form of Eexch-disp
(2) . For practical applications, the formulas presented in eqs 22 and 23 should be rewritten

in the algebraic approximation. If a spinorbital basis {φp} is used, then the expansions of one-electron density matrices and
transition density matrices for the monomer A take the form:

where the expansion coefficients can be found from the following expressions:

The expressions for the monomer B are obtained by replacing the index A by B.
An expansion of the density-matrix susceptibility in a spinorbital basis leads to the following expression (we skip the index

A):

where coefficients Πq1q2
p1p2(iω) are defined as

If real spinorbitals are considered, the remaining permutational symmetry of spinorbital indices p2 and q2 in eq 27 allows to
rewrite the coefficients in the following form:

where ĝq2
p2 ) (1/2)(êq2

p2 + êp2
q2). In practice, these coefficients can be obtained by a slight modification of the algorithm for the

calculation of the polarization propagators.
Six-index expansion coefficients for the cumulant susceptibilities can be defined analogously to eq 28:

(for a definition of the (Λ0fK)q1q2
p1p2 expansion coefficients in eq 30 see ref 42). To proceed further let us introduce the following

permutation operator:

where Prs permutes spinorbital indices r and s, and a “chemical” notation for generalized two-electron integrals is used

A pure two-electron repulsion integral is denoted as

Combining eqs 24, 27, 32, and 33, one can transform the noncumulant part of the exchange-dispersion energy to the
following spinorbital form:

FA(1|2) ) ∑
pq

(FA)q
p
φp*(1)φq(2) (24)

FA
0fK(1|2) ) ∑

pq

(FA
0fK)q

p
φp*(1)φq(2) (25)

(FA)q
p ) 〈ΨA

0 |êq
pΨA

0 〉
(FA

0fK)q
p ) 〈ΨA

0 |êq
pΨA

K〉
(26)

R(1|2;3|iω) ) ∑
p1q1

∑
p2q2

Πq1q2

p1p2(iω)φp1
* (1)φq1

(2)φp2
* (3)φq2

(3) (27)

Πq1q2

p1p2(iω) ) 2 ∑
K)1

(F0fK)q1

p1(FKf0)q2

p2 ∆EK

(∆EK)2 + ω2
(28)

Πq1q2

p1p2(iω) ) -〈〈êq1

p1;ĝq2

p2〉〉iω
+ (29)

Λq1q2,q3

p1p2,p3(iω) ) 2 ∑
K)1

(Λ0fK)q1q2

p1p2(FKf0)q3

p3 ∆EK

(∆EK)2 + ω2
(30)

Pp1p2,q1q2
) (1 - Pp1p2

)(1 - Pq1q2
) (31)

(pq|V|rs) ) ∫ φp*(1)φq(1)V(1, 2)φr*(2)φs(2)dτ1dτ2 (32)

(pq|rs) ) ∫ φp*(1)φq(1)
1

r12
φr*(2)φs(2)dτ1dτ2 (33)
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Eexch-disp
(2) (n) ) 1

2π{∫0

∞
Π
A

q1q3

p1p3(iω)Π
B

s1s3

r1r3(iω)dω(p1s1|V|r1q1)

+ (p1s2|V|r1s1)Sr2

q1Pr1r2,s1s2
∫0

∞
Π
A

q1q3

p1p3(iω)Π
B

s2s3

r2r3(iω)dω(FB)s1

r1

+ (p1q1|V|r1q2)Sp2

s1Pp1p2,q1q2
∫0

∞
Π
A

q2q3

p2p3(iω)Π
B

s1s3

r1r3(iω)dω(FA)q1

p1

+ (p1q1|V|r1s1)Sp2

s2Sr2

q2(Pp1p2,q1q2
Pr1r2,s1s2

- 1 - Pp1p2
Pq1q2

Pr1r2
Ps1s2

)

× ∫0

∞
Π
A

q2q3

p2p3(iω)Π
B

s2s3

r2r3(iω)dω(FA)q1

p1(FB)s1

r1}(p3q3|r3s3)

(34)

An analogous derivation for the cumulant part leads to the expression:

In eqs 34 and 35 the summation over repeated indices is assumed (Einstein convention).
2.4. CC Exchange-Dispersion energy. The presented formalism is so far completely general, and any well-defined method

for polarization propagators can be used to produce density-matrix susceptibilities for eqs 34 and 35. In particular, the energy
Eexch-disp

(200) ≡ Eexch-disp
(2) (UCHF) can be obtained if the uncoupled HF (UCHF) propagators are used in eq 35. When the electron-

correlated polarization propagators are utilized instead, the exchange-dispersion energy with the inclusion of the intramonomer
correlation effect is obtained. In this work, the intramonomer correlation is studied on the CC theory level. The polarization
propagators used here are obtained from time-independent CC theory developed by Moszynski et al.49 The general equation
for the imaginary-frequency CC polarization propagator from this paper adapted for our purposes takes the form:

where Φ denotes the reference determinant, P̂ stands for the superoperator P̂ 1 + P̂ 2 + P̂ 3 +..., defined in such a way that
P̂ n(Z) projects on the n-tuple excitation part of an operator Z,50 T is the usual amplitude operator of CC theory, and S is the
excitation operator, S ) S1 + S2 + S3 +..., introduced in refs 9 and 50 through the formula:

Finally, ΩX(iω) stands for the first-order perturbed operator,49 depending linearly on the perturbation X. The time-independent
theory of the CC polarization propagator has been recently implemented and studied on the CCSD level.51 Several variants
of this method have been examined in ref 51 and finally the CCSD(3) model has been chosen as optimal for many-electron
cases. [The CCSD(n) model includes the minimum number of terms from the expanded form of eqs 36 and 37, which is
necessary to include all CCSD terms contributing on at least the O(Wn) order.] The CCSD(n) propagators have been already
used for the induction, exchange-induction42 and exchange-dispersion energies39 and have been shown to produce very accurate
results in comparison to the benchmark values for the helium dimer.52 In the following, the number in parentheses will be
dropped if CCSD(3) propagators are used for SAPT corrections. The experience gained from the investigation of the cumulant
parts of the first-order exchange and second-order exchange-induction energies tells us that the cumulant part constitutes
usually only a few percent of the total correction.41,42 Since the exchange-dispersion energy, unlike the exchange-induction,
is small in comparison to its polarization counterpart (it usually amounts to only 5-15% of the dispersion energy in the van
der Waals minimum); the cumulant part of the exchange-dispersion energy will be not implemented in the present study.

A closer examination of eq 35 reveals that the calculation of Eexch-disp
(2) (n) scales with the sixth power of a dimension of the

orbital basis NAO, while in eq 35 the computational cost of the first and second terms scales with the seventh and the last term
scales with the eighth power of NAO. The high scaling of eq 35 is an additional argument to skip this part of the exchange-
dispersion energy in practical implementations (even if programmed, it could not be used but for the smallest monomers
anyway). Note parenthetically that the present formulation of the exchange-dispersion energy allows monomers to be described
in different basis sets (the so-called monomer-centered basis set approach53).

2.5. Density Fitting of Density-Matrix Susceptibilities. The cost of a calculation of full four-index CCSD propagators
scales with the eighth power of the molecular size,39 since: (i) one has to calculate (NAO + 1)NAO/2 responses to the perturbations
being the Ĝq

p ) 1/2(Êq
p + Êp

q) operators, where Êq
p ) êqR

pR + êq�
p� are the usual orbital replacement operators48,54 (in this chapter

Eexch-disp
(2) (c) ) 1

2π{∫0

∞
Π
A

q1q3

p1p3(iω)Λ
B

s1s2,s3

r1r2,r3(iω)dω(p1s2|V|r1s1)Sr2

q1

+ ∫0

∞
Λ
A

q1q2,q3

p1p2,p3(iω)Π
B

s1s3

r1r3(iω)dω(p1q1|V|r1q2)Sp2

s1

+ (p1q1|V|r1s1)Sp2

s2Sr2

q2[Pp1p2,q1q2
∫0

∞
Π
A

q2q3

p2p3(iω)Λ
B

s1s2,s3

r1r2,r3(iω)dω(FA)q1

p1

+ Pr1r2,s1s2
∫0

∞
Λ
A

q1q2,q3

p1p2,p3(iω)Π
B

s2s3

r2r3(iω)dω(FB)s1

r1

+ ∫0

∞
Λ
A

q1q2,q3

p1p2,p3(iω)Λ
B

s1s2,s3

r1r2,r3(iω)dω]}(p3q3|r3s3)

(35)

〈〈Y;X〉〉iω
+ ) 2〈e-SeT†

Ye-T†
eSΦ|Pˆ (eS†

ReΩX(iω)e-S†
)Φ〉 (36)

eSΦ ) 1

〈eTΦ|eTΦ〉
eT†

eTΦ (37)
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small letters will denote orbital indices); and (ii) the cost of one response calculation scales as iterative O (V4o2), where V and
o are dimensions of virtual and occupied orbital subspaces, respectively.

In ref 39 Korona and Jeziorski have shown that by performing a fitting of CCSD density susceptibilities to some suitably selected
auxiliary basis {�K} of a dimension Naux (usually Naux is only 2-3 times larger than NAO), the computational cost for the CC
dispersion energy can be reduced by one order of magnitude. To this end, the density susceptibility R has been expanded as

where the operators �̂K are defined as

with coefficients Dpq
K obtained from a fitting of orbital products with the auxiliary basis:

In the following, capital letters will be reserved for indices of the auxiliary basis set.
For the density-matrix susceptibilities it is still possible to perform a density fitting procedure on the orbital product

φp2
(r3)φq2

(r3) from eq 27 (a summation over spin is assumed to have been already performed), which leads to the following
asymmetric form of R:

The expansion coefficients 〈〈Êq
p;�̂K〉〉iω

+ will be denoted as ΠqK
p (iω). Additionally, in the next formulas a letter A

and B over Π will differentiate between propagators of the monomer A and B, respectively.
After performing the summation over spins in eq 35 and making use of eq 41, the following formula is obtained for the

exchange-dispersion energy with the DF approximation:

+ 1
4π ∫0

∞ [4Π
A

q2N
p2 (iω)Π

B

s1M
r1 (iω)(FA)q1

p1(FB)s2

r2 + 4Π
A

q1N
p1 (iω)Π

B

s2M
r2 (iω)(FA)q2

p2(FB)s1

r1

- 2Π
A

q2N
p2 (iω)Π

B

s1M
r2 (iω)(FA)q1

p1(FB)s2

r1 - 2Π
A

q2N
p2 (iω)Π

B

s2M
r1 (iω)(FA)q1

p1(FB)s1

r2

- 2Π
A

q1N
p1 (iω)Π

B

s1M
r2 (iω)(FA)q2

p2(FB)s2

r1 - 2Π
A

q1N
p1 (iω)Π

B

s2M
r1 (iω)(FA)q2

p2(FB)s1

r2

- 2Π
A

q1N
p2 (iω)Π

B

s2M
r2 (iω)(FA)q2

p1(FB)s1

r1 - 2Π
A

q1N
p2 (iω)Π

B

s1M
r1 (iω)(FA)q2

p1(FB)s2

r2

- 2Π
A

q2N
p1 (iω)Π

B

s2M
r2 (iω)(FA)q1

p2(FB)s1

r1 - 2Π
A

q2N
p1 (iω)Π

B

s1M
r1 (iω)(FA)q1

p2(FB)s2

r2

+ Π
A

q1N
p2 (iω)Π

B

s1M
r2 (iω)(FA)q2

p1(FB)s2

r1 + Π
A

q1N
p2 (iω)Π

B

s2M
r1 (iω)(FA)q2

p1(FB)s1

r2

× Π
A

q2N
p1 (iω)Π

B

s1M
r2 (iω)(FA)q1

p2(FB)s2

r1 + Π
A

q2N
p1 (iω)Π

B

s2M
r1 (iω)(FA)q1

p2(FB)s1

r2]dω(N|M)(p1q1|V|r1s1)Sp2

s2Sr2

q2

(42)

where (N|M) ) ∫ �N(r1)r12
-1�M(r2)dr1dr2, and the summation over spins have been performed as in ref 40. Note that the

dispersion energy can also be expressed through mixed three-index propagators:

It should be stressed that this equation is not bitwise compatible with the formula for the dispersion energy obtained with
fully density-fitted density susceptibilities (see eq 38), but the differences should be the same order, as the accuracy of density
fitting for the (pq|rs) integrals (they would dissapear if DF were exact). The non-DF orbital equations can be retrieved from

R(r1, r2|ω) ) -∑
KL

〈〈�̂K;�̂L〉〉ω�K(r1)�L(r2) (38)

�̂K ) ∑
pq

Dpq
K Êq

p (39)

φp(r)φq(r) ) ∑
K

Dpq
K �K(r) (40)

R(r1|r2;r3|iω) ) -∑
pq

∑
K

〈〈Êq
p;�̂K〉〉iω

+
φp(r1)φq(r2)�K(r3) (41)
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(2) (n) ) 1

π ∫0

∞
Π
A

q1N
p1 (iω)Π

B

s1M
r1 (iω)dω(N|M)(p1s1|V|r1q1)

+ 1
2π ∫0

∞
Π
A

q1N
p1 (iω)[2Π

B

s2M
r2 (iω)dω(FB)s1

r1 + 2Π
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s1M
r1 (iω)dω(FB)s2

r2

- Π
B

s1M
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r1 - Π
B

s2M
r1 (iω)dω(FB)s1

r2](N|M)(p1s2|V|r1s1)Sr2

q1

+ 1
2π ∫0

∞
[2Π

A

q2N
p2 (iω)(FA)q1

p1 + 2Π
A

q1N
p1 (iω)(FA)q2

p2 - Π
A

q1N
p2 (iω)(FA)q2

p1

- Π
A

q2N
p1 (iω)(FA)q1

p2]Π
B

s1M
r1 (iω)dω(N|M)(p1q1|V|r1q2)Sp2

s1

Edisp
(2) ) - 2

π ∫0

∞
Π
A

qN
p (iω)Π

B

sM
r (iω)dω(N|M)(pq|rs) (43)
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eq 42 by replacing auxiliary indices N(M) by pairs of indices p3q3(r3s3). The integral over ω is calculated numerically (for
details see ref 51). In order to obtain a three-index matrix Πq

p
N(iω), responses to Naux perturbation operators �̂K are calculated

first. With Ω�̂K(iω) responses in hand, a square matrix of coefficients with indices p,q running from 1 to NAO can be easily
obtained from eq 15 of ref 39 by inserting Êq

p as the second perturbing operator. The computational cost of one Ω�̂K(iω)
operator for the CCSD case scales as O (o2V4), so for Naux such operators the scaling with seventh power of the molecular size
is obtained.

Note that the calculation of the exchange-dispersion energy from ready propagators is also accelerated by one order of the
orbital basis size if DF is used: the calculation scales as O (NAO

6 ) for the no-DF case and as O (NAO
4 Naux) if DF is applied.

However, this fact is of limited importance, since the calculation of the CCSD propagators is the most expensive part of the
program, anyway.

The one-electron density matrices used in this paper have been obtained from CC theory for the expectation value developed
by Jeziorski and Moszynski50 and implemented on the CCSD level by Korona and Jeziorski.37 The exchange-dispersion
energy obtained from eq 35 with the CCSD(n) propagators51 and with XCCSD-3 density matrices37 will be denoted simply
as Eexch-disp

(2) (CCSD).
2.6. Implementation. Both DF and non-DF formulas for the noncumulant part of the exchange-dispersion energy have

been implemented as a local extension of the MOLPRO code.55 The two- and three-index Coulomb integrals, coded in MOLPRO
for purposes of density fitted MP256 and local CCSD57 methods, were used to obtain the �̂K operators and to calculate the
exchange-dispersion and dispersion energies from eqs 42 and 43. Since the summation over orbital indices in the CCSD
half-propagator coefficients is not limited, there is no gain in performing the transformation to the molecular orbital basis in
this case. Therefore, the formulas have been implemented in atomic orbitals (AO). Noteworthy, such an implementation
makes it easy to extend the program to monomer-centered basis sets in the future. As already mentioned, the new code yields
the Eexch-disp

(2) (UCHF) energy if the UCHF polarization half-propagators are inserted into eq 35. Analogously, by using the
coupled HF (CHF) half-propagators, the Eexch-disp

(2) (CHF) energy is obtained. The calculations for the latter correction has not
appeared in the literature yet, however, it has been derived and programmed in the MOLPRO code as a byproduct of SAPT(DFT)
by Hesselmann et al.27,29 The authors of these references focused however on the coupled perturbed Kohn-Sham (CKS)
dispersion and exchange-dispersion energies and did not present any calculations for the CHF case. It should be stressed that
in the SAPT(DFT) approach programmed in the SAPT code,13,31,32 the uncoupled KS (UCKS) method is used for the exchange-
induction and exchange-dispersion energies, and afterward scaling formulas are applied to estimate the coupled part of these
corrections, e.g., for the exchange-dispersion energy:

Since the coupled variants of the interaction energy components are usually more accurate that the uncoupled ones, the
SAPT(DFT) approach presented by Hesselmann et al.27,29 should be preferred over the approach based on the UCKS method.31,32

Since the new code has been programmed in the AO basis, it has been easy to examine its correctness by inserting the
AO-transformed UCHF (or CHF) quantities (density-matrix susceptibilities and one-electron density matrices) instead of the
CCSD ones and by checking if the obtained value is equal to the Eexch-disp

(2) (UCHF) (or Eexch-disp
(2) (CHF)) energy obtained from

the SAPT(DFT) program of Hesselmann and Jansen.
For an efficient implementation of the exchange-dispersion energy, it is useful to define the following intermediate:

This quantity for fixed two indices is calculated on the fly and then used in the calculation of the corresponding part of the
exchange-dispersion energy. It is possible to switch on the paging over frequencies if all three-index objects do not fit into
memory. With the Xqs

pr intermediate defined, the formula given in eq 42 can be rewritten as

- 2Xq2s1
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r2 - 2Xq1s1

p1r2(FA)q2

p2(FB)s2
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A ready-to-program version of eq 46 is presented in the Appendix Section.
Equation 46 resembles closely the UCHF formula for the exchange-dispersion energy.7 In particular, the intermediate X is

an analog of the mixed double amplitude from ref 7. This correspondence is examined in detail for one selected term in the
Appendix Section.

It should be noted that an intermediate similar to Xrs
pq appears in the implementation of DF-DFT-SAPT,29 where it is also

constructed from three-index objects (partially density-fitted CKS half-propagators). It should be stressed, however, that the
present approach derives rigorously the general expression of the exchange-dispersion energy in a form of density-matrix
susceptibilities and density matrices, while in ref 29 a theoretical background of a replacement of the UCHF quantities by
CKS or CHF ones has not been presented.

3. Results and Discussion

3.1. Computational Details. To illustrate the performance
of the method presented in the previous sections several test
calculations have been performed.

At the beginning the quality of DF for the exchange-
dispersion energy has been investigated for the van der Waals
complex of two neon atoms. In this test the distances between
atoms range from 3 to 9 bohr, thus covering repulsive,
minimum, and long-range regions of PES. The augmented
correlation-consistent aug-cc-pVDZ58–60 basis has been used
in this case because of the necessity of performing the
calculations without the density fitting approximation (scaling
with the eighth power of the molecular size). The auxiliary
basis sets proposed in refs 61 and 62 were utilized. The basis
sets optimized for the MP2 correlation energy will be denoted
as aug-cc-pVXZ/MP2fit (X ) D,T,Q), while other basis sets
optimized for the Coulomb and exchange integrals will be
denoted as cc-pVXZ/JKfit. The DF calculations for a larger
aug-cc-pVTZ orbital basis have been also performed.

The new approach has been then applied to the helium
dimer at various distances used previously to produce an
accurate PES for this van der Waals complex.52,63 The same
basis set (DC147) as in refs 52 and 63 has been used. A
large auxiliary basis (aug-cc-pVQZ/MP2fit)61,62 augmented
with the functions on the midbond (see ref 39 for details)
has served for a density fitting in this case. Additionally, for
the r ) 5.6 bohr a smaller DC77 basis from ref 52 has been
used to calculate the exchange-dispersion energy without
density fitting. The numerical quadrature with 20 integration
points has been applied for the neon and helium dimers in
order to eliminate uncertainties related to the quality of the
numerical integration when comparing no-DF and DF
energies.

Finally, the new approach has been used to calculate the
exchange-dispersion and dispersion energies for selected
noncovalent complexes at geometries close to global minima.
These complexes are representative to various types of
dominant interactions at minimum, ranging from polar
systems to dispersion-bound species. The selected complexes,
along with the geometry references, are the following:
(H2O)2,

7 (HF)2,
7 (N2)2,

64 (CO)2,
65 CO-H2O,38,66 Ar2,

31

He-HF, and Ne-Ar. For the Ne-Ar complex, a distance
of 3.65 Å between atoms has been used. For the He-HF
complex a distance between the helium atom and the center
of mass of the HF molecule (RH-F ) 1.7328 bohr) has been
set to 6.5 bohr. Some of these complexes have been
previously used to study the intramonomer correlation effects
for the induction38 and dispersion39 energies. For all cases,

the aug-cc-pVTZ orbital basis and the corresponding aug-
cc-pVTZ/MP2fit basis sets have been used. The 8-point
numerical quadrature has been utilized.

The core electrons (1s for C, N, O, F, and Ne and 1s2s2p
for Ar) have been frozen in the CC calculations. All results
have been produced with a local development version of the
MOLPRO suite of codes. The SAPT(DFT) results have been
obtained by using the PBE0 functional67,68 with the asymp-
totic correction of Grüning et al.69 and utilizing the code
available in MOLPRO and developed by Hesselmann and
Jansen.24–27 The ionization potentials needed for the calcula-
tion of the asymptotic corrections have been obtained from
ref 70.

3.2. Discussion of the Results. Since the calculation of
the CCSD density-matrix susceptibility without density fitting
scales with the eighth power of the molecular size, the
possibility of obtaining a good quality DF-CCSD ex-
change-dispersion energies is crucial for the range of the
applicability of the new method. Therefore, it is important
to examine errors introduced by the DF approximation. Table
2 presents the dispersion and exchange-dispersion energies
for the Ne2 complex calculated from CCSD(3) propagators,
obtained either without DF or with DF for various auxiliary
basis sets. In the table, the DF results are followed by the
percent errors with respect to the exact (non-DF) value. It
can be seen from Table 2 that the dispersion energy is not
very sensitive to a quality of auxiliary basis sets. All basis
sets (even cc-pVTZ/JKfit) produce results of a similar quality
with errors on the fourth digit in a majority of cases. [Note
parenthetically that the dispersion energies presented here
were obtained from eq 43, so they are not bitwise compatible
with values from ref 39 calculated from two-index propaga-
tors.] The exchange-dispersion energy is, however, more
sensitive to the quality of auxiliary basis sets, especially for
large distances. From the results presented in Table 2, it can
be seen that acceptable errors of a couple percent for the
whole range of distances are produced by the aug-cc-pVXZ/
MP2fit, X ) T,Q basis sets only. In view of rather substantial
errors of the DF exchange-dispersion for the largest distances
considered, it is interesting to examine the total error
introduced by DF for the sum of the dispersion and exchange-
dispersion energies. The corresponding errors for the aug-
cc-pVDZ/MP2fit basis set are presented in the last line of
the results for the aug-cc-pVDZ orbital basis. It turns out
that errors of the exchange-dispersion energy at the large-R
region are not important since contributions from the
exchange-dispersion energy in this region are negligible
anyway. On the other hand, for the repulsive-wall region
the error caused by density fitting applied to Eexch-disp

(2)
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determines the total error of the sum of the dispersion and
exchange-dispersion energies. However, differences between
the DF and no-DF results of order of a few tenths of percent
are acceptable in most applications. It can be, therefore,
recommended that for the aug-cc-pVXZ basis set just the
corresponding MP2fit auxiliary basis can be safely used for
the SAPT(CCSD) calculations, unless we are specifically
interested in the exchange-dispersion energy (for the latter
case the aug-cc-pVQZ/MP2fit auxiliary basis should be
utilized).

In Table 2 the DF-CCSD dispersion and exchange-
dispersion energies for a larger aug-cc-pVTZ orbital basis
are also presented. The results show that the exchange-
dispersion energies calculated with the aug-cc-pVDZ/MP2fit
and aug-cc-pVTZ/MP2fit basis sets do not differ much from
each other, therefore the smaller auxiliary basis can also be
used with this orbital basis.

The DF-CCSD exchange-dispersion energy for the helium
dimer is shown in Table 3. The full configuration interaction
(FCI) exchange-dispersion energies within the S2 approxima-

tion listed in this table are the unpublished results collected
during the calculations performed to obtain the PES for the
interaction of two helium atoms.52,63 The CCSD(4) propaga-
tors have been utilized in this case,51 which are practically
exact (equivalent to FCI) for two-electron monomers (actu-
ally, it has been checked out that the results obtained with
the CCSD(3) and CCSD(4) models differ by less than 0.1%
for all values listed in the table). As discussed in ref 51, that
differences between the DF-CCSD and FCI dispersion
energies can be attributed exclusively to the DF error.
However, for the case of the density-fitted exchange-disper-
sion energy two sources of errors are possible: one stemming
from density fitting and the second one related to the neglect
of the cumulant contribution (see eq 35). The experience
gained from the investigation of the Ne2 complex tells us
that the DF errors can be of order of 1-2% percent in the
minimum region. Therefore, large differences between the
Eexch-disp

(2) (CCSD) and Eexch-disp
(2) (FCI) corrections for distances

from 3.0 to 4.0 bohr (corresponding to a highly repulsive
region of PES) should be attributed rather to the cumulant

Table 2. Dispersion and Exchange-Dispersion Energies for Two Neon Atoms (Upper Numbers) Computed from
Density-Fitted CCSD(3) Density-Matrix Susceptibilities and Their Percentage Errorsa

distance

basis set 3.0 4.0 5.0 6.0 7.0 8.0 9.0

aug-cc-pVDZ

Edisp
(2)

no-DF -11.645 -2.2700 -0.4732 -0.13178 -0.04750 -0.020144 -0.009601
aug-cc-pVDZ/MP2fit -11.649 -2.2702 -0.4731 -0.13176 -0.04749 -0.020139 -0.009601

-0.032 -0.0094 0.013 0.010 0.0082 0.021 0.0085
aug-cc-pVTZ/MP2fit -11.645 -2.2699 -0.4732 -0.13165 -0.04749 -0.020141 -0.009599

0.0065 0.0043 -0.0032 0.093 0.010 0.012 0.029
aug-cc-pVQZ/MP2fit -11.644 -2.2698 -0.4732 -0.13178 -0.04750 -0.020147 -0.009603

0.0077 0.0087 -0.0035 -0.0046 -0.0086 -0.017 -0.017
cc-pVTZ/JKfit -11.638 -2.2663 -0.4732 -0.13188 -0.04752 -0.020141 -0.009596

0.060 0.16 -0.0007 -0.080 -0.049 0.011 0.056
cc-pVQZ/JKfit -11.640 -2.2681 -0.4733 -0.13189 -0.04752 -0.020142 -0.0095963

0.045 0.081 -0.024 -0.088 -0.057 0.0070 0.053

Eexch-disp
(2)

no-DF 4.619 0.5582 0.05271 0.004531 0.000445 0.0000448 0.00000549
aug-cc-pVDZ/MP2fit 4.610 0.5559 0.05256 0.004511 0.000436 0.0000411 0.00000452

0.20 0.41 0.29 0.43 2.14 8.09 18.
aug-cc-pVTZ/MP2fit 4.616 0.5573 0.05265 0.004608 0.000453 0.0000458 0.00000588

0.067 0.16 0.11 -1.71 -1.78 -2.29 -7.04
aug-cc-pVQZ/MP2fit 4.618 0.5578 0.05266 0.004525 0.000443 0.0000442 0.00000539

0.023 0.079 0.088 0.13 0.37 1.29 1.84
cc-pVTZ/JKfit 4.604 0.5528 0.05222 0.004368 0.000387 0.0000286 0.00000194

0.32 0.96 0.94 3.59 13. 36. 65.
cc-pVQZ/JKfit 4.612 0.5557 0.05239 0.004383 0.000389 0.0000287 0.00000194

0.16 0.44 0.60 3.26 13. 36. 65.

percent error of Edisp
(2) + Eexch-disp

(2)

aug-cc-pVDZ/MP2fit -0.18 -0.14 -0.021 -0.0044 -0.012 0.0025 -0.0016

aug-cc-pVTZ

Edisp
(2)

aug-cc-pVDZ/MP2fit -15.228 -2.915 -0.6669 -0.18267 -0.06388 -0.026839 -0.012734
aug-cc-pVTZ/MP2fit -15.298 -2.924 -0.6640 -0.18290 -0.06390 -0.026838 -0.012735
aug-cc-pVQZ/MP2fit -15.300 -2.924 -0.6642 -0.18298 -0.06392 -0.026845 -0.012739
cc-pVTZ/JKfit -15.286 -2.918 -0.6627 -0.18279 -0.06386 -0.026820 -0.012726

Eexch-disp
(2)

aug-cc-pVDZ/MP2fit 5.35 0.643 0.0707 0.00679 0.00059 0.000055 0.0000055
aug-cc-pVTZ/MP2fit 5.43 0.655 0.0721 0.00701 0.00061 0.000059 0.0000062
aug-cc-pVQZ/MP2fit 5.44 0.656 0.0724 0.00699 0.00061 0.000060 0.0000064
cc-pVTZ/JKfit 5.39 0.642 0.0699 0.00658 0.00053 0.000043 0.0000032

a Lower numbers, for the smaller orbital basis only, relative to the results obtained without density fitting (denoted as no-DF). Energies
are in millihartrees, distances are in bohr.
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part of the exchange-dispersion energy. For larger distances,
the differences are smaller than 2%, so they are of the same
order of magnitude as some DF errors in Table 2, and it is
difficult to attribute them unanimously to DF or cumulant
sources of error. In order to clarify this point a non-DF
calculation has been performed for a distance 5.6 bohr in a
smaller DC77 basis, giving the value of the (noncumulant)
CCSD exchange-dispersion energy (eq 35) equal to 2.2867
µhartree. For this distance, the Eexch-disp

(2) (FCI) energy in the
S2 approximation (2.2279 µhartree) is available from un-
published calculations, utilizing a SAPT program specific
for two-electron monomers used also in refs 52, 63, and 71.
A subtraction of these two numbers gives, therefore, a pure
cumulant term for the helium dimer (eq 35). It turns out that
for the van der Waals minimum region this contribution
constitutes -2.6% of a total FCI exchange-dispersion energy,
i.e., is small enough to be neglected (this difference is only
0.2% of the total interaction energy). Summarizing, the
cumulant contribution for the helium dimer is significant only
in highly repulsive regions of PES (where it contributes by
ca. 25% to the total exchange-dispersion energy for He2, see
Table 3), while in all other regions this term is hidden within
uncertainties caused by the DF approximation. Unfortunately,
for many-electron monomers there is no reliable benchmark
for the exchange-dispersion energy, so the issue of the
importance of the cumulant contribution cannot be solved
unambiguously at the moment. However, it is known for
previous calculations that similar cumulant contributions for
the first-order exchange40 and second-order exchange-induc-
tion42 energies contribute an unsubstantial fraction to the total
energy correction. It can be, therefore, anticipated that the
cumulant part of the exchange-dispersion energy should be
small as well. It should be also noted that the calculation of
the cumulant contribution for many-electron monomers
would be very expensive, since six-index (five-index with
DF) objects should have been stored for a number of
frequencies on the one hand, and the numerical quadrature
itself would scale with the eighth (seventh with DF) power
of the molecular size on the other.

In Table 3 the UCHF, CHF and DFT exchange-dispersion
energies for the helium dimer are also listed for a comparison.
As it can be seen from this table, the errors of about 30%
are common for the Eexch-disp

(2) (UCHF) energy. Errors become

about three times smaller if the CHF polarization propagators
are used instead of the UCHF ones. On the other side, the
exchange-dispersion energies obtained from the asymptoti-
cally corrected PBE0 functional and CKS propagators show
similar errors relative to the Eexch-disp

(2) (FCI) exact values as
the Eexch-disp

(2) (CCSD) results. Therefore, the conclusions can
be made that the CKS propagators for helium reproduce
rather well the exact propagators, if the asymptotically
corrected PBE0 functional is used. On the other hand, the
quality of the UCKS exchange-dispersion energies with the
same functional is significantly worse. It should be stressed
that the usage of the scaling formula (44) deteriorates the
agreement with the FCI benchmark values in comparison to
the unscaled UCKS energies for all distances considered.

In Table 4 the dispersion and exchange-dispersion energies
for several van der Waals complexes are listed. These
energies have been calculated with DF-CCSD, UCHF, CHF,
and DFT approaches for monomers. A comparison of the
results listed in Table 4 with the DF-CCSD values, serving
as the benchmark, supports the conclusion reached for the
helium dimer that the UCHF method underestimates sub-
stantially the exchange-dispersion energy (by even 38% for
the He-HF complex). Unfortunately, the CHF approach does
not help to the same extent, as in the case of He2, although
errors of the CHF corrections do become somewhat smaller.

Finally, let us examine the DFT exchange-dispersion
energies. Again, three values of this correction listed in the
table correspond to the UCKS, ‘scaled UCKS’ (see eq 44),
and true CKS methods. It can be observed that the CKS
results are remarkably close to the benchmark values in all
cases, while errors in the UCKS and ‘scaled UCKS’ methods
are much larger (with one exception of the Ne-Ar complex,
for which the UCKS exchange-dispersion energy is close to
the DF-CCSD benchmark). In particular, the ‘scaled UCKS’
approach does not represent any improvement over the
UCKS approach, since usually the ‘scaled UCKS’ exchange-
dispersion energy ‘overshoots’ the DF-CCSD value from the
other side, although the errors are somewhat smaller in some
cases. Summarizing, from three SAPT(DFT) approaches for
a calculation of the exchange-dispersion only the method
utilizing the CKS propagators can be recommended. If the
CKS propagators are unavailable, one should rather use

Table 3. Second-Order Exchange-Dispersion Energies in Various Approximations for the Helium Dimera

R

method 3.0 3.5 4.0 4.5 5.0 5.3 5.6 6.0 7.0

FCI 627.6 212.7 73.06 24.98 8.453 4.386 2.265 0.9316 0.09718
DF-CCSD(4) 479 191 70.5 25.0 8.59 4.47 2.31 0.950 0.0975

-24 -10 -3.5 -0.14 1.6 2.0 2.1 1.9 0.4
UCHF 349.3 139.7 51.29 17.93 6.075 3.139 1.611 0.6557 0.06637

-44 -34 -29 -28 -28 -28 -29 -30 -32
CHF 423.4 171.2 63.59 22.50 7.710 4.008 2.068 0.8476 0.08691

-33 -20 -13 -10 -8.8 -8.6 -8.7 -9.0 -11
UCKS 431 179 67.1 23.8 8.15 4.22 2.17 0.882 0.0886

-31 -16 -8.1 -4.6 -3.6 -3.8 -4.3 -5.3 -8.8
‘scaled UCKS’ 415 174 65.8 23.4 8.01 4.14 2.13 0.863 0.0862

-34 -18 -10 -6.2 -5.3 -5.5 -6.2 -7.3 -11
CKS 467 192 72.4 25.8 8.86 4.60 2.37 0.965 0.0974

-25 -9.6 -0.9 3.3 4.8 4.8 4.5 3.7 0.2

a The second rows contain the percent errors with respect to the FCI exchange-dispersion energy (in the S2 approximation). Energies are
in µhartrees, distances are in bohr.
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UCKS propagators without trying to improve them by
introducing some provisional scaling procedures.

4. Summary

A new formulation of the second-order exchange-dispersion
energy in the single-exchange approximation has been
presented. The exchange-dispersion energy is expressed
through the formula involving frequency-dependent density-
matrix susceptibilities and one-electron density matrices of
monomers, in the spirit of the Longuet-Higgins formula for
the second-order dispersion energy. An explicit cancellation
of disconnected terms has been achieved through the
introduction of the cumulant density susceptibilities. The new
approach has been applied to the case of the CCSD
polarization propagators for the main (noncumulant) part of
the exchange-dispersion energy. In this way the exchange-
dispersion energy with the inclusion of the intramonomer
correlation effects has been obtained for the first time for
many-electron systems. The density fitting technique has
been applied to density-matrix susceptibilities in order to
reduce the computational time. For the CCSD susceptibilities,

the CPU time has been scaled down in this way from the
eighth to seventh power in terms of the orbital basis size,
thus allowing to perform benchmark calculations for a few-
atom monomers. The relative error of density fitting for the
case of the exchange-dispersion energy is somewhat larger
than for the dispersion energy and sometimes constitutes a
couple percent of the whole correction in the minimum and
even about 10% or more for large distances. However, since
the exchange-dispersion energy is usually much smaller than
the dispersion energy, the error resulted from density fitting
with respect to the sum of exchange-dispersion and disper-
sion energies is of order of a few tenths of percent. A
comparison with benchmark DF-CCSD values has allowed to
assess the quality of the three common SAPT(DFT) approaches
for the calculation of the exchange-dispersion energy. It turns
out that the CKS exchange-dispersion energy is usually in a
very good agreement with DF-CCSD, while the quality of the
UCKS energies is significantly worse in a majority of cases.
Finally, the numerical investigation of the ‘scaled UCKS’
approach shows that this method should be abandoned in favor
to the CKS exchange-dispersion energy.

5. Appendix

5.1. The Exchange-Induction Energy Expressed through Density-Matrix Susceptibilities. A computationally efficient
way to express the second-order exchange-induction energy through monomer properties has been developed in ref 42 where
the ground-state and first-order density matrices have been used for this purpose (with the effective electrostatic potential of
the second monomer acting as a perturbing operator). From a theoretical point of view, it may be interesting to express this
correction analogously to the induction energy, for which the following formula exists in the literature:72,73

In eq 47, the effective electrostatic potential of the monomer B is used, which is defined as

where in turn VB is the one-electron potential of the monomer B. The formula for the Eind
(2)(Br A) term is completely analogous.

Repeating derivation steps shown in the first part of this paper, the exchange-induction energy in the S2 approximation can
be written in terms of the static density-matrix susceptibilities:

Table 4. A Comparison of the Exchange-Dispersion Energies Computed with the DF-CCSD(3), UCHF, CHF, and UCKS,
‘Scaled UCKS’, and CKS Approaches for Monomersa

complex

method Ne-Ar Ar2 (H2O)2 (HF)2 (CO)2 (N2)2 CO-H2O He-HF

Eexch-disp
(2)

DF-CCSD 0.0114 0.061 0.642 0.527 0.092 0.045 0.083 0.0053
UCHF 0.0085 0.055 0.495 0.381 0.064 0.029 0.059 0.0033
CHF 0.0093 0.059 0.527 0.400 0.072 0.035 0.063 0.0040
UCKS 0.0111 0.075 0.733 0.587 0.104 0.050 0.102 0.0051
‘scaled UCKS’ 0.0085 0.050 0.575 0.481 0.070 0.040 0.071 0.0045
CKS 0.0101 0.063 0.628 0.513 0.092 0.047 0.084 0.0054

Edisp
(2)

DF-CCSD -0.267 -0.846 -3.651 -3.176 -1.048 -0.537 -1.013 -0.1663
UCHF -0.244 -0.918 -3.116 -2.556 -0.967 -0.449 -0.910 -0.1261
CHF -0.236 -0.815 -3.200 -2.673 -0.931 -0.477 -0.873 -0.1443
UCKS -0.329 -1.270 -4.511 -3.758 -1.499 -0.662 -1.400 -0.1874
CKS -0.253 -0.852 -3.543 -3.079 -1.016 -0.539 -0.976 -0.1650

a Dispersion energies are also listed for a comparison. Energies are in millihartrees.

Eind
(2)(A r B) ) -1

2 ∫ Veff,B(1)RA(1, 1′|0)Veff,B(1′)dτ1dτ1′ (47)

Veff,B(1) ) VB(1) + ∫ FB(1′|1′)

r11′
dτ1′ (48)
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where ΛB(12|1′2′) denotes the two-electron density-matrix cumulant74 of the monomer B, which for the CC case has been
derived in ref 41. The first four terms inside the square brackets correspond to the noncumulant part of the exchange-induction
energy. Equation 49 is interesting from a formal point of view, since it expresses the exchange-induction energy through
quantities independent of another monomer. The calculation of this correction by using eq 49 would require a knowledge of
the whole density-matrix susceptibility. Clearly, from the computational point of view, it is more convenient to calculate one
response of the monomer with respect to the potential of another monomer and to use the resulting first-order density matrix
for the calculation of the exchange-induction energy, than to calculate ca. NAO

2 or Naux responses to the Ĝq
p or �̂K operators.

However, eq 49 could be in principle an interesting alternative to the approach presented in ref 42 if it were sufficient to
obtain monomer properties for SAPT in a purely monomer basis set.

5.2. Working Formula for the Exchange-Dispersion Energy. An implementation of eq 35 can be further simplified
if one utilizes the generalized Coulomb and exchange matrices, introduced in ref 39. In the formula below the capital
bold letters denote a matrix of NAO × NAO dimensions, the one-electron density matrices of monomers are denoted by
the capital bold letters A and B, while S stands for the overlap matrix. The definitions of generalized right and left
Coulomb matrices and generalized inner and outer exchange matrices for a general (not necessarily symmetric) matrix
Y are listed below:

With these definitions the exchange-dispersion energy can be expressed as
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The quantities like products of the overlap and density matrices or the generalized Coulomb and exchange matrices can be
calculated in advance and stored on disk. Unfortunately, not all terms can be factorized in this way, so still the overall scaling
of eq 51 remains (NAO

5 ), although with a lower prefactor. As already noted, the scaling of eq 51 is of a limited importance in
view of high costs of the DF-CCSD propagators.

5.3. A Comparison with the Formula for the UCHF Exchange-Dispersion Energy. In order to find a correspondence
between the new formula (eq 35) and the UCHF exchange-dispersion energy (eq 108 of ref 7) let us consider the first term
of eq 35, in which the UCHF propagators have been used. If Ψ0 is set to Φ (Hartree-Fock determinant) and ΨK are
approximated by singly-excited determinants ΨK ) Φ(i f a), then the propagator formula (see eq 28) takes the form:

where ∆ai ) εa - εi is a difference of orbital energies for spinorbitals φa and φi (a,b and i,j denote virtual and occupied
indices, respectively, relative to Φ). If eq 52 is inserted into the first term of eq 35, then the following expression is obtained

which, after the summation over spins, gives the first term of eq 108 in ref 7. Note that this paper contains several misprints
corrected recently in ref 75.
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Abstract: A complicated problem of seven electronic states in four terms, 1A1′, 1E′′, 11E′, and
21E′, interacting with six vibrational modes, a1′, a2′′, e′, and e′, was solved to take into account
the combined two-mode Jahn-Teller (JT) plus two-mode pseudo JT effects and rationalize the
electronic structure of the CO3 molecule. The JT and first-order pseudo JT effects in the E′′
state are separated from the rest of the problem by symmetry; they do not influence the ground
state properties. In the remaining five-state five-mode problem including the ground state, (A1′
+ 1E′ + 2E′) X (a1′ + e′ + e′), the JT two-mode problem is reduced to the one-mode one by
means of coordinate transformations. Several high-level ab initio calculations including all of
the five states confirm the previously found coexistence of a central minimum of D3h symmetry
and three equivalent minima with a distorted geometry of C2v symmetry in the ground state; the
barrier between them is rather small, 0.2-0.3 eV, but large enough to distinguish them
spectroscopically. Harmonic vibrational frequencies of the two configurations near the minima
of the adiabatic potential energy surface are also evaluated. The calculations show how the
distorted configurations are produced by the JT effect in one of the excited E states, similar to
a previous finding in O3. Numerical data of ab initio calculations yield also the effective vibronic
and primary force constants for all of the terms. An electronic structure problem of this complexity
including a reduction of the two-mode problem to one mode with full interpretation of the origin
of coexisting different geometries as due to the JTE in the excited state is presented here for
the first time.

Introduction
The carbon trioxide CO3 molecule is of significant interest
due to its potential role in the atmospheric chemistry of Earth
and Mars.1-9 The necessity to characterize the CO3 molecule
emerged first from the data on the photolysis of ozone-carbon
dioxide ices at 77 K.2 Attention to this system was renewed
recently by the studies of kinetics of the reaction of carbon
dioxide CO2 with oxygen.1-8 It was proved that CO3 is an
important intermediate in the quenching of the electronically
excited oxygen atoms O(1D) by CO2 and the 18O isotope
enrichment of stratospheric carbon dioxide. The O(1D) atom
is initially generated by the photolysis of stratospheric ozone;
it then collides with CO2 to form CO3, followed by

dissociation to CO2 and the O atom in the ground 3P or
excited 1D electronic state via oxygen quenching or an
isotope exchange mechanism.

Quite a number of experimental and theoretical investiga-
tions have been devoted to the structure of the CO3 molecule.
Ung and Schiff10 in 1966 postulated the existence of the CO3

species in the gas phase without its explicit detection. Later,
Moll et al.2 and Jacox and Milligan4 investigated the infrared
spectrum and derived a planar C2V structure at low temper-
atures. Earlier experiments predicted that CO3 in the C2V

configuration is produced in the reaction of CO2 + O(1D)11.
The latest experimental exploration of the structure of CO3

was carried out by Jamieson and co-workers in 2006.12 It
was the first spectroscopic detection and identification of the
D3h configuration of CO3.
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In 1987, Van de Guchte et al.13 performed self-consistent
field (SCF) calculations on CO3 and predicted a stable D3h

structure with lower energy than in the C2V geometry. This
calculation is likely to be too simple to give a reliable
conclusion, but it inspired further interest in elucidating the
geometric and electronic structure of CO3. Castro and
Sylvio14 used many-body perturbation theory and couple-
cluster calculations to confirm that the C2V and D3h isomers
coexist, but the C2V structure lies about 18 kJ/mol lower than
the D3h isomer.

In recent years, higher-level computational methods have
been used extensively to explore the structure of the CO3

molecule. In 2004, on the basis of the complete active space
self-consistent field (CASSCF) optimized geometries and
internal contracted multireference configuration interaction
with Davidson’s cluster correction (MRCI + Q) single-point
energies, Mebel et al.15 and Bennett et al.8 predicted that
the C2V and D3h configurations have similar energies (the
energy difference is about 0.1 kcal/mol) and are separated
by a transition state with a barrier of about 4.4 kcal/mol. In
2007, Kowalczyk and Krylov16 performed a series of coupled
cluster calculations (CCSD, CCSD(T), CCSDT, EOM-
CCSD, and EOM-EE(2,3)) to study the electronic structure
of CO3. They were the first to involve the influence of the
excited state via the pseudo Jahn-Teller effect (JTE) in the
formation of the ground state geometry of this molecule (for
other systems, this procedure has been previously involved
many times17,18), but they took into account only one excited
state in a one-mode treatment. In the calculations of this
paper,16 the D3h minimum disappears at higher levels of
correlation treatment and basis set, and only the C2V minimum
remains. The authors explained the disappearance of the high-
symmetry equilibrium configuration by pointing out that in
previous multireference studies dynamical correlation was
not included in the geometry optimization. More recently,
Qin and Soo19 used the DFT method to support the
conclusion of coexistence of the D3h and C2V geometries.

Despite these theoretical studies performed on CO3, the
main question of the ground state configuration and geom-
etry, D3h versus C2V, as well as expected vibrational frequen-
cies at the minima, remains controversial, and no full
discussion of the origin of this complicated adiabatic potential
energy surface (APES) is given. The presence of a C2V

minimum with a symmetry lower than the highest one, D3h,
in the nondegenerate ground state indicates that there is an
essential implication of the JTE involving excited electronic
states.17,18 This means that to rationalize the results of ab
initio calculations one has to take into account the mixing
of the ground and all relevant excited states via the JTE and
pseudo JTE (PJTE), which seems to be crucial in this
problem. In any full consideration of this system, the three
close-in-energy excited E states, each of which is potentially
subject to JTE and PJT mixing with the others and with the
ground state via the six active vibrations, must be taken into
account. This amounts to a combined JTE plus PJTE seven-
state six-mode problem, which can be reduced by symmetry
to three simpler problems, the main of which is the five-
state five-mode one that includes the ground state. The
present paper reports a solution of these problems which

rationalizes the electronic structure of CO3 and gives a clear
physical picture of the origin of its two coexisting configura-
tions in the ground state.

Formally, the APES obtained in this paper may serve as
a basis for evaluation of the full rovibronic spectrum of CO3.
This is a separate and very difficult problem; we do not know
of any precedent rovibronic solutions of this complexity.
Partial solutions were discussed by Stanton20 for the radical
NO3, which looks similar to CO3 but is essentially different.

The JTE and PJTE in CO3

According to the one-point calculations of the CO3 molecule
in the high-symmetry configuration D3h in this and previous
works, its ground state is 1A1′, and there are three spin-singlet
excited electronic terms, E′′, 1E′, and 2E′, that we found
located at about, respectively, ∆ ) 0.97 eV, ∆1 ) 2.65 eV,
and ∆2 ) 2.81 eV above the ground state, and six vibrational
modes: totally symmetric a1′, out-of-plane a2′′, bend e′
(denoted below as 1e′), and CO stretch e′ (denoted below
as 2e′). In principle, all of these electronic terms and
vibrations are involved in the formation of the APES of this
molecule and its properties.

The first simplification of the problem can be obtained
based on the fact that the E′′ term does not mix with the
ground state A1′ (in first order of the displacements) as there
are no e′′ vibrations in CO3, and it mixes with the higher
excited 1E′ and 2E′ terms via the out-of-plane displacements
a2′′, which are not active in the remaining five-state five-
mode problem. This allows us to separate the main combined
(A1′ + 1E′ + 2E′) X (a1′ + 1e′ + 2e′) two-mode JT plus
two-mode PJT problem17 from the pure excited state JT E′′
X (a1′ + 1e′ + 2e′) and PJT (E′′ + 1E′ + 2E′) X a2′′
problems. The vibronic coupling effects in the latter two
problems are rather weak and not significant (see below).

The 5 × 5 secular matrix of the main problem contains a
large number of constants including the JT vibronic coupling
constants of each of the electronic terms to each of the
vibrations and the PJT coupling constants between them, as
well as the primary force constants and quadratic coupling
constants. Fortunately, the problem can be simplified em-
ploying the results of the general theory of the multimode
JTE (see in ref 17, sections 3.5 and 5.5; ref 21, and ref 22,
as well as ref 23). According to the theory, the JT two-mode
problem can be reduced to the ideal (one-mode) one by
means of transformations in the coordinate system. In the
transformed coordinates, only one e mode is JT-active (the
interaction mode), the other one remaining non-JT-active
(meaning harmonic and nonshifted), so the problem becomes
(A1′ + 1E′ + 2E′) X (a1′ + e′), and the JT plus PJT secular
matrix is considerably simplified. The interaction mode
stands for the total distortion produced by the nuclear
displacements in the two modes, which in an appropriately
chosen coordinate system is described by one minimum of
the APES. Although the interaction mode is a function of
the initial modes, and the reduced number of vibronic
coupling constants is a combination of the larger number of
initial constants, the problem is still essentially simplified
because, as shown below, the interaction mode can be
obtained from the ab initio calculations.

2680 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Liu et al.



To get preliminary qualitative hints on where to find
the interaction mode and what should be expected from the
numerical calculations, some initial estimates based on the
general theory17 and previous experience18 may be useful.
In particular, if we ignore the PJT interaction between the
three terms and take the JT coupling constants approximately
as they appear in the ab initio calculations, we obtain for
the cross section Qε ) 0 the energy level dependence on Qθ

shown in Figure 1. In fact, to get this picture qualitatively,
we should assume that the JTE in at least one of the exited
E states is sufficiently strong so that the JT stabilization
energy is larger than the energy gap to the ground state. This
is just the picture we got in solving the problem of O3.

18

In Figure 1, the JTE splitting in the two excited E states and
the harmonic curve of the ground state are shown. We know
qualitatively how these curves change when the PJTE interac-
tion is included; it is indicated by the dashed lines. An important
feature in this energy level scheme is that the JTE in the excited
state strongly influences the ground state APES, resulting, as
shown in the ab initio calculations below, in the formation of
an additional minimum with lower (C2V) symmetry. There are
three equivalent directions of the JTE distortions in the (Qθ,

Qε) space, and hence, if an additional C2V minimum is formed
under the influence of the excited state, there will be two more
of them, forming three additional equivalent minima in the space
of the interaction mode.

Following the qualitative picture of Figure 1 (which is
confirmed below by the ab initio calculations), we see that
the direction from the central minimum (if any) to the
distorted configuration C2V is determined by the direction of
the JT distortion in the excited E states, more precisely, in
the direction of the combined two-mode (interaction mode)
distortion plus a possible shift of the a1′ displacements. To
have an idea how the interaction mode depends on the initial
modes, consider first the 2E′ term with the strongest JTE,
the 2E′ X (1e′ + 2e′ + a1′) problem, which generally
produces two kind of distortions, one of which is given in
symmetrized displacements (q1θ, q1ε, qa) of the 1e′ mode,
the other in the coordinates (q2θ, q2ε, qa) of the second mode
2e′. Obviously, the real displacements of individual atoms

are some vector sums of their displacements in each of these
modes. The three modes have different frequencies.

The process of reducing the two-mode problem to a one-
mode one is to perform first a scale transformation, (qi′)2 )
Kiqi

2, that makes the elastic term isotropic (with the same
force constant K ) 1 for all qi′ coordinates)22 and then an
orthogonal transformation (rotation) for qiθ′ and qiε′ and a
shift for qa′ of the coordinate systems (qiθ′, qiε′, qa′) to new
ones (Qiθ, Qiε, Qa) in such a way that one of the modes
becomes JT-inactive (has no linear terms in the Hamiltonian),
the other one being accordingly modified. The transformation
of the two-mode problem to a one-mode one with quadratic
terms included was carried out recently by Polinger23 (in
previous works, only linear displacements were taken into
account). In this transformation, the coupling to the totally
symmetric coordinates can be separated by means of a shift
along the Qa axis. Performing the 2 × 2 transformation in
the remaining (Qθ, Qε) space, we get

where the coefficients of this transformation are combinations
of linear and quadratic vibronic coupling constants and force
constants of all three modes.23 Their exact numerical
evaluation is not the goal of our calculation, but in further
exploration of the excited states, this may be necessary. The
main role of the interaction mode is to allow us to reformulate
the problem in terms of (A1′ + 1E′ + 2E′) X (a1′ + e′) with
one e mode instead of two and to determine the effective JT
parameters of this interaction mode (meaning the parameters
of the APES of the excited state) by comparison with the
numerical data. Numerically, the constants in eq 1 will also
be affected by the influence of the JTE on the 1E′ term, but
this influence is insignificant. The JTE on this term, as shown
in the calculations below, is very small, and the contribution
of its quadratic terms (which only contribute to the warping
of the Mexican hat) is negligible (anyhow, it just changes
the expressions for the coefficients in eq 1).

For the direction from the D3h minimum to the expected
C2V minimum which coincides with the similar direction to
the corresponding minimum of the JTE 2E′ X (a1′ + e′) in
the excited 2E′ term (Figure 1), we should take into account
that the minimum on the Qθ axis (where Qε ) 0) has also a
shift component along the Qa axis. This follows directly from
the general solution of the quadratic E X (a1′ + e′) problem17

and is confirmed below in the ab initio calculations of the
APES along the Qa coordinate (see Figure 7). Therefore, in
the space of the interaction mode, the direction from D3h to
C2V to be matched with the numerical calculations below is

With only one active e′ mode taken into account and in
the space of its coordinates, we can write the effective matrix
equation for the potential energy of the system (the APES)
of the (A1′ + 1E′ + 2E′) X (a1′ + e′) problem as follows (I
is a unit matrix 5 × 5):

where

Figure 1. Schematic diagram of energy level of the ground
state A1′ and four excited state (1E′ and 2E′ in D3h symmetry)
dependence on the Qθ coordinate of the interaction mode
when their PJT mixing is ignored (Fij ) 0). The order of
magnitude of the JT vibronic coupling constants is taken
approximately in accordance with the ab initio calculations. Qθ ) c1q1θ + c2q2θ

Qε ) d1q1ε + d2q2ε (1)

Qθ ) c1q1θ + c2q2θ + cqa (2)

W - EI ) 0 (3)
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W )

[ W1 F12Qθ F12Qε F13Qθ F13Qε

F12Qθ
W2 - F22Qθ + N22 + F2

aQa +
F2

aeQaQθ + ∆1

F22Qε + 2G22QεQθ + F2
aeQaQε F23Qθ + F23

a Qa
F23Qε

F12Qε F22Qε + 2G22QεQθ + F2
aeQaQε

W2 + F22Qθ - N22 + F2
aQa -

F2
aeQaQθ + ∆1

F23Qε F23Qθ + F23
a Qa

F13Qθ F23Qθ + F23
a Qa

F23Qε
W3 - F33Qθ + N33 + F3

aQa +
F3

aeQaQθ + ∆2

F33Qε + 2G33QεQθ + F3
aeQaQε

F13Qε F23Qε F23Qθ + F23
a Qa F33Qε + 2G33QεQθ + F3

aeQaQε

W3 + F33Qθ - N33 + F3
aQa -

F3
aeQaQθ + ∆2

]
In the formation of this equation, the wave functions of the two Ei terms are denoted by |iθ〉 and |iε〉, i ) 2 and 3, and that

of the ground state is |a〉. The 5 × 5 secular matrix (eq 3) contains the effective constants of vibronic coupling to e′ displacements,
with linear Fii (i ) 2, 3) and quadratic Gii (i ) 2, 3), and three constants Fij (ij )12, 13, and 23) of pseudo JT coupling
between the terms by e′ displacements, as well as the diagonal quadratic coupling terms Nii ) Gii(Qθ

2 - Qε
2) and elastic

energies Wi ) (1/2)Ki(Qθ
2 + Qε

2) + (1/2)Ki
aQa

2, i ) 1-3, and the constants of the vibronic coupling of the three electronic
terms to Qa displacements Fi

a (i ) 2, 3) and one constant F23
a of the coupling between the two E terms. The Fi

ae (i ) 2, 3)
are the quadratic constants for interactions between the a1′ and e′ modes.

We emphasize that because of the transformations above the relation between these constants and the initial JT constants
of coupling to the two e′ modes are complicated and in fact unnecessary, as the latter are unobservable. The APES matrix (eq
3) should be regarded as the effectiVe potential energy matrix, which describes the real surface to be obtained in the ab initio
calculations below. The parameters in this matrix are thus effectiVe coupling constants that describe the APES. Some of these
constants are not directly related to observable properties (e.g., the primary force constants Ki for JT modes17). The derivations
and discussion above show how the real APES is formed by complicated JT interactions between the electronic states and
vibrational modes in the D3h configuration, especially, why we can consider only one JT vibrational mode instead of two.
After accepting this conclusion, we can ignore eqs 1 and 2 and start further consideration from eq 3.

As mentioned above, the electronic structure of CO3 is somewhat similar to that in the ozone molecule O3 where the three
minima of the obtuse triangular (C2V) configuration are formed under the strong influence of the JTE in the excited E state,18

and there is a shallower minimum with the D3h configuration. But compared with O3, the CO3 molecule is much more
complicated because of the two-mode problem and the presence of three excited close-in-energy E terms in the high-symmetry
configuration, with two of them strongly influencing the ground state. Among four-atomic molecules, CO3 is the most
complicated system studied in this respect.

Ab Initio Calculations

In all of the ab initio calculations for this problem, Dunning’s correlation consistent basis set cc-pVTZ24 is employed. The
active space is composed of the extensively used 16 electrons and 13 active orbitals (i.e., all valence electrons and orbitals
with the exception of 2s lone pairs of oxygen atoms) denoted as (16/13). Another smaller active space is (16/10), which
excludes the three empty orbitals corresponding to the three antibonding σCO*’s based on (16/13). The inactive orbitals (1s
of C and 1s and 2s of O) were kept frozen temporarily only when the smaller active space (16/10) was used.

The geometry optimizations and frequency calculations were performed by single-state CASSCF (SS-CASSCF)25 and
MRCI+Q methods26 (Tables 1 and 2). In addition, state-average CASSCF (SA-CASSCF)27 calculations were carried out to
optimize the stationary points and scan the potential energy curves. On the basis of the SS-CASSCF or SA-CASSCF geometry,
the MRCI+Q single-point energies are also obtained to account for the dynamical correlation. Considering the computational
efficiency, only reference configurations with weights larger than 1 × 10-4 were selected to be correlated in the MRCI+Q
calculations with 16/13 active space.

Besides the multireference methods above, two high-level single-reference methods, that is, Brueckner coupled-cluster
doubles with perturbative triples (BCCD(T))28 and coupled-cluster involving singles and doubles with perturbative triples
and quadruples (CCSD(TQ)),29 were used to optimize the structures and calculate the frequencies at the minima.

Table 1. Optimized Geometries (Bond Lengths in Ångstroms and Angles in Degrees), Energy Differences ∆E (in eV), and
Total Energies (in au) at the D3h Minimum of the CO3 Molecule Obtained by Different Computational Methods

C2v

methods D3h, R(CO) R(CO1) R(CO2) ∠O1CO2 ∆E (EC2v - ED3h) total energy (D3h)

MRCI+Q (16/10) 1.2550 1.1718 1.3252 142.2 -0.11 -263.27351667
MRCI+Q//SS-CASSCF(16/13) 1.2637 1.1739 1.3380 142.1 -0.10 -263.28928534
MRCI+Q//SA-CASSCF(16/13) 1.2635 1.1727 1.3428 142.2 -0.08 -263.28907391
BCCD(T) 1.2597 1.1758 1.3333 142.6 -0.23 -263.29442881
CCSD(TQ) 1.2570 1.1745 1.3324 142.4 -0.28 -263.29093183
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All of the calculations were performed using the MOLPRO
quantum chemistry program package,30 except the CCS-
D(TQ) calculations performed with the ACES II program.31

Energies and Optimized Geometries of CO3

Figure 2 shows the equipotential curves on the contour map
of the APES of the ground state of CO3 in the cross-section
of the (Qθ, Qε) plane of the interaction mode obtained by
the BCCD(T) method (SA-CASSCF yields a similar surface,
which is not shown here). Figures 3 and 4 present the energy
levels of all three terms (A1′, 1E′, and 2E′) in the cross-
section of the APES along the two interaction coordinates
Qθ and Qε, respectively. The CO3 geometries in the D3h and
C2V configurations of the APES minima are shown in Figure
5. Figure 6 shows the energy levels of all four terms (A1′,
E′′, 1E′, and 2E′) as a function of the out-of-plane a2′′
displacement. They all remain approximately harmonic, so
there are no significant implications caused by the separation
of the (E′′ + 1E′ + 2E′) X a2′′ problem. The PJTE here is
weak, lowering the corresponding vibrational frequencies but
not producing instabilities (see the weak PJTE17). Similarly,
the mixing of the three terms A1′, 1E′, and 2E′ under totally
symmetric displacements, as seen from Figure 7, is also
weak, but the two excited states have shifted minimum
positions in accordance with eq 4 obtained below. Numerical

data, on geometries, energies, and frequencies of CO3

calculated by different computational methods, are listed in
Tables 1 and 2.

Table 2. Frequencies of CO3 in cm-1 at the Minima Obtained with Different Methods

mode (symmetry)\methods MRCI+Q (16/10) SS-CASSCF(16/13) BCCD(T) CCSD(TQ) CCSD(T)a

D3h

bend (e′) 460 440 455 466 -402
OPLA (a2′′) 769 761 762 772 776
CO stretch (a1′) 1124 1084 1094 1113 1105
CO stretch (e′) 1647 1182 1316 1274 1093

C2v

bend (b2) 591 580 567 575 575
bend (a1) 604 578 612 597 606
OPLA (b1) 694 682 672 675 683
CO stretch (b2) 1049 1017 1006 1017 1007
OCO stretch (a1) 1122 1075 1093 1096 1099
CO stretch (a1) 2100 2071 2066 2073 2078

a Ref 16.

Figure 2. Equipotential curves on the APES of the ground
state of CO3 in the cross section of the (Qθ, Qε) plane of the
interaction mode obtained by the BCCD(T) method.

Figure 3. Ground 1A1 and four excited state energy levels
(2A1 and 1B2 and also 3A1 and 2B2 correspond to 1E′ and
2E′ in D3h symmetry, respectively) of CO3 in the cross-section
of the APES along the interaction mode Qθ obtained by the
MRCI+Q//SA-CASSCF (16/13) method.

Figure 4. Ground 1A′ and four excited energy levels (2A′
and 3A′ and also 4A′ and 5A′ correspond to 1E′ and 2E′ states
in D3h symmetry, respectively) of CO3 in the cross-section of
the APES along the interaction mode Qε obtained by the SA-
CASSCF (16/13) method.
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All of the methods used in the present study reveal two
kinds of minima in the ground state APES of CO3: the central
minimum, which yields the geometrical structure of D3h

symmetry, and three equivalent minima of C2V symmetry.
The latter have slightly lower energy than the D3h minima.
The single-reference methods, BCCD(T) and CCSD(TQ),
produce much larger energy differences between the two
minima than the multireference methods (Table 1). We also
found that the results of MRCI+Q with the active space of
(16/10) are similar to those of the SS-CASSCF and SA-
CASSCF methods obtained with the more time-consuming
(16/13) active space. It shows that, for the system under
consideration, the dynamical correlation may strongly influ-
ence the relative energies but affect less the optimized
geometry and frequencies.

In addition to the dominant closed-shell configuration
(4a1′)2(1a2′′)2(3e′)4 (4e′)4(1e′′)4 in the active space with a
weight of 69%, SA-CASSCF calculation shows that there
is a two-electron excited configuration (4a1′)2(1a2′′)2-
(3e′)4(1e′′)4(4e′)2(1a2′)2 with a weight of 18% in the ground
state, which means the single-reference method may fail. To
remedy this, higher-order correlations should be included.
In one of the previous papers,16 the D3h minimum was not
found in the calculations by CCSD and CCSD(T) methods.
Their total energies, geometries, and frequencies could not
be exactly reproduced in our calculations, and the discrep-
ancy cannot be explained by a numerical error. The results
that we obtained for this case with different programs agree
very well (the D3h configuration was checked at different
levels by ACES II,31 MOLPRO,30 and several other quantum
chemistry programs). Arguably, this discrepancy may be
caused by the defects in the HF-SCF codes of the old version
of ACES-II. In our computations with the BCCD(T) and
CCSD(TQ) methods, we got the D3h minimum, quite similar
to the results of the MRCI+Q method.

For the excited states of CO3, SA-CASSCF (16/13)
calculations also show that there is a large static correlation
contribution. In particular, for the 2E′ state, the dominant
electronic configuration comes from a two-electron excitation
of the ground state, which cannot be described well by single-
reference methods, such as popular EOM-CC and TDDFT.
The multireference treatment is necessary in such cases.
Perhaps this is the reason that in our multirefernce calcula-
tions of the excited states the energies are lower than those
obtained by other methods (e.g., in ref 16).

Further Discussion: Jahn-Teller Parameter
Values

As discussed above, it is seen in Figure 1 that the Qθ

coordinate of the interaction mode coincides with the line
that connects the D3h and C2V minima. On the other hand,
we can get the coordinate of this line from the ab initio
calculations following the distortions from the geometry at
the D3h to the C2V minima in terms of the symmetrized normal
displacements a1′, 1e′, and 2e′ in the D3h geometry. This can
be done by optimizing the corresponding linear combination
of these coordinates to fit the numerical values of the atomic
coordinates of CO3 in the two minima. It yields (cf. eq 2)
the following:

Figure 5. Optimized CO3 geometries of the D3h and C2v

configurations at the APES minima (bond lengths in ång-
stroms and angle in degrees) obtained by MRCI+Q(16/10),
SS-CASSCF(16/13), SA-CASSCF(16/13), BCCD(T), and CCS-
D(TQ) methods, respectively.

Figure 6. Energy levels of all four terms (A1, 1E, 2E, and 3E
states corresponding to the A1′, E′′, 1E′, and 2E′ states in
the D3h point group) along the out-of-plane Qa2′′ displacement
calculated with the SA-CASSCF(16/13) method.

Figure 7. Energy levels of the three terms (A1′, 1E′, and 2E′)
along the totally symmetric displacements Qa calculated with
the SA-CASSCF(16/13) method.

Qθ ) 0.98931q1θ + 0.00479q2θ + 0.14574qa (4)
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Similarly,

The coefficients in the linear combination show that,
in the distortion from the high-symmetry D3h configuration
to the C2V one along the interaction mode, the contribution
of the bend 1e′ mode is overwhelming, and there is also a
significant contribution from the totally symmetric displace-
ments Qa, which is understandable in view of the change in
the average interatomic distances in this transformation. It
is reflected also in the shift of the minimum along the Qa

coordinate in the excited E terms in Figure 7.
Comparing the computed energy levels of the five states

(Figure 3) with those in Figure 1, we see that qualitatively
the formation of the low-symmetry C2V minima is indeed
controlled by the JTE in the excited E states, similar to the
O3 case.18 But compared to the latter, the CO3 system has a
more complicated electronic structure. First, there are three
excited state conical intersections in the D3h symmetry of
CO3 and a considerable PJT interaction between two of the
excited states at the avoided crossing point Qθ )0.05 Å.
More important is the interaction between the Eθ branch of
the excited E state with the ground state at another point of
avoided crossing (Qθ ) 0.30 Å) that is very strong and
produces a gap of ∆ ) 1.78 eV between them (in O3, this
interaction is very small). For this reason, the barrier between
the two geometries, δ ) 0.22 eV, is much smaller than in
O3, but it is still significantly higher than the zero vibration
level, so the two configurations can be observed spectro-
scopically. The large energy gap at the avoided crossing may
also quench the otherwise important topological (Berry)
phase implications, which influence the rovibronic spectrum
in the JT minima (see, e.g., the discussion of the O3 case18).

On the contour map of the ground state APES in the space
(Qθ, Qε) (Figure 2), the positions and the relative barriers
between the central minimum and the peripheral ones and
between any two C2V minima are qualitatively different from
many other multiminima APES in JT systems with ground
state degeneracy.17 Indeed, while in the latter cases the
transition between the peripheral minima goes directly
between them sidestepping (bypassing) the high-symmetry
configuration, in CO3, the direct barrier between the C2V

minima is very high as compared with the barrier to the D3h

one. This situation may be important in evaluation of the
tunneling splitting, as well as the whole rovibronic spectrum.

The numerical results of the ab initio calculations allow
us also to approximately estimate the values of the majority
of the effective JT parameters in eq 3. To do this, we can
produce further appropriate cross-sections of the multidi-
mensional five-branched APES and compare the energies as
functions of the JT parameters with ab initio obtained values.
By fitting the ab initio data at small deviations from the D3h

symmetry with the roots of eq 3 in the cross-section Qε ) 0
with Qa ) 0, and Qθ ) 0 with Qε ) 0, respectively the
approximately estimated parameters are as follows: K1 )
18.92 eV/Å2, K2 ) 30.40 eV/Å2, K3 ) 14.17 eV/Å2, F12 )
0.84 eV/Å, F13 ) 2.99 eV/Å, F23 ) 0.76 eV/Å, F22 ) 0.73
eV/Å, F33 ) 4.76 eV/Å, G22)-4.34 eV/Å2, and G33 )-5.70
eV/Å2; K1

a ) 70.95 eV/Å2, K2
a ) 80.90 eV/Å2, K3

a ) 78.58

eV/Å2, F2
a ) 6.50 eV/Å, F3

a ) 6.32 eV/Å, and F23
a ≈ 0.

The fitting is approximate and may not be acceptable for
large deviations from the D3h symmetry. As expected (Figure
1), the strongest PJTE comes from the interaction between
the ground state and the 2E′ state, and the stronger JTE is in
the degenerate 2E′ state too. Even though the interaction
between the other excited 1E′ and the ground state A1′ is
small, it cannot be ignored, as it affects indirectly the ground
state structure through its JT and PJT interaction with the
2E′ term. In total, the coexistence of the D3h and C2V

equilibrium configurations in CO3 is controlled by the
combination of the JTE and PJTE, which mix five electronic
states with five vibrational modes. The small Fi

ae constants
of quadratic interactions between the a1′ and e′ modes could
not be obtained in our calculations because they fall out from
the cross-sections of either Qa ) 0 or Qe ) 0, while
calculation of the whole QaQe surface is extremely time-
consuming and seems to be excessive.

As for the separate excited state E′′ X (a1′ + 1e′ + 2e′)
problem, the calculations reveal a somewhat different
interaction mode along which the JTE is very weak with a
distortion (the radius at the bottom of the trough of the
APES17) of F0 ≈ 0.07 Å, which hardly influences the
geometry in this state.

Conclusion

The CO3 molecule proved to have a very complicated
electronic structure and two different, coexisting geometry
configurations. An electronic structure problem of this
complexity with a full explanation of the origin of peculiar
geometries due to the JTE and PJTE in excited states is given
here for the first time. High-level ab initio calculations of
the APES of the ground and six (three two-fold degenerate
in the high-symmetry configuration) excited electronic states
in the space of all six (two two-fold degenerate in-plane,
one totally symmetric, and one out-of-plane) active vibra-
tional modes of the CO3 molecule were performed and
rationalized in terms of a combined two-mode JT and two-
mode PJT problem. One excited state plus the out-of-plane
mode were separated by symmetry. The two-mode JT
problem was reduced to the one-mode one by means of a
coordinate transformation. The coexistence of two types of
APES minima with D3h symmetry (one minimum) and C2V

symmetry (three equivalent minima) was confirmed, and the
origin of the distorted configuration as due to the strong JTE
in one of the excited states was revealed. The harmonic
vibrational frequencies in the minima of the two configura-
tions were also evaluated. The efficiency of the JTE theory
in rationalizing the results of ab initio calculations is
demonstrated here by the solution of a very complicated
problem of CO3.
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Qε ) 0.99999q1ε + 0.00485q2ε (5)

A Seven-State Six-Mode Problem J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2685



References

(1) Katakis, D.; Taube, H. J. Chem. Phys. 1962, 36, 416–422.

(2) Moll, N. G.; Clutter, D. R.; Thompson, W. E. J. Chem. Phys.
1966, 45, 4469–4481.

(3) DeMore, W. B.; Dede, C. J. Phys. Chem. 1970, 74, 2621–
2625.

(4) Jacox, M. E.; Milligan, D. E. J. Chem. Phys. 1971, 54, 919–
926.

(5) Yung, Y. L.; Demore, W. B.; Pinto, J. P. Geophys. Res. Lett.
1991, 18, 13–16.

(6) Yung, Y. L.; Lee, A. Y. T.; Irion, F. W.; DeMore, W. B.;
Wen, J. J. Geophys. Res. 1997, 102, 10857–10866.

(7) Perri, M. J.; Van Wyngarden, A. L.; Lin, J. J.; Lee, Y. T.;
Boering, K. A. J. Phys. Chem. A 2004, 108, 7995–8001.

(8) Bennett, C. J.; Jamieson, C.; Mebel, A. M.; Kaiser, R. I. Phys.
Chem. Chem. Phys. 2004, 6, 735–746.

(9) Kaiser, R. I.; Mebel, A. M. Chem. Phys. Lett. 2008, 465,
1–9.

(10) Ung, A. Y.; Schiff, H. I. Can. J. Chem. 1966, 44, 1981–
1991.

(11) Weissberger, E.; Breckenridge, W. H.; Taube, H. J. Chem.
Phys. 1967, 47, 1764–1769.

(12) Jamieson, C. S.; Mebel, A. M.; Kaiser, R. I. Chem. Phys.
Chem. 2006, 7, 2508–2513.

(13) Van de Guchte, W. J.; Zwart, J. P.; Mulder, J. J. C. J. Mol.
Struct. (THEOCHEM) 1987, 152, 213–229.

(14) Castro, M. A.; Sylvio, S. Chem. Phys. Lett. 1991, 177, 98–
102.

(15) Mebel, A. M.; Hayashi, M.; Kislov, V. V.; Lin, S. H. J. Phys.
Chem. A 2004, 108, 7983–7994.

(16) Kowalczyk, T.; Krylov, A. I. J. Phys. Chem. A 2007, 111,
8271–8276.

(17) Bersuker, I. B. The Jahn-Teller Effect; Cambridge University
Press: Cambridge, U. K., 2006.

(18) Garcia-Fernandez, P.; Bersuker, I. B.; Boggs, J. E. Phys. ReV.
Lett. 2006, 96, 163005.

(19) Qin, C.; Soo, T.-Y. J. Mol. Struct. (THEOCHEM) 2009,
897, 32–35.

(20) Stanton, J. F. J. Chem. Phys. 2007, 126, 134309.

(21) (a) Toyozawa, Y.; Inoue, M. J. Phys. Soc. Jpn. 1965, 20,
1289–1290. (b) Toyozawa, Y.; Inoue, M. J. Phys. Soc. Jpn.
1966, 21, 1663–1679.

(22) Bersuker, I. B.; Polinger, V. Z. Vibronic interactions in
Molecules and Crystals; Springer-Verlag: Berlin, 1989.

(23) Polinger, V. Z. Private communication, 2009.

(24) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007–1023.

(25) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b)
Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785–
789.

(26) Knowles, P. J.; Werner, H.-J. Theor. Chim. Acta 1992, 84,
95–103.

(27) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1985, 82, 5053–
5063.

(28) (a) Hampel, C.; Peterson, K.; Werner, H.-J. Chem. Phys. Lett.
1992, 190, 1–12. (b) Deegan, M. J. O.; Knowles, P. J. Chem.
Phys. Lett. 1994, 227, 321–326.

(29) (a) Bartlett, R. J.; Watts, J. D.; Kucharski, S. A.; Noga, J.
Chem. Phys. Lett. 1990, 165, 513–522. (b) Raghavachari,
K.; Pople, J. A.; Replogle, E. S.; Head-Gordon, M. J. Phys.
Chem. 1990, 94, 5579–5586.

(30) Werner, H.-J. MOLPRO, version 2006.1; University College
Cardiff Consultants Limited: Cardiff, Wales, 2006.

(31) Stanton, J. F. ACES II, version 2.5.0; University of Florida:
Gainesville, FL, 2006.

CT9002515

2686 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Liu et al.



Unrestricted Coupled Cluster and Brueckner Doubles
Variations of W1 Theory

Ericka C. Barnes,† George A. Petersson,*,† John A. Montgomery, Jr.,‡,¶

Michael J. Frisch,‡ and Jan M. L. Martin¶,§

Hall-Atwater Laboratories of Chemistry, Wesleyan UniVersity, Middletown,
Connecticut 06459-0180, Gaussian, Incorporated, 340 Quinnipiac Street, Building 40,

Wallingford, Connecticut 06492-4050, and Department of Organic Chemistry,
Weizmann Institute of Science, IL-76100 ReoVot, Israel

Received May 20, 2009

Abstract: Unrestricted coupled cluster spin contamination corrected [UCCSD(T)] and unre-
stricted Brueckner doubles [UBD(T)] variations of the Weizmann-1 theory (W1), denoted as
W1U, W1Usc, and W1BD, respectively, are compared with the restricted open-shell W1 theory
[W1(RO)]. The performances of the four W1 variants are assessed with 220 total atomization
energies, electron affinities, ionization potentials, and proton affinities in the G2/97 test set, for
consistency with the error analysis of the original W1(RO) study. The root-mean-square deviations
from the experiment of W1U (0.65 ( 0.48 kcal/mol), W1Usc (0.57 ( 0.48 kcal/mol), W1BD
(0.62 ( 0.48 kcal/mol), and W1(RO) (0.57 ( 0.48 kcal/mol) show that the four methods are
virtually indistinguishable. This error analysis excludes the “singlet biradicals,” C2 and O3, since
single determinantal methods are not really adequate for these strongly multireference systems.
The unrestricted W1 variants perform poorly for such highly spin-contaminated and multireference
species (the largest deviation from experiment for W1Usc is -4.2 ( 0.1 kcal/mol for the O3

EA). W1(RO) performs much better than its unrestricted counterparts for these pathological
cases (the deviation from experiment is reduced to -1.5 ( 0.1 kcal/mol for the O3 EA), though
the errors are significantly larger than those for the overall test set. The examples of C2, O3,
and the F2 potential energy curve indicate that an advantage to using W1BD is that the error in
〈S2〉 correlates with the magnitude of the error in energy, whereas W1(RO) loses accuracy without
such a warning.

I. Introduction

Advances in computational methods and computer hardware
have made possible the accurate ab initio calculation of
energies for small- and medium-size molecules. Combined
with Pople’s model chemistry concept, these calculations
provide reliable thermochemical predictions, which are a
significant achievement of modern computational chemistry.1

A “theoretical model chemistry” is a complete algorithm
for the calculation of the energy of any molecular system.2,3

It cannot involve subjective decisions in its application. It
must be size extensive, giving energies that are additive for
separated systems, so that the energy of every molecular
species is uniquely defined. A model chemistry is useful if
for some class of molecules it is the most accurate calculation
we can afford to do. A number of “black-box” computational
methods have emerged in the past two decades, through the
development of composite theoretical model chemistry
methods such as the complete basis set (CBS) model
chemistries of Petersson et al.,4-8 the Gaussian-n methods
of Pople and co-workers,9-12 the Weizmann-n (Wn) theories
of Martin and co-workers,13-17 the high-accuracy extrapo-
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lated ab initio thermochemistry (HEAT) protocol of the
Gauss and Stanton groups,18-20 and the correlation-consistent
composite approach (ccCA) of Wilson and co-workers,21,22

to name a few.

The Wn computational protocols of Martin and co-workers
offer a sequence of models of increasing cost and accu-
racy,23-26 the converging hierarchy of which currently ranges
from W1 to W4.4. W1 theory, the most computationally
accessible member of the evolving Wn family, is often
employed as a benchmark for more approximate methods
in the absence of accurate experimental data. Some of the
key accomplishments of W1 theory are:
i. It achieves 0.44 kcal/mol mean absolute deviation (0.56
kcal/mol rms deviation) for 220 total atomization energies
(TAEs), electron affinities (EAs), ionization potentials (IPs),
and proton affinities (PAs) of the G2/97 set;
ii.As a properly defined theoretical model chemistry, it is
applicable in a “black-box” manner by a nonspecialist; and
iii. It is completely devoid of parameters adjusted to fit
experimental data.

The present study compares the performance of several
unrestricted variants of W1 theory: unrestricted W1 (W1U),
W1U with a spin contamination correction (W1Usc), and
unrestricted Brueckner doubles W1 (W1BD). Standard W1
will be explicitly referred to as W1(RO) in this study, in
order to avoid confusion in the comparison.

II. Restricted vs Unrestricted Reference

One of the major issues in computational studies of open-
shell species is the selection of a restricted or an unrestricted
reference wave function. Each has its well-known advantages
and disadvantages. For example, restricted open-shell coupled
cluster singles and doubles27-31 with perturbative triples,32-35

[ROCCSD(T)], dissociate to the wrong energy limit, while
the unrestricted coupled cluster [UCCSD(T)] wave function
dissociates to the correct energy limit, but the wave function
becomes significantly spin contaminated as a bond dissoci-
ates. Several approaches have been used through the years
to alleviate the spin contamination problem. For example,
the spin correction term in W1Usc was introduced for this
purpose.36

Whether one chooses a restricted or an unrestricted
reference determinant, it is best to be consistent. Although
it is common practice in the application of unrestricted
methods to treat many unrestricted Hartree-Fock (UHF)-
unstable species (e.g., F2, alkenes, or polyenes) with a
restricted reference, problems arise in reactions involving
these “closed-shell” molecules. For example, the methyl
C-H bond dissociation energy (BDE) of UHF-unstable
1-butene gives a radical product, H2CdCHCH2ĊH2, that
would be described by an unrestricted determinant. Employ-
ing a restricted reference for 1-butene and an unrestricted
reference for the 1-buten-4-yl radical would create consis-
tency problems between reactant and product energies and,
thus, generate spurious BDE contributions. No matter how
distant a radical center is, an unrestricted treatment of the
radical will induce spin polarization of the UHF-unstable
π-bond. These problems are eliminated if one employs a

restricted open-shell Hartree-Fock (ROHF) reference for the
radical or a UHF reference for the parent alkene.

Another alternative to unrestricted Hartree–Fock (HF) and
coupled cluster is the use of charge coupled device (CCD)
calculations with Brueckner orbitals,37-42 coined as “Brueck-
ner doubles” (BD) by Handy et al.41 This method employs
a reference configuration, BDRef (from which the singles
coefficients are zero for the coupled cluster wave function
truncated at the doubles level), in place of the HF reference
typically employed in the coupled cluster ansatz. The
Brueckner condition implies that the corresponding reference
determinants give the best overlap of a one-configuration
approximation of the wave function with the exact wave
function.39 Such a reference was introduced by its namesake
Brueckner in 1954, as part of a self-consistent method in
nuclear physics,37 and was first employed by Nesbet38 for
use in the configuration interaction (CI) expansion of a wave
function. In the field of computational chemistry, the
resurgence of interest in Brueckner orbitals in the past two
decades was prompted by Chiles and Dykstra40 and later by
Handy and co-workers.41 Similar studies that demonstrate
the robustness of BD as an alternative to its coupled cluster
counterpart42-45 have been carried out over the years. Since
the species considered in the previous paragraph (i.e., F2 and
alkenes) are not UBD-unstable, the problems of consistency
between the reactant and the radical product are also
eliminated by using a BD-based method.

III. Computational Details

A. Components of W1. The justification for the selection
of each component calculation in W1(RO) has been presented
in detail14,15 and will not be repeated here. The W1U and
W1BD methods retain the essential features of standard
W1(RO) but replace the sequence of ROHF, ROCCSD, and
ROCCSD(T) calculations with their spin-unrestricted coun-
terparts for W1U for calculations involving open-shell species
and with the BDRef, BD, and BD(T)46 sequence for W1BD
theory. All calculations were carried out with Gaussian 09,47

which uses the ROCCSD(T) definition of UCCSD(T) in a
basis of semicanonicalized ROHF orbitals,35,48 with the
semicanonicalization carried out before the integral trans-
formation. The triples contribution to BD(T) is evaluated with
semicanonical Brueckner orbitals.

The UB3LYP/cc-pVTZ+1d geometry optimization and
frequency calculations are retained from the original W1(RO)
implementation. Optimized geometries and energy compo-
nents for all species are available in the accompanying
“geometries.txt” and “components.pdf” files as Supporting
Information. In the original implementation of W1(RO),
scalar relativistic corrections were obtained with the
Martin-Taylor small (MTsmall) basis sets49,50 as one-
electron Darwin and mass-velocity terms51,52 from averaged
coupled pair wave functions,53 while corresponding com-
ponents in this study were obtained with Douglas-Kroll-Hess
(DKH) second-order scalar relativistic calculations54-58 using
a Gaussian nuclear model59 (also employing the MTsmall
basis sets). Spin-orbit calculations were taken directly from
ref 14. The spin correction term in W1Usc,
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minimizes the difference between ROCCSD(T) and
UCCSD(T) energies for some highly spin-contaminated
species.36

B. Implementation of Brueckner Doubles. The BD
algorithm employed throughout this study involves macro-
iterations to update the orbitals, wherein each macroiteration
involves an integral transformation and a CCD calculation.
Thus, BD calculations appear, at first glance, to be signifi-
cantly more expensive than the corresponding CCSD cal-
culations. In practice, however, W1BD calculations are only
slightly more expensive than the corresponding ones in W1U
or W1(RO). The two main reasons for this are as follows:
i. Since W1 involves a sequence of calculations, the
converged orbitals and amplitudes from each step can be
used to start the next. As a result, most of the extra CC
iterations required are performed in the first BD(T) calcula-
tion, which uses the smallest basis set in the sequence of
calculations. For the largest basis set (i.e., the BD/aug-cc-
pVQZ+2df step), typically only two or three BD macroit-
erations are required, and the second and later macroiterations
require only a few CC iterations.
ii. Calculations involving even three heavy atoms spend a
significant amount of time in the (T) steps, (the only O(N7)
parts of W1), and calculations on systems having four or
more heavy atoms are dominated by these steps. The triples
calculations have the same cost for CCSD(T) and BD(T).

The result is that the extra cost of doing W1BD over W1U
or W1(RO) is in the range of 20-40% for two heavy-atom
systems, about 20% for three heavy-atom systems, and going
down further to less than 20% for systems with more than
three heavy atoms and/or those involving second-row atoms
and beyond. (W1 calculations involving two or more second-
row or heavier atoms are dominated by the last calculation,
which includes triples and correlates core electrons. As noted
previously, the triples part of this step has the same cost for
CCSD(T) and BD(T), and the BD iterations converge quickly
since they use the orbitals, amplitudes, and basis set from
the preceding frozen-core calculation as an initial guess.)

All but one of the correlation energy calculations in W1
use the frozen-core (FC) approximation, which substantially
speeds up the calculations as compared to correlating all
electrons (Full). Previous papers on the BD method have
not discussed the issue of frozen-core with this model, and
some programs, such as Gaussian 03, freeze the core orbitals
at their initial values during BD iterations. This means that
the converged BD(FC) energy varies with different initial
guess orbitals. For example, in CN, the UHF solution is
highly spin contaminated, while the BD(Full) reference
determinant has very minimal spin contamination. Hence, a
BD(FC) calculation starting from the UHF orbitals will freeze
a core that is more spin polarized than that of a BD(Full)
calculation and produce a different energy than, say, a
BD(FC) calculation that starts with (also much less spin
contaminated) B3LYP orbitals. The consistent approach to
frozen-core BD calculations is to update all orbitals, including
the core, during the BD iterations but to restrict the
amplitudes in the CCD calculations to those involving only

valence orbitals. The results are then independent of the
initial orbitals, and the core is spin polarized only to the
extent that the BD valence is. This approach is used in all
BD results reported here.47

IV. Results and Discussion

Since the four flavors of W1 theory are virtually the same
for closed-shell species, we shall focus on their performance
for open-shell systems. The extent to which the ROHF and
UHF reference determinants differ can be measured by the
error in 〈S2〉 for the reference configuration.

A. Spin-Contaminated Species. The restricted and un-
restricted variations of W1 theory have been evaluated with
bond dissociation enthalpies (BDEs), EAs, and IPs of some
radicals and biradicals (Table 1). The sample of 11 reactions
was selected on the basis of sizable errors in 〈S2〉UHF and the
availability of reliable experimental data.60-67

The rms deviation from experiment (Table 1) is not
surprisingly the largest for W1U (1.3 ( 0.3 kcal/mol), in
the absence of any rectification of the spin contamination
problem. The spin correction in W1Usc indeed reduces the
rms error to 0.6 ( 0.3 kcal/mol but is not always reliable.
For example, ∆E(spin) in eq 1 overestimates the correction
for the first C-H bond dissociation in acetylene by 0.8 (
0.02 kcal/mol and worsens the deviation with experiment
of the first C-H bond dissociation of propene by 0.8 ( 0.4
kcal/mol (Table 1). The rms deviations for W1U, W1Usc,
W1BD, and W1(RO) are 1.3 ( 0.3, 0.6 ( 0.3, 0.8 ( 0.3,
and 0.6 ( 0.3 kcal/mol, respectively, demonstrating the
comparable accuracy of W1Usc, W1BD, and W1(RO) in
handling these UHF spin-contaminated species. Note that
both W1BD and W1(RO) attain these results in the absence
of the empirical spin correction in W1Usc.

The following interesting observations are made for the
three most spin-contaminated species of the G2/97 test sets,
C2, O3, and CS+, selected on the basis of ∆〈S2〉UHF values
greater than 0.6:68

i. First is the existence of multiple solutions, which com-
plicates the use of “black-box” methods. To compound the
problem of multiple solutions for both restricted and
unrestricted versions of both HF and Brueckner determinants
for C2, the relative energies of the solutions are switched
between the HF vs the CCSD(T) levels of theory for both
restricted and unrestricted reference configurations. That a
single reference method produces several solutions comes
as no surprise in these cases, since C2 and O3 are known to
possess a significant multiconfigurational character in their
wave functions. If there are indications of near degeneracies
of configurations (such as a large error in 〈S2〉 for UHF or
UBDRef or a negative eigenvalue for a virtual orbital as in
neutral C2), then it is necessary to explore multiple solutions
in addition to checking for the correct number of imaginary
frequencies. A more thorough discussion is presented as
Supporting Information (see “Problem_species.pdf” file),
which includes an example of solutions crossing between
the BD vs BD(T) levels of theory.
ii. Second, the reactions involving these severely spin-
contaminated systems indicate that ∆〈S2〉UHF values do not
correlate as well with the energy error in a W1U calculation

∆E(spin) ) -6.28mEh × ∆〈S2〉UHF (1)
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as ∆〈S2〉UBDRef values do for W1BD errors (vide infra). A
sizable ∆〈S2〉UBDRef value appears to be a useful warning of
when to be skeptical of W1BD results (refer to Supporting
Information Table S-III and discussion on pages 11-12 of
“Problem_species.pdf” file for details).

B. G2/97 Test Set. The G2-19-11 and the G2-269,70 test
sets, collectively referred to as the G2/97 data set of Curtiss
et al. were employed to calibrate the accuracy of W1(RO)
for EAs, IPs, and PAs, while the G2-1 test set and a subset
of the G2-2 data set (26 out of 93) of heats of formation
were used in the calibration of total atomization energies
(TAEs).14 The selection of TAEs, EAs, IPs, and PAs is
retained in assessing the performance of W1U, W1Usc, and
W1BD, in order to facilitate comparisons with W1(RO)
values in the literature.14,15 A thorough discussion on the
notable discrepancies with experiment for some problematic
cases has already been presented by one of the authors.14 A
comprehensive breakdown of the G2-1 and the G2-2 TAE,
EA, IP, and PA energetic components and error statistics
for W1U, W1Usc, W1BD, and W1(RO) are available as
Supporting Information. The error analyses for 220 reactions
from the G2/97 data set are summarized in Table 2. The
reported uncertainties in the deviations from experiment
represent the uncertainties in the experimental data.36

The overall G2/97 rms errors for W1U, W1Usc, W1BD,
and W1(RO) (excluding C2 and O3) are 0.65, 0.57, 0.62,
and 0.57 ( 0.48 kcal/mol, respectively. Comparison of the
calculated energies with experiment is rather problematic due
to the large experimental uncertainties (( 0.65 for TAEs, (
0.32 for EAs, and ( 0.35 kcal/mol for IPs, Table 2). The
experimental uncertainties are of greater magnitude than the
differences in rms errors between the methods themselves,
making W1 variants virtually indistinguishable from one
another for the G2/97 test set (Table 2).

C. F2 Potential Energy Curve. Although the Wn meth-
ods are intended for the thermochemistry of molecular

systems at equilibrium geometries, the potential energy curve
for the F2

1Σg
+ ground-state dissociation provides insight into

the differences between the UCCSD(T), the spin-corrected
UCCSD(T), the UBD(T), and the ROCCSD(T) levels of
theory. Deviations of the potential energy curves from the
exact solution in the cc-pVDZ basis are shown in Figure 1.
A constant geometry-independent shift of the energy from
the full configuration interaction (FCI) reference would
display as zero error throughout the potential energy curve.

Neither restricted nor unrestricted CCSD(T) give a reliable
description of bond-breaking reactions. These qualitative fea-
tures of restricted and unrestricted methods along a potential
energy curve for bond dissociation are well-known.71 The spin
correction successfully reduces the UCCSD(T) error in energy
but shows fluctuation and dissociates improperly, reminiscent
of problems encountered with a restricted reference (Figure 1).
Furthermore, Ochterski et al. pointed out that the spin contami-
nation error increases linearly with ∆〈S2〉UHF for ∆〈S2〉UHF less
than 0.6.68 This is consistent with our observations for C2, O3,
and CS+ (see “Problem_species.pdf” file given as Supporting
Information) and strongly suggests that eq 1 is also not
applicable for ∆〈S2〉UHF > 0.6 on the F2 potential energy curve
(∆〈S2〉UHF ) 0.6 is marked by the vertical dashed line at 1.5 Å
in Figure 1).

The Brueckner doubles approach possesses compensating
advantages over both the RHF- and the UHF-based methods.
First, there is very good agreement between the UBD(T) and
the ROCCSD(T) potential energy curves in the vicinity of
the equilibrium geometry, where UCCSD(T) is already
contaminated with unwanted contributions from higher spin
multiplicities. This efficacy of Brueckner orbitals in reducing
spin contamination over a wider range of geometries
compared to UHF-based methods is also well documented.72

Furthermore, the Brueckner doubles curve is practically
indistinguishable from that of ROCCSD(T), up to the point
where the UBD(T) energy errors exhibit extreme sensitivity

Table 1. Deviations (Experiment-theory) of Calculated BDEs and adiabatic IPs and EAs from Experiment of Selected
Spin-Contaminated Species, in kcal/mol

W1U ∆〈S2〉 W1BD ∆〈S2〉 deviation (experiment-theory) experiment

speciesa reaction reactant product reactant product W1U W1Usc W1BD W1ROb

σ-Radicals
BDE ∆H298 H-CN f H + ·CtN 0.00 0.37 0.00 0.01 -1.9 -0.4 -1.0 -0.8 126.29 ( 0.2c

H-CtCH f H + ·CtCH 0.00 0.35 0.00 0.03 -0.6 0.8 0.0 0.1 133.46 ( 0.02d

H-CHdCH2 f H + ·CHdCH2 0.00 0.18 0.00 0.01 -0.4 0.3 -0.1 -0.1 110.71 ( 0.6c

IP ∆E0 C)O f e- + CdO+ 0.00 0.21 0.00 0.02 -0.9 -0.1 -0.6 -0.2 323.17 ( 0.01e

NtC-CtN f e- + NtC-CtN+ 0.00 0.35 0.00 0.03 -1.8 -0.4 -1.3 -1.0 308.42 ( 0.2f

EA ∆E0 CH2dCdCH-f e- + CH2 dCdCH 0.00 0.21 0.00 0.03 -0.7 0.1 -0.4 -0.3 20.59 ( 0.1f

CdN f e- + CdN 0.00 0.37 0.00 0.01 -1.8 -0.3 -1.0 -0.7 89.06 ( 0.1e

π-Radicals
BDE ∆H298 HCH2-CHdCH2 f H + ·CH2-CHdCH2 0.00 0.20 0.00 0.04 0.5 1.3 0.8 0.9 88.79 ( 0.4g

EA ∆E0 CH2CHCH2
- f e- + CH2CHCH2 0.00 0.20 0.00 0.04 -0.5 0.3 -0.3 -0.1 11.09 ( 0.2f

Singlet Biradicals
BDE ∆H298 F-F f F + F 0.30 0.01 0.00 0.01 1.8 0.6 1.1 1.0 38.00 ( 0.2f

Triplet Biradicals
EA ∆E0 H-C-CtN- f e- + H-C-CtN 0.12 0.36 0.02 0.07 -0.5 0.5 -0.3 -0.2 46.20 ( 0.3h

MAD 1.1 0.5 0.6 0.5 ( 0.2
rms 1.3 0.6 0.8 0.6 ( 0.3
LD -2.1 1.3 -1.3 -1.0

a Geometries are optimized at the UB3LYP/cc-pVTZ+1d level and available as Supporting Information. b W1(RO) energies were
calculated with Gaussian 09 (ref 47). c ref 60. d ref 61. e ref 62. f ref 63. g ref 64. h ref 65.
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to geometry changes and the restricted coupled cluster begins
to break down (1.2Re or 1.75 Å in Figure 1). This RBD(T)/
UBD(T) instability point is an unambiguous demarcation
between the absence and the onset of significant BD energy
errors, holding promise as a diagnostic tool for assessing
the reliability of BD calculations. The good correlation
between the W1BD ∆〈S2〉 values and the energy errors is
consistent with the results for CS+ and O3. The potential
energy curve for the restricted wave function proceeds toward
the wrong energy limit without such a warning.

V. Conclusions
The unrestricted flavors of W1 theory presented in this study
are viable alternatives to W1(RO). W1U benefits significantly
from a spin correction term for the 11 spin-contaminated
reactions (Table 1), reducing the rms error from 1.3 to 0.6 (
0.4 kcal/mol. The accuracy of the W1Usc, the W1BD, and the
W1(RO) theories are indistinguishable from one another when
evaluated with the moderately spin-contaminated data set (Table
1) and the 220 total atomization energies, electron affinities,
ionization potentials, and proton affinities in the G2/97 test set
(Table 2). Unlike W1U, the W1BD method demonstrates good
correlation between the ∆〈S2〉UBDRef and the energetic errors and,
thus, gives a clear indication of the onset of energetic errors
associated with spin contamination. W1(RO) gives no such
straightforward warning when its single determinant reference
wave function is inadequate. We, therefore, recommend the use

Table 2. Error Analysis (kcal/mol) for TAEs (298 K), EAs, IPs, and PAs of Select Molecules in the G2/97 Test Set for the
Different Variations of W1 Theorya

G2/97 subsetb method MAD rms LD species/LD

TAE298K (81)c

W1U 0.60 ( 0.41 0.75 ( 0.65 1.72 ( 0.10 ClNO
W1Usc 0.56 ( 0.41 0.70 ( 0.65 1.79 ( 0.10 ClNO
W1BD 0.61 ( 0.41 0.77 ( 0.65 1.97 ( 0.10 ClNO
W1(RO) 0.55 ( 0.41 0.67 ( 0.65 1.75 ( 0.10 ClNO

EA (55)d

W1U 0.46 ( 0.22 0.60 ( 0.32 -1.96 ( 0.60 CH2NC
W1Usc 0.41 ( 0.22 0.53 ( 0.32 -1.64 ( 0.60 CH2NC
W1BD 0.43 ( 0.22 0.55 ( 0.32 -1.81 ( 0.60 CH2NC
W1(RO) 0.43 ( 0.22 0.53 ( 0.32 -1.74 ( 0.60 CH2NC

IP (76)e,f

W1U 0.41 ( 0.16 0.57 ( 0.35 -2.10 ( 0.23 CS
W1Usc 0.33 ( 0.16 0.42 ( 0.35 1.39 ( 0.05 P2

W1BD 0.37 ( 0.16 0.49 ( 0.35 -1.48 ( 0.18 N2 (2Σ cation)
W1(RO) 0.35 ( 0.16 0.46 ( 0.35 1.42 ( 0.05 P2

PA (8)g

W1U 0.42 0.48 -0.83 C2H2

W1BD 0.42 0.49 -0.88 C2H2

W1(RO) 0.43 0.49 -0.83 C2H2

Total (220)
W1U 0.49 ( 0.27 0.65 ( 0.48
W1Usc 0.44 ( 0.27 0.57 ( 0.48
W1BD 0.48 ( 0.27 0.62 ( 0.48
W1(RO) 0.44 ( 0.27 0.57 ( 0.48

a C2 and O3 are excluded in all statistics. Optimized geometries, total energies, and energy changes of species and reactions in the G2/
97 sets are given in the Supporting Information “geometries.txt”, “components.pdf”, and “Test_set.pdf” files, respectively. The uncertainties in
the deviations from experiment represent the uncertainties in the experimental data (see “Test_set.pdf”). b The number of reactions
considered in each subset is indicated as the number in the parentheses in the first column. c See Supporting Information Tables S-III and
S-IV for individual TAEs. d See Supporting Information Tables S-V and S-VI for individual EAs. e See Supporting Information Tables
S-VII and S-VIII for individual IPs. f Excludes CN (3Π), CN (1Σ+), B2H4, sec-C3H7, and Si2H6 (see ref 14). g See Supporting Information
Table S–IX for individual PAs. Calculated proton affinities are considered converged at the W1 level (ref 14), agreeing well with experiment.

Figure 1. The error (mEh) in the UCCSD(T), the spin-
corrected UCCSD(T), the UBD(T), and the ROCCSD(T)/cc-
pVDZ potential energy curves for the F2

1Σg
+ ground state.

W1U/W1Usc and W1BD results beyond ∆〈S2〉UHF ) 0.6 (1.5
Å) and ∆〈S2〉UBDRef ) 0.1 (1.75 Å), respectively, (indicated by
dashed rather than solid curves) are considered unreliable.
Spin contamination errors cease to have a linear relationship
with energetic errors beyond these cut-offs.
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of W1BD, rather than W1Usc, as an unrestricted alternative to
W1(RO) in studies of potentially pathological cases. Multiple
solutions were obtained for both the restricted and the unre-
stricted methods for C2 and O3, demonstrating the need for
exploring multiple solutions with single-reference wave func-
tions even in the “black-box” context. Of course, testing for
the correct number of imaginary vibrational frequencies is
always necessary.
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Abstract: Conjugated circuits have been employed to accurately reproduce the aromatic
stabilization, London susceptibility, and ring current maps in polycyclic aromatic hydrocarbons,
PAHs, focusing on polybenzenoids. Starting from a wave function ansatz, constructed as a
superposition of Kekulé valence bond structures, the conjugated circuit resonance energy is
derived using the second quantization formulation. Approximated expressions for the resonance
energy, London susceptibility, and ring electron current intensity have been obtained. In these
expressions, the benzene molecule is employed as a reference for the calculation in a graph
theoretical fashion of properties in larger polybenzenoids. Comparison of the results obtained
with conjugated circuits with those obtained using more accurate quantum chemical methods
reflects the power of the conjugated circuit concept as a quantitative tool for the study of magnetic
properties in PAHs. Besides the usefulness of this methodology for understanding and interpreting
both the aromatic stabilization and the magnetic behavior of small and medium size PAHs, it
provides a straightforward alternative way for the computation of these properties in giant PAHs
for which ab initio calculations are not applicable.

1. Introduction

As defined by Randić in its essential review1 on the
application of the chemical graph theory to the study of
polycyclic aromatic hydrocarbons, PAHs, conjugated circuits
are those circuits within an individual Kekulé valence
structure in which there is a regular alternation of both CC
double and single bonds. This simple concept has been
employed independently by Randić2-4 and Gomes and
Mallion5 to develop the conjugated circuits model, CCM.
The CCM performs a partitioning of the resonance energy,
RE, of a PAH into local ring terms. Therefore, it allows
interpreting the total aromatic stabilization of a given PAH
in terms of ring contributions.1

A quantum chemical justification of the CCM is obtained
from the valence bond theory, if one restricts the large
number of valence structures present in a polycyclic conju-
gated hydrocarbon to the Kékule structures. This idea was
first coined by Simpson6 and subsequently employed by
Herndon7,8 more than 30 years ago to calculate the resonance

energies in PAHs from empirical quantities. On the other
hand, Klein and Trinajstić9 outlined a quantum chemical
derivation of the conjugated circuits model through the
Pauling-Wheland resonance theory.10 As remarked by
Randić,1 this connection between the CCM and the quantum
chemical theory is crucial because it has provided the model
with a more quantitative character and a theoretical foundation.

In spite of the huge number of published articles employ-
ing conjugated circuits,11 its scope as a quantitative chemical
tool for studying the properties of PAHs is still to be
exploited in its entirety. For instance, although some qualita-
tive relations between conjugated circuits and ring current
maps were pointed out some time ago by Randić,12 the
conjugated circuits have never been employed, neither for
calculating magnetic susceptibilities nor for constructing ring
current maps.

Alternatively other graph theoretical approaches have been
developed to determine the London susceptibility,13 i.e., the
magnetic susceptibility due to induced ring electron currents.
The efforts of Aihara in this direction deserve special
mention. He was able to connect the aromatic stabilization* Corresponding author. E-mail: mandado@uvigo.es.
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with the diamagnetic susceptibility exaltation14-17 and the
induced ring electron current18 in polycylic conjugated
systems through the extended Hückel-London theory of
diamagnetism and the definition of the topological resonance
energy.19,20 His works first demonstrated that the magnetic
and energetic criteria of aromaticity are indeed interrelated,21,22

showing that the London susceptibility of a PAH is the result
of the superposition of individual ring circuit contributions.
However, the application of the Aihara’s methodology to
compute individual and total London susceptibilities requires
the calculation of the circuit resonance energies,23 which is
restricted to the Hückel molecular orbital theory24,25 and can
become unmanageable for the case of giant PAHs.

On the contrary, because of its simplicity and intuitiveness,
the conjugated circuits model can be considered the most
powerful graph theoretical tool for the study of the aromatic
stabilization in PAHs. In addition, it can provide more
accurate results, with no limit for the system size, than those
obtained by other topological approaches, since it can be
applied in combination with more accurate quantum chemical
methods. In this paper, we extend the application of
conjugated circuits to the calculation of London susceptibili-
ties and ring current intensities. In the following section,
Section 2, the conjugated circuit resonance energy is derived
using an operator formalism developed in the context of the
second quantization, in order to lend the necessary theoretical
foundation to the method. Then, the expressions for the
London susceptibility and the ring current intensity are
obtained. Comparison of the results with those obtained using
more accurate quantum chemical methods is performed in
Section 3. Finally, the main conclusions are formulated in
the last section, Section 4.

2. Background and Theoretical Development

Conjugated Circuit Resonance Energy. In this section,
the conjugated circuit resonance energy is obtained using a
formulation based on creation and annihilation operators.
Using this formulation, the Kekulé valence bond structures
and a series of operators associated to the conjugated circuits

can be represented explicitly. Our derivation starts with the
same wave function ansatz as that proposed by Herndon,8

where the normalized ground-state wave function (eq 1) is
expressed by a linear combination of equally weighted
normalized functions, each corresponding to a Kekulé
structure:

where nK is the total number of Kekulé structures. The
expectation value of the energy for a given PAH is then
obtained from eq 2:

The different contributions to the energy that are implicit
in eq 2 can be viewed straightforwardly using the superposi-
tion diagrams of Kekulé structures. The superposition
diagrams for the Kekulé structures of naphthalene are shown
in Figure 1. As can be seen, the superposition of a Kekulé
structure with itself results in a set of localized bonds,
whereas the superposition of two different Kékule structures
results in a sum of localized bonds and cyclic delocalized
structures. These cyclic delocalized structures result from
the superposition of a conjugated circuit L with its counter-
part L′, which only differ in the arranging of the alternant
bonds. One can represent the energy contribution of a cyclic
delocalized structure by introducing appropriate operators
into eq 2. In order to shape such operators, it is useful to
employ the second quantization formulation of the valence
bond theory.26 So, the kets |Ki〉 in eq 1 can be represented
in second quantization by

Figure 1. Superposition diagrams for the Kekulé structures of naphthalene.
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where each operator ∆kl
R� + acts on the vacuum state |0〉 by

creating an electron pair in the bond formed by atomic
orbitals K and L; this operator is in turn an antisymetrized
product of two particle creation operators:26

where the subindex R or � indicates the electron has spin
alpha or beta, respectively. The set of KL atomic orbitals
necessary to construct the operator K̂i

+ depends on each
Kekulé structure, but its number is always equal to Ne/2, Ne

being the number of π electrons. The nomenclature intro-
duced in eq 4 to denote each pair of atomic orbitals KL
employs two subindices, i to indicate that the bond is
associated to the Kékule structure i, and n to distinguish
between different bonds associated to the same Kekulé
structure, so that two sets of different subindices (i,n) may
refer to the same pair of atomic orbitals provided that these
subindices are defined for different Kekulé structures.

The application of the set of K̂i
+ operators of a given PAH

on the vacuum state |0〉 generates the kets |Ki〉 that represents
the Kekulé structures of the system. Therefore, they will be
called Kekulé operators from now on. In addition, the bra
〈Ki| can be generated through the adjoint of K̂i

+, K̂i,

where each operator ∆KL
R� acts on the vacuum state 〈0| by

creating an electron pair in the bond formed by atomic
orbitals K and L, this operator is in turn an antisymetrized
product of two particle annihilation operators.

At this point it is useful to introduce some properties
of ∆KL

R� + and ∆KL
R� , which can be deduced straightforwardly

from the well-known anticonmutation properties of the
particle creation and annihilation operators.27

From property (i) it can be stated that, contrary to the
particle creation/annihilation operators, interchange of two
∆KL

R� + or ∆KL
R� operators does not have any effect on the

sign of |K̂i〉 or 〈K̂i|, respectively. Therefore, the energy of
the system can be written as in eq 8 independently of the
order in which the operators ∆KL(j,n)

R� + or ∆KL(i,n)
R� have been

introduced for the construction of the Kekulé operators
K̂j

+ or K̂i.

The transformation of a Kekulé structure into one of its
conjugated circuits and vice versa can be also represented
using ∆KL

R� + and ∆KL
R� operators. Thus, we define the operator

ĈL associated to the circuit L as the product of the ∆KL
R�

operators required to reduce the ket |Ki〉 to the conjugated
circuit L, which can be represented by the ket |L〉 or |L′〉 for
its counterpart, and ĈL

+ as its adjoint. Obviously, the number
of ∆KL

R� operators forming ĈL depends on the conjugated
circuit size and the number of π electrons, Ne. Moreover, a
conjugated circuit L can have several operators ĈL associated.
This fact is illustrated in Figure 2 for one of the conjugated
circuits of phenantrene.

The energy contribution from the superposition of a
conjugated circuit L and its counterpart L′ can then be
obtained from eq 8 by introducing properly the operators
associated to L. Taking into account that the product of a
Kekulé structure by itself represents only contributions from
localized bonds, the energy contribution due to electron
conjugation in the circuit L comes exclusively from the
crossed products of Ki and Kj structures and then can be
written as in eq 9:

where the first summation runs over all the operators
associated to the conjugated circuit L, the number of
operators associated to L is denoted by NL.

Application of property (ii) reduces drastically the number
of non-null terms in eq 9. Thus, if the ĈLp

operator tries to
remove a bond electron pair, which does not exist in K̂j

+,
the result of applying ĈLp

is zero, the same applies to ĈLp
+

and K̂i operators. Then, two conditions must be satisfied for
a term to be non-null: (1) the operator ĈLp

must contain only
bond electron pairs that appear in K̂j

+ and (2) K̂i and K̂j
+ must

differ only in the arranging of the bond electron pairs within
the conjugated circuit L. It is straightforward to show that
counting the number of terms satisfying conditions (1) and
(2) is equal to counting the number of L conjugated circuits,
nL (after taking into account the multiplicative factor 2 in
eq 9). Equation 9 then transforms into eq 10:

which represents the stabilization energy due, exclusively,
to the electron conjugation within the circuit L. In order to
simplify the expressions, we will employ an abbreviated
notation for the integrals 〈L′|Ĥ|L〉, that will be denoted by
HLL′ from now on. The total energy due to cyclic conjugation
is then the summation of the contributions of all the
conjugated circuits (eq 11):
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+ĤĈLp
K̂j
+|0〉 (9)

EL ) 1
2

nL

nK
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where nc is the number of different conjugated structures
that results from the superposition of the Kekulé structures.
It must be noticed that eq 11 is in fact the conjugated circuit
resonance energy in the Randić’s model.1

Diamagnetic Susceptibility and Ring Current Intensity.
It is well-known that the application of a perpendicular
magnetic field, H, changes the conjugated circuit resonance
energy in a PAH. Obviously, this change affects exclusively
the integrals HLL′ in eq 11 as the coefficients cL depend on
the number of L conjugated circuits and Kekulé structures,
which are not modified by the field. Then, the question that
arises is how to account for the effect of a magnetic field
over the energy terms HLL′ when the field is applied
perpendicularly to the molecular plane.

Aihara, in its graph theoretical interpretation of the London
theory of diamagnetism, showed that the field-dependent
cyclic conjugation energy can be represented by the product
of the unperturbed energy with a cosine function of the
magnetic field intensity and the area enclosed by the cycle,
SL (see eq 12).17 Aihara derived this result using the Hückel
molecular orbital theory. However, a correct perturbation
treatment of the system should provide similar results using
both the molecular orbital and valence bond theories.
Therefore, we will use the Aihara’s result within our valence

bond approach, expressing the field-dependent cyclic con-
jugation energy by eq 12:

In the limit of zero magnetic field, the cosine function can
be expanded as a Taylor series of H:

Taking into account that the diamagnetic susceptibility is
the second derivative of the energy with respect to the
magnetic field, one arrives to eq 14 for the London
susceptibility:

Using the London susceptibility of benzene as reference,
eq 14 turns into eq 15:

Figure 2. Schematic representation of the effect of some Kekulé operators and conjugated circuit operators of phenantrene.
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where the reference values are denoted by the subindex 0.
The contribution of a circuit L is then represented by eq 16:

A further simplification can be done for polybenzenoids,
if one considers that the area enclosed by the benzene rings
is approximately the same as that of the isolated benzene
molecule. Thus, the quotient of ring areas can be replaced
by the number of benzene rings enclosed by the circuit
L, fL.

The induced electron current intensity per magnetic field
unit at the circuit L (eq 18) can be obtained using the well-
known relation between the current intensity and the
diamagnetic susceptibility (eq 19):28

3. Results and Discussion

The problem with the application of eq 11 is the determi-
nation of the terms HLL′. By definition, H0 is the resonance
energy of benzene, and then it can be straightforwardly
obtained using, for instance, the method of Dewar.29

However, the calculation of HLL′ in polycyclic circuits is not
so clear. Within the CCM of Randić, the summation in eq
11 is truncated to circuits containing up to three benzene
rings, and then the parameters, called R1, R2 and R3, are
calculated via multivariate linear regression using a set of
previously computed resonance energies. Values of R1, R2

and R3 can be looked up in reference1 and compared among
different linear regressions obtained using one (R1), two (R1

and R2), and three (R1, R2 and R3) parameters. Comparison
of the R1, R2 and R3 values allows concluding that the
resonance integrals HLL′ decrease proportionally to the circuit
size, suggesting that eq 11 may be reformulated in terms of
the circuit size. Such reformulation of eq 11 can be done
using either the number of rings or the number of centers.
We have performed an initial test by using eq 20 as an
approximation and also replacing the number of rings, fL,
by the number of centers composing the circuit. In both cases,
the results have given rise to similar numerical correlations,
although for the calculation of magnetic susceptibilities fL

has provided slightly better results. Thus, we will discuss
only the results obtained using the number of rings as a
measure of the circuit size:

In eq 20, the energy terms HLL′ are replaced by the quotient
of H0 and the number of benzene rings of the circuit L, fL,
powered to a parameter, b, whose optimal value can be
obtained by statistical regression. Using eq 20, the number
of parameters employed reduces to just one since H0 can be
taken as the resonance energy of benzene, truncation to one-
two- and three-ring terms is not necessary for the statistical
treatment. We have employed eq 20 to reproduce the Dewar
resonance energies, DRE, for the series of fifteen PAHs
depicted in figure 3. The estimated values are highly close
to the correct values when b ) 2 (see Table 1), the very
good linear correlation is reflected on the following statistical
parameters: r ) 0.998, s ) 0.046, and F ) 2 987. However,
a look in more detail to the results revels that resonance

�d ) �d,0 ∑
L)1

nC

cL

HLL′

H0

SL
2

S0
2

(15)

�d,L ) �d,0cL

HLL′

H0

SL
2

S0
2

(16)

�d,L ) �d,0cL

HLL′

H0
fL
2 (17)

IL ) I0cL

HLL′

H0
fL (18)

�dH ) IS (19)

ECC ≈ ∑
L)1

nC

cL

H0

fL
b

(20)

Figure 3. Set of PAHs studied.

Table 1. Dewar and Conjugated Circuits Resonance
Energies

molecule ECC ECC
a DREb diffc

1 0.869 0.869 0.869 0.000
2 1.304 1.304 1.323 -0.020
3 1.569 1.600 1.600 0.000
4 1.950 1.950 1.933 0.017
5 1.750 1.814 1.822 -0.008
6 2.506 2.506 2.483 0.023
7 2.305 2.323 2.291 0.032
8 2.110 2.110 2.098 0.012
9 2.732 2.732 2.654 0.078
10 1.882 1.975 2.004 -0.029
11 2.607 2.607 2.619 -0.012
12 2.621 2.646 2.650 -0.004
13 3.591 3.591 3.524 0.067
14 3.146 3.146 3.128 0.003
15 3.402 3.416 - -

a Including parameter a. b Values taken from ref 29. c Difference
between values listed in the third and fourth columns.
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energies of linear polyacenes are slightly underestimated
using eq 20, being more significant with the size of the
molecule. This indicates that linear polyacenes display
specific behavior, which becomes more noticeable in the
calculation of magnetic susceptibilities due to the large circuit
size dependence of this magnitude.

The main problem of eq 20 is that it does not distinguish
between linear and nonlinear circuits. For instance, eq 20
considers that anthracene and phenantrene, like circuits, have
the same HLL′ value, but it is known that the contributions
to the resonance energy of these circuits is slightly different,9

being larger in the case of the anthracene circuits. Equation
20 is not able to compensate for these differences in the case
of linear polyacenes, where all circuits are linear circuits.
Therefore, we have introduced a new parameter in eq 20,
which is allowed to adopt different values for nonlinear
circuits and linear circuits containing three or more benzene
rings.

This new parameter, a, provides more flexibility to the
initial expression. Our numerical test has proven that more
sophisticated expressions including more parameters are not
necessary for obtaining accurate results, both in the case of
resonance energies and magnetic susceptibilities. Thus, the
best linear fitting between the calculated and estimated values
of DRE has been obtained for b ) 2 and a ) 1 (nonlinear
circuits) and a ) 0.78 (linear circuits). The perfect correlation
obtained is shown in figure 4 with the following statistical
parameters: r ) 0.9994, s ) 0.025 and F ) 10 083.
Moreover, as can be seen in Table 1, the largest difference
between calculated and estimated values is 0.078, which
corresponds to an error lower than 3%.

In light of these results, it can be glimpsed that behind
the eqs 20 and 21 there must be a theoretical foundation
besides a good statistical correlation. According to them, the
aromatic stabilization of a polybenzenoid is a function of
the aromatic stabilization of benzene, an idea that was first
coined and qualitatively verified by Clar.30,31 The connection
between the aromatic stabilization of both benzene and
polybenzenoid is clear in eq 20, the latter depending on the
molecular size and the number and shape of the Kekulé
structures.

From eq 21 and substituting the optimal value of b, �d,L,
and IL can also be expressed in terms of the coefficient cL

and the number of benzene rings fL, using benzene as
reference.

It is interesting to go over the shape of eq 22. According
to it, the contribution of a circuit L to the London suscep-
tibility is just given by the quotient between the number of
L conjugated circuits and the number of Kekulé structures,
only in the case of linear circuits it must be corrected with
the factor a2. Therefore, the London susceptibility can be
estimated for any polybenzenoid by counting its Kekulé
structures and conjugated circuits. The ring codes in the
Randić’s model1 appear to be a measure of the circuit
contributions to the London susceptibility.

The total London susceptibility results from the summation
of all the circuit contributions. In table 2 the values of the
magnetic susceptibility calculated using conjugated circuits
(with and without the correction parameter a), the Hückel-
London theory32 and the GIAO method33 (at the B3LYP/
6-31G(d) level) are collected for the series of PAHs depicted
in Figure 3. For the latter, only the component perpendicular
to the molecular plane is shown. The magnetic susceptibilities
obtained from conjugated circuits are very similar to those
calculated with the Hückel-London theory. Only if the
correction parameter a is not included, the linear polyacenes
display specific behavior with significant deviations in the
case of molecules 5 and 10. This is completely solved with
the inclusion of a, as one can see in Figure 5a, the London
diamagnetic susceptibilities and the diamagnetic susceptibili-
ties calculated from conjugated circuits display a perfect
linear correlation with the following statistical parameters:
r ) 0.9991, s ) 0.115, and F ) 4 034. On the other hand,

Figure 4. ECC vs DRE for the series of PAHs depicted in
Figure 2.

ECC ≈ ∑
L)1

nC

cL

H0

(afL)b
(21)

Table 2. Magnetic Susceptibilities, Relative to Benzene,
For the Set of PAHs Drawn in Figure 1 Estimated Using
Conjugated Circuits, Calculated with the London-Hückel
Theory and Calculated with The GIAO Method at the
B3LYP/6-31G(d,p) Level

molecule �CC �CC
a �Lon

b �⊥

1 1.00 1.00 1.00 1.00
2 2.00 2.00 2.22 1.83
3 3.00 3.32 3.53 2.67
4 3.20 3.20 3.31 2.55
5 4.00 4.77 4.88 3.53
6 4.50 4.50 4.61 3.34
7 4.29 4.47 - 3.33
8 4.44 4.44 4.70 3.26
9 4.33 4.33 4.33 3.13
10 5.00 6.29 6.26 4.40
11 4.00 4.00 4.17 3.10
12 6.20 6.46 - 4.41
13 10.20 10.20 10.13 5.94
14 6.71 6.71 - 4.69
15 9.00 9.14 - 5.52

a Including parameter a. b Values taken from ref 32.

�d,L ≈ cL

�d,0

a2
(22)

IL ≈
cL

fL

I0

a2
(23)
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the comparison with the magnetic susceptibilities calculated
with the GIAO method reflects also a good correlation,
although in this case, the best fitting equation corresponds
to a second-order polynomial instead of a straight line (see
Figure 5b). Although magnetic susceptibilities calculated at
ab initio level contain also local and paramagnetic contribu-
tions, its correlation with the values obtained from conjugated
circuits is quite good.

The total induced current intensity I circulating by a
given PAH results from the superposition of the individual
IL values. By superimposing the corresponding IL values
calculated using eq 23, we have reconstructed the ring
current maps of 14 PAHs (see Figure 6). This set of PAHs
comprises a wide range of examples of quite different
behavior, which is necessary in order to get a rigorous
test of the model and their eventual deficiencies. Moreover,
the reader can compare the ring current maps obtained
from conjugated circuits with those computed using the
ipsocentric method at ab initio level since the latter have
been calculated by Fias et al. in ref 34. As one can see,
the pictures obtained from conjugated circuits are remark-
ably accurate. Not only the relative intensity circulating
by different bonds in the individual molecules coincides
with those computed with the ipsocentric method, but also
the relative intensities among different molecules are in
very good agreement. Numerical values for the coefficients
cL as well as the current intensities circulating on each

bond (relative to their values in benzene) can be looked
up in the Supporting Information.

We would like to end this discussion pointing out the
following statement, which is also an important applica-
tion. Given that there exist algorithms available for both
the counting of the Kekulé structures and conjugated
circuits,11 the calculation of the London susceptibility and
the construction of the ring current maps can be under-

Figure 5. Plots of the magnetic susceptibility estimated using
conjugated circuits versus the London diamagnetic suscep-
tibility (a) and the magnetic susceptibility calculated using the
GIAO method (b) (only the component perpendicular to the
molecular plane).

Figure 6. Ring current maps obtained using conjugated
circuits.
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taken even for giant PAHs where the ab initio calculations
are not feasible. Thus, it is possible to get a quantitative
picture of the magnetic properties in giant PAHs with no
computational cost.

4. Concluding Remarks and Future
Prospects

The conjugated circuits resonance energies have been derived
using an operator formalism developed in the context of
second quantization. Then, expressions for the London
susceptibility and the ring current intensity have been
obtained. These expressions have been employed to ac-
curately reproduce the aromatic stabilization, London sus-
ceptibilities,andringcurrentmapsofaseriesofpolybenzenoids.

The relevance of the conjugated circuit concept is reflected
on the accuracy with that quantum chemical results are
reproduced, providing quantitative information not only about
the aromatic stabilization of a PAH but also about its
magnetic behavior. This methodology can be applied on both
small and medium size PAHs in combination with more
accurate ab initio methods, providing a local interpretation
of the results, but it can also be applied on giant PAHs to
get accurate pictures of their magnetic behaviors when ab
initio calculations are not applicable.

Calculations only require the previous knowledge of the
resonance energy of benzene by any of the methods available,
and then the remaining properties are obtained for larger
polybenzenoids with no computational cost. The next step
is to generalize the method for other PAHs containing five-
center and four-center conjugated rings by introducing some
additional parameters.
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Abstract: A multistate density functional theory in the framework of the valence bond model is
described. The method is based on a block-localized density functional theory (BLDFT) for the
construction of valence-bond-like diabatic electronic states and is suitable for the study of electron
transfer reactions and for the representation of reactive potential energy surfaces. The method
is equivalent to a valence bond theory with the treatment of the localized configurations by
using density functional theory (VBDFT). In VBDFT, the electron densities and energies of the
valence bond states are determined by BLDFT. A functional estimate of the off-diagonal matrix
elements of the VB Hamiltonian is proposed, making use of the overlap integral between
Kohn-Sham determinants and the exchange-correlation functional for the ground state
substituted with the transition (exchange) density. In addition, we describe an approximate
approach, in which the off-diagonal matrix element is computed by wave function theory using
block-localized Kohn-Sham orbitals. The key feature is that the electron density of the adiabatic
ground state is not directly computed nor used to obtain the ground-state energy; the energy is
determined by diagonalization of the multistate valence bond Hamiltonian. This represents a
departure from the standard single-determinant Kohn-Sham density functional theory. The
multistate VBDFT method is illustrated by the bond dissociation of H2

+ and a set of three
nucleophilic substitution reactions in the DBH24 database. In the dissociation of H2

+, the VBDFT
method yields the correct asymptotic behavior as the two protons stretch to infinity, whereas
approximate functionals fail badly. For the SN2 nucleophilic substitution reactions, the hybrid
functional B3LYP severely underestimates the barrier heights, while the approximate two-state
VBDFT method overcomes the self-interaction error, and overestimates the barrier heights.
Inclusion of the ionic state in a three-state model, VBDFT(3), significantly improves the computed
barrier heights, which are found to be in accord with accurate results. The BLDFT method is a
versatile theory that can be used to analyze conventional DFT results to gain insight into chemical
bonding properties, and it is illustrated by examining the intricate energy contributions to the
ion-dipole complex stabilization.

1. Introduction
The construction of an effective two-state diabatic Hamil-
tonian provides an extremely useful tool for many chemical

and biochemical applications.1-5 Examples include the study
of electron transfer (ET) using electronic structure methods
and the representation of the potential energy surface (PES)
of chemical reactions in condensed phases and in enzymes.
Although these applications appear to be very different, the
underlying principles to determine the PES are identical. In
the Marcus-Hush electron transfer theory, the coupling
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matrix element between donor (HD) and acceptor (HA)
potential energy surfaces, VDA, is a crucial element in the
calculation of the electron-transfer rate.6 At the crossing point
where HD ) HA, the coupling strength is the difference
between the diabatic state energy and the adiabatic ground-
state energy (ε1):

where HDA ) < ΦD|H|ΦA > and SDA ) < ΦD|ΦA > are,
respectively, the exchange and overlap integrals of the donor
and acceptor valence-bond electronic wave functions, ΦD

and ΦA, and H is the electronic Hamiltonian of the system.
For chemical reactions, if Φ1 and Φ2 represent the valence

bond electronic wave functions of the reactant and product
states,7 the Born-Oppenheimer PES of the adiabatic ground
state is given by the lower root, εg, of the 2 × 2 generalized
secular equation:

where the Hamiltonian matrix element is defined by Hij )
<Φi|H|Φj>, Sij is the overlap integral, and H is the total
effective Hamiltonian that includes both solute and solvent
contributions. In this discussion, the electronic coupling may
be defined as4

Then, the adiabatic ground-state potential energy has the
simple form

The electronic coupling matrix element V12 may also be
back-calculated from the diabatic and adiabatic ground-state
potential energies:

The two expressions of V12 in eqs 3 and 5 are equivalent,
shown to emphasize an important point. The first shows the
explicit dependence of the overlap integral, whereas this
dependence is implicit in eq 5. In either case, there is no
need to restrict the diabatic states to be orthogonal.

When the diabatic state energies and the adiabatic ground-
state energy are determined at different levels of theory (or
from experiments), one assumes that the difference in
absolute energy is constant along the reaction path. As such,
the adiabatic ground-state energy profile can be shifted by a
constant ∆ to yield an approximate V12:

where LL and HL indicate energies are computed at lower-
level and higher-level theories, and ∆ can be chosen with
the assumption that there is no diabatic coupling at the
reactant state. Importantly, eq 6 provides a convenient
connection between the diabatic and adiabatic PESs when

they are obtained from different levels of theory, and hence,
V12 may be fitted globally or semiglobally to reproduce the
all-dimensional adiabatic PES for a given two-state model.8-12

In this case, the dependence on overlap is implicit. However,
the effect of solvation on V12 may not be adequately assessed
using eq 6 if the diabatic PES (H11 and H22) and the adiabatic
ground-state energy are not determined consistently with the
same basis and theory or by optimizing both the orbital and
configuration coefficients simultaneously.3,13-16

The goal of this work is to develop a multistate density
functional theory (MSDFT) in the framework of the valence
bond model, in which the matrix elements are determined
by Kohn-Sham (KS) density functional theory (DFT). In
this way, dynamic electron correlation effects are treated by
DFT for the diabatic (VB) states, whereas static electron
correlation is partially described by the multiconfigurational
valence bond Hamiltonian (keeping in mind the possibility
of double-counting correlation effects using the current
functionals). Since diabatic states are not uniquely de-
fined,3,4,7,17-20 the problem in these applications involves
both the construction of the diabatic states and the accurate
computation of the matrix elements.

Numerous methods have been developed.2,5,6,21-30 To this
end, we have developed a mixed molecular orbital and
valence bond (MOVB) theory,3,13,14,16 based on a block-
localized molecular orbital method.31-38 In MOVB, diabatic
states are defined as the valence bond configurations of the
reactant and product structure, and the electronic wave
functions are approximated by a single Slater determinant,
in which the molecular orbitals (MOs) are strictly localized
within the individual fragments of a molecular configuration.
We note that the MOs within each fragment can be
orthogonalized, but they are nonorthogonal between different
fragments. Consequently, MOVB retains important charac-
teristics of valence bond theory.39-42 When the system
contains just one fragment, MOVB reduces exactly to the
conventional Hartree-Fock theory. On the other hand, when
MOs are fully localized, MOVB becomes an ab initio valence
bond self-consist field model,41,43,44 which is equivalent to
the complete active space (CASSCF) approach.

The single determinant, block-localized molecular orbitals
can be used to compute the electron density in exactly the
same way as that in the KS DFT approach.45 Consequently,
by construction, the total electron density of a molecular
system is block-localized with the desired characteristics, and
such a block-localized density functional theory (BLDFT)
can be used to obtain the ground-state energy of the
corresponding charge and spin-localized VB configuration.
The block-localized MOs used in DFT calculations cor-
respond to block-localized Kohn-Sham (BLKS) orbitals,
which can be defined analogously as the MOVB definition
of the reactant (donor) state and the product (acceptor) state
for chemical (ET) reactions.3,12,13,16 In this article, we
describe two methods for computing the off-diagonal matrix
elements using density functional theory. The MSDFT
method can be adapted in VB calculations, so the method is
also called the mixed VB and DFT (VBDFT) method. In
this context, MSDFT and VBDFT can be interchangeably
used, and we choose to use VBDFT throughout the rest of

VDA ) HA - ε1 )
|HASDA - HDA|

1 + SDA
(1)

| H11 - ε H12 - εS12

H21 - εS21 H22 - ε | ) 0 (2)

V12 ) H12 - εgS12 (3)

εg ) 1
2

(H11 + H22) -
1
2

[(H11 - H22)
2 + 4V12

2 ]1/2 (4)

V12 ) √(H11 - εg)(H22 - εg) (5)

V12 ) √(H11
LL - εg

HL + ∆)(H22
LL - εg

HL + ∆) (6)
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the paper. Clearly, an advantage of using BLDFT in VB
calculations is the inclusion of electron correlation effects.
Furthermore, because VBDFT is a multiconfigurational
method, the self-interaction error in the existing functionals
can, in principle, be eliminated in bond-making and -breaking
processes.

For comparison, a related but distinct method is the
constrained DFT (CDFT) formulated by Dederichs et al. in
1984,46 in which a set of charge and spin constraints is
introduced into KS-DFT calculations by the method of a
Lagrange multiplier. The CDFT method has been used in a
number of applications. Scheffler and co-workers studied the
adsorption of triplet oxygen on the aluminum surface and
reactions that are forbidden by the spin selection rule.47,48

Van Voorhis described an approach to estimate the coupling
matrix element in long-range ET reactions and used it in
configuration interaction (CI) with CASSCF-inspired charge-
and spin-constrained configurations.29,30,49 Wesolowski de-
veloped a constrained DFT algorithm to describe intermo-
lecular interactions.50,51 In contrast, the VBDFT method
follows a different strategy. We block-localize the KS
orbitals, and hence the associated electron density is con-
strained by construction (e.g., the Mulliken population
constraint is inherently imposed). The electron density for
each diabatic state is derived from an antisymmetric wave
function, consisting of both orthogonal and nonorthogonal
BLKS orbitals, a feature distinct from the CDFT approach
of Dederichs et al.46 but characteristic of VB theory.7

Notably, the VBDFT method is applicable to both short-
range (or strong-coupling) and long-range (or weak-coupling)
ET reactions.

In the following, we first present the theoretical back-
ground of the VBDFT (or MSDFT) method and computa-
tional details. Then, we illustrate the VBDFT method by
considering a set of applications involving SN2 reactions.
The paper is concluded with a summary of major findings
and future perspectives.

2. Methods

Often, it is desirable to impose certain charge and spin
constraints within a molecular system to describe the
localized chemical bonding character to gain insight into
properties such as resonance and charge transfer, concepts
central to the understanding of the chemical bond. The
MOVB method was developed to provide a computationally
efficient procedure to study these effects as well as chemical
reactions in solution and in enzymes.3,13-16,52 In this section,
we present an approach to use BLDFT to evaluate the matrix
elements of VB Hamiltonians. Thus, this multireference
density functional approach is also called the VBDFT
method, which represents an extension of the MOVB model
to include dynamic electron correlation effects in ab initio
VB-like calculations.

Throughout this paper, we use the following convention.
Subgroups of the molecular system are specified by Roman
capital letters A, B, ...; (block-localized) Kohn-Sham mo-
lecular orbitals are represented by |ψ>, labeled by the lower
case letters, i, j, ...; atomic orbital basis functions are denoted
by |�>, indexed by the lower case Greek letters, µ, ν,... When

A, B, ... are used as superscripts over a matrix (distinguished
by bold letters), they denote the dimension of the matrix in
terms of the corresponding MOs in that subgroup, whereas
when they are used as subscripts, the matrix is defined in
terms of the basis functions. The elements of a column (row)
in a matrix are always subscripted. VB configurations are
specified by u, V, w, ...

A. Block-Localized Density Functional Theory. In
BLDFT, we first construct a set of BLKS orbitals corre-
sponding to the desired charge and spin character.31,32,45 For
convenience of discussion, we consider a closed-shell system
both for the entire system and for subgroups; generalization
to open-shell and spin-constrained cases is straightforward
and has been implemented. The full system consists of N
electrons and M basis functions that are partitioned into K
subgroups with nA electrons and mA basis functions in
subgroup A. Then, the BLKS orbitals are expressed in terms
of the atomic orbitals located on atoms in a particular
subspace:

where cµi
A is an element of the column coefficient vector (Ci

A)
of KS orbital i (|ψi

A>), and {|�Aµ>}µ)1
mA are the basis functions

in subgroup A, arranged as a row vector �A. Let ΩA )
ψ1

ARψ1
A�...ψnA/2

A � be a successive product of nA occupied
spin-orbitals in subgroup A, and R and � are spin functions.
The Slater determinant function for the block-localized
system is constructed as follows:

where Â is an antisymmetrization operator, and Nu is the
normalization constant.

The BLKS orbitals between different subgroups in eq 8
are not orthogonal. Orthogonalization of these orbitals can
be done and is in fact part of the procedure to solve the self-
consistent field equations; however, the orthorgonalized
orbitals should not be used to interpret the properties of the
strictly localized, individual blocks or separate molecules
because they contain orthogonalization tails. Note that the
KS orbitals within the same subgroup can be and are
orthorgonalized, which does not affect the total energy by a
unitary transformation. The overlap matrix of the MOs is
given as follows

where R ) �T� is the overlap in terms of the basis functions
and C is the transformation matrix:

The one-particle density matrix from the occupied non-
orthogonal BLKS orbitals is defined by

|ψi
A > ) �ACi

A ) ∑
µ)1

mA

|�Aµ>cµi
A , A ) 1, ..., K (7)

Φu ) NuA
∧

{Ω1Ω2...ΩK} (8)

S ) CTRC (9)

C ) (C1 0 ··· 0

0 C2 ··· 0
··· ··· ··· ···
0 0 ··· CK

) (10)
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which satisfies the symmetry (DT ) D), rank (Tr(DR) )
N), and idempotency (DRD ) D) conditions, and the electron
density is given as follows

Using the one-particle density matrix and electron density
of eqs 11 and 12 computed from the nonorthogonal KS
orbitals, we can express the BLDFT ground-state energy
identically to that in the case of orthogonal KS orbitals:45

where Enuc is the coulomb energy of the nuclei, h and J are
the usual Hamiltonian (one-electron) and Coulomb integral
matrices, and Exc[F(r)] is the exchange-correlation energy
functional.

The corresponding block-localized Kohn-Sham equations
for the nonorthogonal KS orbitals can be derived following
the procedure described by Stoll et al.,53 and later by a
number of groups in various forms in molecular orbital
theory,14,31-38,54 primarily for treating intermolecular inter-
actions without basis set superposition errors and for energy
decomposition analysis. Because the transformation matrix
(eq 10) is block-diagonal, the conventional self-consistent
field (SCF) procedure for the Kohn-Sham equations of the
entire system can be cast into K separate KS equations, one
set for each subgroup. First, we define the projection operator
P̂∉A in the space of occupied KS orbitals that exclude those
in subgroup A, indicated by the subscripts ∉A:

where S∉A is the overlap matrix without the occupied KS
orbitals of subgroup A. Then, the KS equations for the
orbitals of subgroup A are given as follows

where F̂A is the projected KS operator

with F̂ being the unprojected (conventional) KS operator,

where Vxc[F(r)] is the exchange-correlation potential, and
Vext(r) is the nuclei-electron attraction, which may include
the partial charges from the solVent in combined QM/MM
calculations.

The KS orbitals in eq 15 can be optimized sequentially
by Jacobi rotation,13,31 which is straightforward to imple-
ment. Alternatively, in matrix form, in terms of the basis
functions, the generalized secular equations can be written
as follows:14,37,54

where εAA is a diagonal matrix corresponding to orbital
energies. Equation 18 was derived subject to the condition
(which does not affect the energy):34

and the projected overlap (RAA
P ) and KS-Fock (FAA

P ) matrices
are given as

and

The projection matrix is defined below. The computational
procedure is conveniently described by considering an
effective partition of two blocks, A and B, where the orbitals
in A are being optimized and B includes all other subgroups
of the molecular system. We arrange block A as the first
block and B second; that is, we rearrange the basis in the
following order, specified by a prime: �′ ) [�A, �1, ..., �A-1,
�A+1, ..., �K] ) [�A, �B], and thus the transformation matrix
C′ ) [CA, CB]. Then, the overlap, density, and projection
matrices in terms of the basis functions and the overlap
matrix in terms of KS orbitals in eqs 20 and 21 are given,
respectively, as

Starting from an initial guess, typically generated from
the extended Hückel method but preferably from calculations
of individual subgroups, one iteratively optimizes the KS
orbitals of each subgroup employing the densities generated
previously for other subgroups until the total energy and
density are converged. The key property of these orbitals is
that they yield the exact electron density of the charge- and
spin-constrained configuration through eq 12, which is then
used to determine Exc[F(r)] in eq 13.45 Furthermore, as
illustrated in Hartree-Fock theory by Nagata et al.,54 it is
straightforward to show that, if the electron density is
partitioned in the sense of Mulliken population of the
occupied, nonorthogonal BLKS orbitals, the electron densi-
ties of the individual subgroups are conserved without charge
transfer between different ones. Thus, the total electron
density is partitioned into subgroups as follows:

where [DR]AA ) DAARAA + DABRBA and [DR]BB ) DBARAB

+ DBBRBB. The total electron density is similarly partitioned

D ) C(CTRC)-1CT (11)

F(r) ) ∑
µν

m

|�µ(r) > Dµν < �ν(r)| ) �(r) D�T(r) (12)

E[F] ) Tr(Dh) + 1
2

Tr(DJD) + Exc[F(r)] + Enuc (13)

P
∧

∉A ) ∑
B,C*A

K

∑
i,j

occ

|ψi
B > [(S∉A)-1]ij < ψj

C| (14)

F
∧A|ψi

A > ) (1
∧
- P

∧
∉A)|ψi

A > εi
A (15)

F
∧A ) (1

∧
- P

∧
∉A)F

∧
(1
∧
- P

∧
∉A) (16)

F
∧
) -1

2
∇2 + Vext(r) + ∫ F(r′)

|r - r′| dr′+Vxc[F(r)] (17)

FAA
P CAA ) RAA

P CAAεAA (18)

(CAA)TRAA
P CAA ) 1AA (19)

RAA
P ) (RAA, RAB)P∉A (20)

FAA
P ) (P∉A)TFP∉A (21)

R′ ) �′T�′ ) (RAA RAB

RBA RBB
) (22)

DBB ) CB(SBB)-1(CB)T (23)

P∉A ) ( 1AA

-DBBRBA
) (24)

S′ ) (SAA SAB

SBA SBB ) (25)

N ) NA + NB ) Tr([DR]AA) + Tr([DR]BB) (26)
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into the electron densities of the subgroups

which are given by

For subgroup A, the number of partitioned electrons is

which is the number of constrained electrons in subgroup
A. Therefore, the block-localized KS orbital partition defined
by eq 8 is equivalent to imposing the constraint, δ(A), to
the total electron density, such that

Before we leave this section, it is of interest to make a
comparison with constrained DFT (CDFT) introduced by
Dederichs et al.,46 in which the constrained KS equations
are

where Vc is the Lagrangian multiplier for the constraint wc(r)
to yield a desired charge and spin property Nc, ∫ wc(r) F(r)
dr - Nc ) 0. In CDFT, the constrained KS orbitals are
expanded over the entire basis set, corresponding to a fully
delocalized system with specific spatial restrictions (Nc) in
practice.30 In contrast, the present BLDFT builds charge and
spin localization by construction, and the charge and spin
densities are strictly constrained within each subgroup in the
sense of Mulliken population partition without ambiguity or
integration uncertainty (however, this should not be confused
with the use of the Mulliken population constraint in CDFT
calculations, in which case it is difficult to achieve charge
localization because of the use of the intrinsically delocalized
KS orbitals).30 Note that the charge integration scheme in
CDFT is rather arbitrarily defined and cannot yield the correct
total charges for the constrained fragments in the dissociation
of H2

+.
There are, of course, many other ways of representing

constrained DFT calculations, including a useful method
developed by Wesolowski et al. for studying intermolecular
interactions.51 In this case, the molecular fragments are
considered as separated systems under the influence of the
mutual polarization of other densities, either frozen or
optimized. An anonymous reviewer pointed out that, in
principle, the method developed by Wesolowski can be used
to construct the localized configurations as described here,
provided if one knew the exact nonadditive part of the kinetic
energy. “The problem is that the function isn’t known and
the approximations currently used will fail when there is
significant subgroup overlap.” Of course, subgroup overlap
is significant in problems of interest to us. In this regard,
the kinetic energy in the present BLDFT method is treated
exactly as that in the KS-DFT scheme, and the resulting

valence bond Hamiltonian corresponds to a multireference
density functional theory, in which the densities for the VB-
like diabatic (reference) states are uniquely defined.

B. Diabatic Coupling and Multireference Valence
Bond Density Functional Theory. In this section, we
formulate a two-state VB Hamiltonian, making use of
BLDFT to determine the matrix elements. Clearly, the
method is general and has been implemented for multiple
states as illustrated in the following applications. For the SN2
reaction between nucleophile Nu- and substrate CH3L, we
define the reactant (Ψu: [Nu- ][CH3L]) and the product (Ψw:
[NuCH3][L- ]) diabatic states on the basis of the VB structure
of separate, but interacting, fragments:3,13

where Nu and Nw are normalization constants and X specifies
the instantaneous atomic coordinates. Then, the VB wave
function is written as a linear combination of the two VB
configurations defined by eqs 33 and 34, which is valid for
the description of the entire adiabatic ground state and a
coupling excited state:

The adiabatic ground-state energy at a given molecular
geometry, X, is the lower root of the generalized secular
equation (eq 2), in which u ) 1 and w ) 2.

Note that the wave function of eq 35 is used purely for
the purpose of deriving the secular equation (eq 2). Impor-
tantly, ΦVB(X) is determined corresponding to a unique
potential VVB(X), which in turn defines the adiabatic ground
state density and the adiabatic ground-state energy within
the block-localized configurations defined by eqs 33 and 34.
However, ΦVB(X) is not used to compute the electron density
to determine the DFT energysa departure from previous
approaches employing multiconfigurational wave function
to construct the one-particle density. The KS determinants
defined in eqs 33 and 34 are used to generate the BLKS
orbitals, which yield the exact electron densities for the
individual diabatic states and the corresponding matrix
elements Huu and Hww (eq 13). Unfortunately, the exact wave
functions associated with the block-localized densities for
the reactant and product diabatic states are not available.
Thus, the exact overlap integral in eq 2 between two diabatic
states defined by BLDFT cannot be directly computed. An
obvious choice to circumvent this difficulty is to use the KS
determinants to evaluate the overlap, Suw. This strategy has
been used by Wu and others.49 Then, the overlap integral
between Ψu and Ψw can be decomposed into the product of
overlaps for the R and � spin orbitals.14 As we are
considering closed-shell cases and each BLKS orbital is
occupied by two electrons, the overlaps for the R and � spin
orbitals are the same and equal to quw. Thus,

F(r) ) FA(r) + FB(r) (27)

FA(r) ) �A(r) DAA(�A)T(r) + �A(r) DAB(�B)T(r) (28)

FB(r) ) �B(r) DBB(�B)T(r) + �B(r) DBA(�A)T(r) (29)

NA ) ∫ FA(r) dr ) Tr(DAARAA + DABRBA) ) nA (30)

∫ δ(A) F(r) dr - nA ) ∫ FA(r) dr - nA ) 0 (31)

[F
∧
+ Vcwc(r)]|φi

c > ) |φi
c > εi

c (32)

Ψu(X) ) NuA
∧

{Ω1[Nu-] Ω2[CH3L]} (33)

Ψw(X) ) NwA
∧

{Ω3[NuCH3] Ω4[L-]} (34)

ΦVB(X) ) auΨu(X) + awΨw(X) (35)

Suw ) < Ψu|Ψw > ) quw
2 (36)
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where quw is the determinant of the overlap matrix between
the BLKS orbitals from the two states:

where Cu and Cw are the transformation matrices of states
Ψu and Ψw which have the same total basis functions and
occupied orbitals, but, of course, are block-localized differently.

The coupling matrix element represents the transition
between two diabatic states Ψu and Ψw whose energies are
uniquely defined by their electron densities. However, Huw

is not a natural functional of the electron density, but it is a
functional of both the electron densities Fu(r) and Fw(r) of
states Ψu and Ψw. To evaluate the coupling matrix element
using DFT, we make a comparison with the matrix element
Huw from two nonorthogonal wave functions determined
using the MOVB theory and in other calculations.3,13,14,21,55

First, we define the one-particle exchange (or transition)
density matrix and the exchange (transition) electron density
as follows

Clearly, the density matrix Duw is of rank N (i.e., ∫ Fuw(r)
dr ) N; if Suw is also of rank N), but it is not symmetric.
Importantly, Duw satisfies the general idempotency condition

Consequently, the coupling matrix element between the
two determinant states Ψu and Ψw can be computed in
exactly the same way as that of Hartree-Fock energy
expression; one simply replaces the symmetric ground-state
one-particle density matrix with the asymmetric one-particle
exchange density:

Here, we have used the superscript KS to indicate that
the exchange, or coupling matrix element, is computed using
KS orbitals along with the pure Hartree-Fock exchange, K.

Comparison with the KS-DFT energy expression (eq 13)
shows that the only difference is in the exchange term. If
we replace, as in ground-state KS-DFT calculations, the
Hartree-Fock exchange term with the DFT exchange-
correlation energy functional using the exchange density
defined in eq 41 we may compute the VBDFT coupling
matrix element between states characterized by the block-
localized densities of Fu(r) and Fw(r) by

Here, we have assumed that the approximate energy
functional for the ground state is also applicable to the
coupling energy between two interacting states using the
transition density defined in eq 41. We note that it is possible
to define the one-particle exchange density differently if a
different form of the projection operator (eq 14) is used,37,53

which corresponds to a different definition of the diabatic
states. The projection operator in eq 14 satisfies Hermiticity.34

The adiabatic ground-state energy can be computed by a
two-state, mixed valence bond and DFT model, that is,
VBDFT, in which 1 specifies the reactant and 2 the product
state, through the generalized secular equation:

Here, we have used the superscripts to indicate the method
by which the energy is computed. The numerical perfor-
mance of eq 43 will be thoroughly addressed in a subsequent
publication. In the present work, we describe an alternative,
approximate method below, which will be applied to the test
cases by using the off-diagonal matrix elements computed
using the KS determinants.

In the second approach, the off-diagonal matrix element
is approximated by one determined with the KS determinants
of block-localized valence bond states. To make the elec-
tronic energy compatible with that computed using density
functional theory, we assume that the relative energies
computed at the DFT level and the Hartree-Fock level with
KS determinants can be shifted by an amount corresponding
to the absolute energy difference in the two diabatic states
(a constant at a given geometry). Thus,

where the BLDFT energies Eu[Fu(r)] and Ew[Fw(r)] for the
states characterized by the densities Fu(r) and Fw(r) are
determined by eq 13, and Eu

KS(K) and Ew
KS(K) are the

Hartree-Fock energies determined by using the BLKS
orbitals. As we shall see below, the use of the approximate
coupling-matrix element of eq 45 can overcome the self-
interaction errors in approximate functionals, but it typically
yields barrier heights greater than the corresponding accurate
results if only two states are used. Inclusion of the ionic
configuration in a three-state model for the SN2 reactions is
examined here; the computed energies of reaction are found
to be in accord with accurate results (below). We note that
Wu et al. proposed a different way of estimating the off-
diagonal matrix element,49,56 which also involves the overlap
scaled sum of the energies of the two diabatic states, but it
is corrected by the overlap scaled constraint integrals.
Equation 45 implicitly assumes that the relative change of

Suw ) (Cu)TRCw (37)

quw ) det |Suw| (38)

Duw ) Cw(Suw)-1(Cu)T ) Cw[(Cu)TRCw]-1(Cu)T (39)

Fuw(r) ) ∑
µν

m

|�µ(r) > (Duw)µν < �ν(r)| ) �(r) Duw�T(r)

(40)

DuwRDuw ) Duw (41)

Huw
KS) Suw

KS{Tr[(Duw)Th] + 1
2

Tr[(Duw)TJDuw]

-1
4

Tr[(Duw)TKDuw] + Enuc}
(42)

Huw
VBDFT≡ E[Fuw(r)] ) Suw

KS{Tr[(Duw)Th] + 1
2

Tr[(Duw)TJDuw]}
+ Suw

KSExc[Fuw(r)] + Suw
KSEnuc

(43)

| Euu
BL-DFT[Fu(r)] - ε(X) Euw

BL-DFT[Fuw(r)] - ε(X)Suw
KS

Ewu
BL-DFT[Fwu(r)] - ε(X)Swu

KS Eww
BL-DFT[Fw(r)] - ε(X) | ) 0

(44)

Huw ≈ Huw
KS + 1

2
Suw(Eu[Fu(r)] + Ew[Fw(r)] - Eu

KS - Ew
KS)

(45)
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BLDFT and KS energies for the diabatic states is ap-
proximately similar.

Obviously, the method presented here is not restricted to
two states, and it can easily be generalized to any number
of states, defined by a given characteristic feature of charge
and spin. In the present work, we also examined a three-
state treatment of the SN2 reactions. At this point, we note
the difference of the two acronyms, BLDFT and VBDFT
(or equivalently MSDFT). The multistate VBDFT Hamil-
tonian that we present here employs the BLDFT method to
determine matrix elements; as noted in the beginning of this
work, it can also be called a multistate density functional
theory based on multiple Kohn-Sham reference densities
of valence bond-like states. BLDFT is also a general theory
within its own right, which can be used to investigate
properties of the chemical bond,45 such as resonance delo-
calization energy,32,45 aromaticity,57,58 polarization and
charge transfer energy,59-63 hyperconjugation and negative
hyperconjugation,32,64 and steric effects.65,66 The VBDFT
method is designed for the representation of the PES of
chemical reactions, both in the gas phase and in solution
and enzymes (simply by including the electrostatic potential
in the term Vext(r) in eq 17). The diabatic states defined in
eqs 33 and 34 can be used to define the Marcus reaction
coordinate,67 and to represent the solvent reaction coordinate
along with the use of the adiabatic potential surface from
the same or a different level of theory in condensed phase
reactions. Methods for carrying out this type of calculation
have been described previously.13-15

3. Computational Details

All calculations are carried out using the Xiamen Valence
Bond41 program and a modified version of GAMESS.68

Geometry optimizations were performed with Gaussian 03.69

The 6-31G+(d) basis set was used throughout for all
calculations, except that for the H2

+ system, which employs
the aug-cc-pVTZ basis set. Geometries for the SN2 reactions
of [Cl- + CH3Cl], [F- + CH3Cl], and [HO- + CH3F] along
the reaction coordinate defined below are optimized at the
B3LYP/6-31+G(d) level. We used a version of the B3LYP
implementation that employs the VWN5 functional in
GAMESS, which differs from the standard B3LYP employ-
ing the VWN1 functional.70-73 All results are obtained using
the VBDFT method employing eq 45 in the present study.

To describe the change in energy and wave function of
the two Lewis bond states for each reaction, we define the
reaction coordinate as the difference between the bond length
of the central carbon and the leaving group R(C-L), where
L ) Cl, Cl, and F, and that of the nucleophile and the central
carbon R(Nu-C), where Nu ) Cl, F, and O, respectively,
for the three reactions:

Of course, one can use other definitions to monitor the
progress of the reaction, including the difference between
the corresponding bond orders or energies of the two Lewis
bond states. The geometrical variable, corresponding to the
asymmetric bond stretch coordinate, is a good choice and
chemically intuitive for the SN2 reactions.

4. Results and Discussion

We first examine the simple but illustrative case of the
dissociation of H2

+ to show that the BLDFT method can
effectively localize charge configurations and the localized
states can be used in VB-like configuration interaction
calculations to yield a qualitatively correct energy profile.
Then, we present the results for the nucleophilic substitution
reactions of [Cl- + CH3Cl], [F- + CH3Cl], and [HO- +
CH3F] that are included in the DBH24 database designed
for testing the performance of new functionals.

A. Energy Profile of H2
+. Recently, Yang and co-workers74

vividly illustrated the well-known self-interaction error (charge
delocalization error) in current approximate functionals by
considering the simple one-electron system H2

+. In this case,
the Hartree-Fock result is exact with a given basis set, and
DFT describes the chemical bond very well. However, ap-
proximate functionals, as illustrated with B3LYP in Figure 1,
fail badly as the distance between the two protons increases;74

the potential energy profile first reaches a barrier of about 20
kcal/mol above the minimum and then falls off continuously
because the electron is delocalized over two centers at infinite
separation. This has been attributed to the self-interaction
error.74,75 This error can also be regarded as a need for
multiconfigurational treatment of the dissociation process (also
in the case of H2 associated with spin delocalization). Cohen et
al. pointed out that this charge delocalization error causes the
computed barrier for a chemical reaction to be too low, a
molecular polarizability that is too high, and unphysical charge
transfer in molecular electronic devices using approximate
functionals.74

In VBDFT, we employ two degenerate block-localized
configurations, corresponding to the electron localized on

Rc ) R(C-L) - R(Nu-C) (46)

Figure 1. Computed adiabatic ground-state energy profile
for the diassociation of H2

+ using Hartree-Fock (HF) theory
(black), density functional theory with the hybrid B3LYP
functional (blue), and multireference valence bond-density
functional theory (VBDFT) using the B3LYP functional with
the aug-cc-pVTZ basis set (green) and with the aug-cc-pV6Z
basis set (red). The diabatic energy profile for the degenerate
block-localized electronic configuration Ψ([H+][H•]) computed
using the BLDFT method is shown in brown, and the coupling
energy V12 is given in light blue, both using the aug-cc-pVTZ
basis functions.

2708 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Cembran et al.



the “left” proton, Ψ1([H · ][H+ ]), and on the “right” proton,
Ψ2([H+ ][H · ]), respectively. The energy profile of the block-
localized VB state is shown in Figure 1 by the curve denoted
as H11, which gives the electrostatic and polarization interac-
tion energy between a localized (but polarizable) hydrogen
atom and a proton. The computed interaction energy at the
minimum is -31 kcal/mol, slightly less than half of the total
binding energy at the Hartree-Fock level. Using the wave-
function-based estimate of the off-diagonal element in the
VBDFT method, we obtain a bond-dissociation energy about
10 kcal/mol smaller than the exact result. Although both
Hartree-Fock and B3LYP results are well converged with
the aug-cc-pVTZ basis set, the use of a larger basis set in
VBDFT calculations can further improve the estimated
binding energy. For example, using the aug-cc-pV6Z basis,
the calculated VBBLD result is -58.3 kcal/mol compared
with the Hartree-Fock (exact) value of -63.5 kcal/mol.
Thus, the block-localized density functional theory is more
sensitive to the atomic orbital basis functions because of the
extreme localization of Kohn-Sham orbitals. Importantly,
the qualitative behavior of the dissociation curve at large
interatomic distances is correctly reproduced. Wu and co-
workers showed that their CDFT-CI approach can also
effectively describe the correct dissociation energy.49

Depicted in Figure 1 also is the coupling energy, defined
by eq 3 (V12 ) |H12 - εgS12

KS|). The largest coupling energy
is in the bonding region and goes to zero as the interatomic
separation becomes large. Figure 1 shows that the BLDFT
method can effectively localize charge density for VB-like
configurations. It is interesting to note that the CDFT method
used by Wu and co-workers employs a spatial integration
to constrain electron density, which cannot be exactly unity
on the constrained atom unless the integration is over the
entire space.49 This limitation is not obvious for molecular
systems with more than one electron, but its implication, due
to the use of fully delocalized Kohn-Sham orbitals, is clearly
illustrated in the one-electron case. In the BLDFT method,
integration of the electron density defined by eq 12 yields
exactly the number of electrons in the localized fragment
(one for a hydrogen atom).

B. SN2 Reactions. B.1. Diabatic Energies. We consider
the diabatic potential energy profiles for the three model SN2
reactions, [Cl- + CH3Cl], [F- + CH3Cl], and [HO- +
CH3F], included in the DBH24 (24 diverse barrier heights)
database.76 In each case, the reactant state is defined by the
VB configuration characterized by the substrate Lewis
structure in the presence of the nucleophile as a “spectator
ion” (eq 33) and the product state by the product Lewis
structure in the presence of the leaving group ion (eq 34).3

In addition, we constructed a three-state model by including
the ionic configuration:

The VB configuration of eq 47 closely resembles the
structure of the transition state. The reactant and product
diabatic energy profiles for the three SN2 reactions, computed
using the BLDFT method and Hartree-Fock theory with
BLKS orbitals, are shown in Figure 2, along with the VBDFT

adiabatic ground-state potential energy. The relative energies
are determined with respect to the infinitely separated
nucleophile and substrate species (reactant state). Thus, the
absolute electronic energies of the diabatic and adiabatic
states can be obtained by adding the sum of the correspond-
ing DFT energies of the separate molecules.

The three SN2 reactions represent very different features
in the electron-withdrawing power of the nucleophiles and
the leaving groups. The chloride ion exchange reaction is

Ψx(X) ) NxA
∧

{Ω6[Nu-] Ω7[CH3
+] Ω8[L-]} (47)

Figure 2. Diabatic energy profiles of the reactant state
computed using the BLDFT method (D11 in blue) and wave
function theory with the block-localized Kohn-Sham orbitals
(H11(KS) in red) and of the product state using the BLDFT
method (D22 in brown) and wave function theory (H22(KS)
in green) for (a) [Cl- + CH3Cl], (b) [F- + CH3Cl], and (c) [HO-

+ CH3F] reactions.
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thermal neutral, whereas as the reaction between F- and
CH3Cl and that between HO- and CH3F are highly exother-
mic (Table 1). The diabatic energy differences between the
reactant and product ion-dipole complexes are, respectively,
0.0, -29.5, and -18.4 kcal/mol for the three reactions from
the BLDFT model, which are in good accord with the
difference of the adiabatic ground state (Table 1). In the
reactant and product state region up to the crossing point
(transition state), the respective diabatic energies computed
using the BLDFT method and block-localized MOs are in
very good accord (Figure 2). However, beyond the crossing
point, BLDFT results show a somewhat greater energy
increase than that of the Hartree-Fock results (using BLKS
orbitals, i.e., Hii

KS) as the reaction coordinates further deviates
from equilibrium geometries. Note that the latter is not used
as the diabatic state energy in the VBDFT Hamiltonian, and
it is shown to illustrate the trend of the energy change in
comparison with the BLDFT results. Thus, the appearance
that H22

KS is below the VBDFT adiabatic ground-state energy
for the [F- + CH3Cl] reaction in Figure 2b is due to different
energy scales between the absolute energies from DFT and
Hartree-Fock methods (in VBDFT, the variational principle
ensures that εg e Hii

BL-DFT).
Figure 3 shows the partial atomic charges of the leaving

group in the reactant state configuration, and those of the
nucleophiles in the product configuration as a function of
Rc for all three reactions. The two-state model, VBDFT(2),
where the number in parentheses specifies the number of
VB states, was used in these analyses. By definition, the total
charge densities of the nucleophiles in the reactant states and
those of the leaving group in the product states are unity
(eqs 33 and 34), which are confirmed by the corresponding
Mulliken populations (not shown). Figure 3 highlights the
effects of polarization of the Lewis structures by the
neighboring ions in the respective diabatic states. Conse-
quently, although the total charge of the subgroups of the
substrate species in the reactant state and of the product
Lewis structure in the product state are constrained to be
zero by virtue of block-localization of the total electron
density, the electronic structures of these subgroups are

significantly polarized by the “neighboring” ions. For
example, in the reaction of [F- + CH3Cl], the subgroup
representing the reactant Lewis structure [CH3 - Cl] ([CH3

- L] in eq 33) is essentially ionized by the F- ion at the
product state geometry. In all three reactions, there is
significant ionic character developed in the neutral subgroups
both in the reactant and product diabatic states at the crossing
point (transition state), suggesting that it may be useful to
include the ionic VB configuration (eq 47) in the VBDFT
Hamiltonian. It is also interesting that the CH3Cl subgroup
in the reactions of [Cl- + CH3Cl] and [F- + CH3Cl] exhibits
different charge polarizations by the nucleophiles, although
the trends of the partial atomic charge on the chlorine atom
are similar.

B.2. Energy Profiles of the Adiabatic Ground State. The
adiabatic ground-state potential energy profiles for the three

Table 1. Computed Binding Energies (kcal/mol) for the Formation of the Ion-Dipole (∆E1) Complex, the Barrier Height
Relative to the the IP Complex (∆Eq), the Relative Energy between the Reactant and Product Ion-Dipole Complexes (∆E2),
and the Net Energy of Reaction (∆Erxn) between the Product and Reactant States for the SN2 Reactions (see Scheme 1)

DFT-VB(2)a DFT-VB(3)a B3LYPa M06-2Xb CCSD(T)b NSBH6c

[Cl- + CH3Cl]
∆E1 -7.8 -9.0 -9.5 -11.3 -10.9 -10.5
∆Eq 18.3 12.5 8.6 13.2 12.6 13.6
∆E2 -7.8 -9.0 -9.5 -11.3 -10.9 -10.5
∆Erxn 0.0 0.0 0.0 0.0 0.0 0

[F- + CH3Cl]
∆E1 -12.3 -15.0 -16.0 -17.1 -16.1 -16.4
∆Eq 7.1 2.5 0.3 3.6 2.9 2.9
∆E2 -7.4 -8.0 -8.4 -10.0 -9.7 -10.5
∆Erxn -34.3 -34.3 -34.3 -35.8 -32.2 -32.7

[HO- + CH3F]
∆E1 -11.6 -10.0 -13.7 -14.6 -13.8 -13.7
∆Eq 17.9 10.7 6.1 12.3 10.8 11.0
∆E2 -6.6 -7.5 -8.1 -9.6 -9.2
∆Erxn -23.3 -23.3 -23.3 -20.7 -19.6 -20.1

a The VWN5 functional was used in the B3LYP implementation in GAMESS with the 6-31+G(d) basis set. Values in parentheses are
computed using three VB configurations. b Computed using the aug-cc-pVTZ basis set at the QCISD/MG3 geometry. c Ref 76.

Figure 3. Mulliken population charges for the leaving group
in the reactant diabatic state in the [Cl- + CH3Cl] reaction
(red), R1(Cl); in the [F- + CH3Cl] reaction (yellow), R2(Cl);
and in the [HO- + CH3F] reaction (blue), R3(F). Mulliken
population charges for the nucleophile in the product diabatic
state configuration are shown as dashed lines of the same
colors for the three reactions given above. Partial charges are
given in atomic units.
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SN2 reactions considered in this work are given in Figure 4
along the reaction coordinate defined by the asymmetric
stretch coordinate (eq 46). These effective diabatic states are
not unique,3,4,7,17-19 and in ab initio VB theory, this can be
rationalized by an arbitrary (although quite reasonable)
partition of the ionic structures (eq 47) into the two diabatic
Lewis configurations.3 In BLDFT, they are treated by the
block-localized electronic structure and are fully delocalized
within each subgroup due to the use of a single determinant
that produces the exact electron density with the Kohn-Sham

approach. As noted previously, the reduction of VB con-
figurations from a complete VB space to a two-state model
leads to a loss of static correlation, in addition to reduced
delocalization effects. There is no reason to expect a true ab
initio two-state model to be able to reproduce the exact results
(unless these two states are reconstructed from the full VB
wave function as in the CDC-MOVB (consistent diabatic
configuration) method described in ref 3 or transformed from
the adiabatic ground state and its coupling excited state3,4,28).
This is clearly reflected by the results shown in Figure 4, in
which the computed barrier heights from the two-state
VBDFT(2) model are noticeably greater than the adiabatic
B3LYP (the same level of theoretical model) results.

For the three SN2 reactions, the hybrid functional under-
estimates the barriers considerably, a well-known problem
for these reactions, which may be attributed to the presence
of two degenerate VB-like diabatic states at the transition
state (Figure 2).3 The relatively high barriers from VBDFT(2)
calculations in comparison with accurate results76 are due
to three main factors. First, the block-localized Kohn-Sham
orbitals are more sensitive to the basis set used than the
standard ground-state calculations, as shown in the one-
electron case (Figure 1). Thus, larger basis functions may
improve the accuracy of the computed energies of the
diabatic states as well as the off-diagonal matrix element.
For the [Cl- + CH3Cl] reaction, the barrier decreases by
0.2 kcal/mol on switching to the 6-311+G(d,p) basis set. In
the case of the [HO- + CH3F], the barrier is reduced by 1.0
kcal/mol using aug-cc-pVDZ and 1.4 kcal/mol using aug-
cc-pVTZ. Second, the off-diagonal matrix elements are
computed with an approximate method. Third, other valence
bond configurations also contribute significantly to the
stabilization of the transition state (see below). Nevertheless,
a key finding of Figure 4 is that the present multistate
VBDFT method can help correct the self-interaction errors
in standard approximate functionals for group-transfer reac-
tions examined here.

To illustrate the effects of the ionic configuration on the
computed reaction barrier, we include a third state,3,13 eq
47, in the VBDFT(3) calculation for the three SN2 reactions.
Remarkably, the inclusion of the ionic configuration signifi-
cantly improves the computed barrier heights, in comparison
with the M06-2X and CCSD(T) results.76 The reaction
involving [HO- + CH3F] is a particularly challenging case
in the DBH24 database because of the high electronegativity
and small size of the nucleophile and leaving group ions.76

As shown in Figure 3, the covalent bond for both the reactant
and product diabatic states are significantly more polarized
than the other two reactions.

Listed in Table 1 are the relative energies of all stationary
points (depicted in Scheme 1) for the three SN2 reactions
along the reaction coordinate. The VBDFT(3) results are in
good accord with currently the most accurate DFT (M06-
2X/aug-cc-pVTZ) results,76 as well as with high-level wave
function theories (CCSD(T)/aug-cc-pVTZ),76 suggesting that
multistate VBDFT can provide an adequate description of
the reaction PES. Finally, we note that the distances in the

Figure 4. Adiabatic ground-state potential energy profiles
determined using the hybrid B3LYP density function theory
(green), the VBDFT(2) method with two states (red), and
VBDFT(3) with three states (blue) for (a) the [Cl- + CH3Cl],
(b) the [F- + CH3Cl], and (c) the [HO- + CH3F] reactions.
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ion-dipole complex minima are slightly longer by about
0.1-0.2 Å from DFT-VB calculations than the B3LYP
results.

B.3. Polarization, Charge Transfer, and Coupling
Energies. The BLDFT method used to construct the diabatic
state in the multireference VBDFT approach is a versatile
theoretical model that can be used to study chemical bonding
properties and to decompose the component of intermolecular
interaction energies.45 It provides a useful tool to analyze
DFT results to gain chemical insight into the system. In the
Appendix, we illustrate the utility of the BLDFT method
and shed light on the contributing components of the
interaction energies for the ion-dipole complexes.

It is useful to consider the energy difference between the
VBDFT (εg

VBDFT) and the conventional DFT
(EDFT[F(Nu- ·CH3L)]) method:

where the superscript DFT in EDFT[F(Nu- ·CH3L)] is used
to emphasize that the energy is determined by conventional
KS-DFT. In VBDFT, each diabatic state is completely
defined by its Hamiltonian, and the Hohenberg-Kohn
theorem ensures that its ground-state energy is solely
determined by the block-localized density.78,79 Obviously,
localization of the electron density loses electronic delocal-
ization (resonance) energy between different fragments or
blocks (thus, the steep rise of diabatic energy shown in Figure
2). In addition, dynamic correlation effects will also be
different in the diabatic states from that of the adiabatic
ground state. VB configuration interaction in the complete
VB space recovers delocalization effects and introduces static
correlation; however, resonance and dynamic correlation
effects are not necessarily fully restored in the adiabatic
ground state if a minimal number of VB configurations is
used. ∆Ercr is a measure of the residual correlation-resonance
(rcr) effect in the multistate, multireference VBDFT method
for stable molecules where one diabatic state dominates the
VB wave function. If Hartree-Fock theory is used, the
dominant effect in ∆Ercr is the residual resonance energy,
thereby providing an estimate of residual correlation effects.

At the transition state (diabatic crossing point), the reactant
and product diabatic configurations are degenerate, which
has the largest self-interaction error along the reaction path.
The quantity ∆Ercr now gives a reasonable indication of the

relative magnitude of the self-interaction energy error,
keeping in mind that ∆Ercr also contains delocalization energy
not fully recovered by the multistate VB model. Of course,
in such a multiconfigurational treatment, there is also a
concern of double counting of correlation effects,80 which
is an issue to be investigated in the future by comparison
with experimental results.

Table 2 shows that, in the present VBDFT method, the
∆Ercr term is found to be positive, indicating that the loss in
charge delocalization and dynamic correlation in constructing
the diabatic states is not fully compensated for by the
multiconfigurational VB Hamiltonian. Not surprisingly,
the absolute value of the ∆Ercr energy is similar to that of
the charge transfer component. This is consistent with the
interpretation that the ∆Ercr term is mainly due to reduction
in the resonance delocalization and dynamic correlation effect
in the ion-dipole complex state. It is interesting to notice
that inclusion of the ionic configurations significantly reduces
∆Ercr values, indicating the importance of the ionic config-
uration even at the stable, ion-dipole complex geometry.

The computed coupling energies, V12 ) |H12 - εgS12|, using
VBDFT(2) at the transition state are shown in Table 3, and
the variation of V12 along the reaction coordinate is shown
in Figure 5. For all three reactions, V12 has the largest values
at the transition state and decays rapidly as the reaction
coordinate moves away from the transition state. V12 is
essentially zero at the ion-dipole complex structure. For a
comparison with ion-dipole complexes above, there is
greater reduction in ∆Ercr with the inclusion of the ionic
configuration at the transition state (Table 3), indicating that
the ionic configuration makes greater contributions than the
stabilization of the reactant state energy. It is interesting to
note that the change, ∆(∆Ercr) ) ∆Ercr(2) - ∆Ercr(3), is
nearly the amount of energy needed to increase V12 in the
two-state model to yield the correct barrier height.

5. Conclusions

In this article, we describe BLDFT for the construction of
valence-bond-like diabatic electronic states, suitable for the

Scheme 1. Definition of Relative Energies

∆Ercr ) εg
VBDFT - EDFT[F(Nu-·CH3L)] (48)

Table 2. Computed Energy Components and Coupling
Effects for Ion-Dipole Complexesa

complex ∆Eint ∆ER ∆Estat ∆Epol ∆ECT ∆Ercr(2) ∆Ercr(3)

Cl- ·CH3Cl -9.5 0.5 -5.0 -2.7 -2.3 2.2 0.5
Cl- ·CH3F -8.6 0.2 -5.7 -1.7 -1.5 1.4 0.4
F- ·CH3Cl -16.0 2.7 -4.7 -7.4 -6.7 5.4 1.3
F- ·CH3OH -8.0 0.6 -3.2 -3.7 -1.8 1.7 0.6
HO- ·CH3F -13.7 0.9 -8.0 -3.9 -2.7 2.4 0.7

a All energies are given in kilocalories per mole.

Table 3. Computed Coupling Energy V12 and Residue
Correlation-Resonance ∆Ercr Energy (kcal/mol) at the
Transition State for the Nucleophilic Substitution Reactions

∆Ercr(2)a ∆Ercr(3)a V12 ∆(∆Ercr)b

[Cl- + CH3Cl] 11.4 4.4 20.7 7.0
[F- + CH3Cl] 10.5 3.2 20.2 7.3
[HO- + CH3F] 13.8 5.3 23.2 8.5

a The number in parentheses indicates the number of
configurations used in VBDFT calculations. b ∆(∆Ercr) ) ∆Ercr(2) -
∆Ercr(3).
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study of electron transfer reactions and for the representation
of the reactive potential energy surface. The BLDFT method
has been used previously in intermolecular interaction energy
decomposition analysis, which is an extension of the corre-
sponding wave function theory approach. Here, we further
examine some of the properties of the BLDFT method.
Importantly, the BLDFT method is used to formulate a
multistate density functional theory in the framework of the
valence bond, making use of a reduced configuration
representation and of a single determinant strategy for each
VB configuration. Thus, the method is equivalent to a valence
bond Hamiltonian using density functional theory, which can

be called the VBDFT method. The most important result of
this study is to propose a functional estimate of the
off-diagonal matrix elements of the VB Hamiltonian, as-
suming that the overlap integral between KS determinants
of nonorthogonal block-localized orbitals is a reasonable
approximation to the overlap of the diabatic state defined
by their ground-state electron density, and the exchange-
correlation functional for the ground state can also be used
to describe the exchange (transition) matrix elements.

We also described an approximate approach in which the
off-diagonal matrix element is computed by using the de-
terminant of nonorthogonal BLKS orbitals. The use of the
approximate algorithm in VBDFT calculations was illustrated
by applications to the bond dissociation of H2

+, a simple
example to illustrate the self-interaction energy error in
approximate functionals, and a set of three nucleophilic
substitution reactions in the DBH24 database designed for
validating computational accuracy. In the dissociation of H2

+,
the DFT-VB method yields the correct asymptotic behavior
as the two protons are stretched to infinity, whereas ap-
proximate density functionals fail badly. The computed
bonding energy from the VBDFT method is more dependent
on the size of basis set than that of the hybrid B3LYP
functional due to the extreme localization of the Kohn-Sham
orbitals. For the SN2 nucleophilic substitution reactions, the
hybrid functional B3LYP severely underestimates the barrier
heights, while the two-state VBDFT model overestimates
the barrier heights, in comparison with results from the M06-
2X functional and CCSD(T) wave function model. With the
inclusion of the ionic configuration, the VBDFT results are
found to be in good accord with these high-level accurate
results.

The BLDFT method is a versatile theory that can be used
to analyze conventional DFT results to gain insight into
chemical bonding properties, and it is illustrated by examin-
ing the intricate energy contributions in the ion-dipole
complex stabilization in the Appendix. It is found that
electrostatic interactions provide the largest contribution to
the binding interaction in the ion-dipole complex, followed
by polarization effects and charge transfer contributions. At
the transition state, diabatic coupling is very strong, lowering
the diabatic state energy by 26 to 32 kcal/mol to stabilize
the transition state of the adiabatic ground-state potential
surface. The overstabilization of the transition state energy
using approximate density functionals because of the pres-
ence of degenerate diabatic states is corrected with the use
of the multistate, multireference VBDFT Hamiltonian. It is
of interest to use the BLDFT and VBDFT methods to study
chemical and electron reactions in solution and in enzymes.
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Figure 5. Computed coupling energy, V12, for (a) the [Cl- +
CH3Cl], (b) the [F- + CH3Cl], and (c) the [HO- + CH3F]
reactions.
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Appendix: Energy Decomposition Analysis
of Intermolecular Interactions

The interaction energy of an ion-dipole complex is com-
puted by

where E[Nu- ·CH3L], E[Nu- ], and E[CH3L] are, respec-
tively, the energies of the complex, individual ion, and
molecule. ∆Eint can be decomposed into the following energy
terms, including geometry distortion ∆ER, static electrostatic
interaction energy ∆Estat, electronic polarization ∆Epol, and
charge transfer energy ∆ECT:32,33,37,38,45,59,60,62-66,77

∆ER represents the energy penalty due to geometry
distortion of the individual molecules in the complex, which
is a small factor for the ion-dipole complex (Table 2).

The remaining terms are determined using the optimized
ion-dipole complex geometry. ∆Estat, which is the sum of
Coulomb and exchange repulsion energies, is determined
from the energy of the block-localized electronic configu-
ration with the subgroup KS orbitals taken from the isolated
fragments by

where the subscript “o” indicates that the electron density is
computed using the antisymmetric wave function constructed
using the KS orbitals of the individual (isolated) molecules,
in parentheses, optimized when they are infinitely separated.
The energy E[Fo

BL-DFT(Nu- ·CH3L)] is that of the first iteration
in BLKS-SCF calculations when the optimized KS orbitals
for Nu- and CH3L are read in as the initial guess.

Relaxation of the subgroup BLKS orbitals in the presence
of the other subgroups yields electronic polarization energy
in the complex:

where FBL-DFT(Nu- ·CH3L) is the fully relaxed (optimized)
block-localized density. The extension of the basis set
expansion to the full molecular system, that is, conventional
DFT calculations, results in the energy component due to
charge transfer:

Notice that, for the reactant diabatic state of the SN2
reactions considered here, E[FBL-DFT(Nu- ·CH3L)] ) H11,
whereas for the product complex, E[FBL-DFT(Nu- ·CH3L)] )
H22.

Table 2 lists the energy components for the five unique
ion-dipole complexes in the three nucleophilic substitution
reactions. We do not perform energy decomposition analysis
for the transition state because the isolated subgroups lose

meaning in such highly distorted geometries. In all cases,
except the complex F- ·CH3Cl, the formation of the complex
results in relatively small geometrical distortion (∆ER). In
the F- ·CH3Cl structure, there are also relatively greater
effects from polarization and charge transfer than for the
other four complexes, suggesting significant covalent bond
character has been formed. Overall, static-electrostatic
interaction has the greatest contribution, followed by polar-
ization and charge transfer, to the stabilization of ion-dipole
complexes.
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Abstract: For a range of additions to alkynes gold is known to exhibit a much higher catalytic
activity than a corresponding platinum compound. In order to approach the origin of this behavior
we first investigate the propyne activation by the gold and platinum catalysts AuCl3 and PtCl2(H2O)
where both metals possess a d8 electron configuration and where the catalysts exhibit similar
steric effects. Propyne serves as a representative for alkynes. Fully relativistic ab initio calculations
of these alkyne-catalyst complexes are presented at the Dirac-Hartree-Fock self-consistent
field (DHF-SCF), density functional theory (DFT/B3LYP), and Green’s function (GF) level in
order to properly account for the large relativistic effects of gold and platinum. For the alkyne/
catalyst complexes both the perpendicular and in-plane conformations were studied as these
possess very similar ground state energies and may easily transform into each other. Strongly
varying orbital populations together with sizable energetic and structural differences of the frontier
orbitals are found and can be considered as a major source of the differing catalytic activity.
These mainly comprise vanishing LUMO densities at the carbon centers in the platinum complex
together with increased LUMO energies making a nucleophilic attack harder than in the gold
compound. As Green’s function calculations show, DFT/B3LYP seems to overestimate correlation
contributions leading to an unphysical energetic lowering of many unoccupied orbitals.

Introduction

Unactivated alkynes are not very reactive toward weak
nucleophiles. This behavior changes significantly as soon as
the C-C triple bond is activated by complexation with a
suitable metal catalyst. In this context Hutchings first realized
the ability of gold catalysts for the electrophilic alkyne
activation1 making the reaction with weak nucleophiles such
as water, alcohols, or amines (Scheme 1) possible. In the
meanwhile homogeneous gold catalysis grew into a major
field of experimental as well as theoretical research2-11

opening new pathways for a rich spectrum of organic
compounds.

A striking experimental observation now is the consider-
able activity difference of gold and platinum catalysts as for
example described for the gold-catalyzed phenol synthesis
in refs 12 and 13. For this reaction calculations at the DFT
level have been conducted,14 and other computational
investigations show similar results.15

In this work we first focus on the trisubstituted metal
catalysts AuCl3 and PtCl2(H2O) because of their similarity
with respect to d-orbital occupation, charge, and steric
requirements. They both form a neutral complex with

* Corresponding author e-mail: Markus.Pernpointner@
pci.uni-heidelberg.de.

† Theoretische Chemie, Universität Heidelberg.
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Scheme 1. Nucleophilic Addition on an Alkyne Activated
by a Metal Catalyst
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propyne and may be assumed to exhibit very similar
properties. As we will show by fully relativistic ab initio
methods this is, however, not the case. Due to the very small
energetic differences both the perpendicular and in-plane
orientation of the AuCl3/PtCl2(H2O) and propyne moieties
depicted in Scheme 2 had to be considered. At a later stage
the positively charged L-Au(I)/propyne complexes will be
theoretically investigated taking into account their strongly
varying properties of a positive charge and reduced steric
requirements.

Both metals exhibit large relativistic effects (see e.g. ref
16 for a comprehensive review over the whole field) which
are not only scalar in nature but also comprise considerable
spin-orbit coupling. Additionally, electron correlation also
contributes to the overall electron density distribution and
cannot be treated separately from relativistic effects in heavy
systems. For a consistent inclusion of all effects we therefore
set out from the Dirac-Coulomb Hamiltonian and calculate
the electronic and orbital structure at the Hartree-Fock self-
consistent field (HF), density functional (DFT), and one-
particle propagator (Green’s function) methods. The calcu-
lations of the four structures in Scheme 2 were done at their
numerically optimized equilibrium geometries.

Geometries and Computational Details

Since a geometry optimization at a four-component correlated
level was beyond our computational capabilities, we gener-
ated equilibrium geometries for the structures in Scheme 2
at the one-component level. Hereby second-order Møller-
Plesset (MP2) theory in combination with relativistic effec-
tive core potentials (RECP)17 from the Stuttgart group was
used in order to account for electron correlation and
relativistic effects. It should be noted that the effect of
spin-orbit coupling on the optimization of equilibrium
geometries is neglected at this level of description but due
to the closed-shell character of the complexes SO effects on
equilibrium structures are assumed to be small. The basis
sets were of cc-pVTZ quality for all atoms. It turned out that
two energetically similar minimum geometries of the gold and
platinum-alkyne complexes exist, namely the perpendicular and
the in-plane conformation (see Scheme 2).

Table 1 shows the total energies (in atomic units) for the
structures I-IV obtained at the MP2/RECP level of theory.
Additionally, the energetic differences (in eV) between the
perpendicular and in-plane conformations are given. It turns

out that the energies of the two gold conformers are so similar
that both structures may play a role in a reaction path of a
nucleophilic attack, or in other words, that there is enough
structural flexibility of the gold complex to switch from one
orientation to the other during the nucleophilic attack. The
two conformers of the platinum complex are energetically
more separated with the consequence that a higher activation
barrier has to be overcome if one conformation would be
more suitable for a nucleophilic attack than the other. For
the theoretical analysis of the nucleophilic attack we therefore
investigate both geometries with respect to energetic and
structural properties. All geometry optimizations for the
perpendicular and in-plane conformations converged to Cs

symmetry.
In Table 2 we summarize the most important structural

parameters of the alkyne/catalyst complexes obtained by the
RECP/MP2 geometry optimization. This comprises the
metal-carbon bond distances, the alkynylic carbon-carbon
distance, and the bending of the carbon backbone.

For further analysis relativistic all-electron calculations at
these optimized geometries were performed by using the
DIRAC08 program package.18 Suitable heavy-element basis
sets which are adapted to the relativistic change in the
electronic structure have to be applied and became available
mainly by the work of Dyall.19-26 From this repository a
(22s19p12d10f1g) primitive set for gold and platinum was
chosen. The basis sets both include one diffuse f and one
core-correlating g function. Due to the large system size the
recently developed infinite-order two-component (IOTC)27

method was employed yielding nearly identical properties
for the valence orbitals as a genuine four-component treat-
ment. The two-electron spin-orbit contributions were hereby
taken into account by the atomic mean-field approximation28,29

also available in DIRAC08. As a consequence the orbitals

Scheme 2. Structures (I) and (II) Show the π-like
Perpendicular Orientation of the Propyne/Catalyst Complex
whereas in the in-Plane Conformations (III) and (IV) a
σ-type Bond between the Terminal Carbon Atom and the
Metal Is Prevailing

Table 1. Total MP2/RECP Energies (in au) of the
Complexes I-IVa

AuCl3(Pr)⊥ AuCl3(Pr)) ∆(eV) PtCl2(H2O)(Pr)⊥ PtCl2(H2O)(Pr)) ∆(eV)

-1630.864 -1630.866 0.06 -1231.354 -1231.332 -0.6

a The subscripts ⊥ ()) correspond to the perpendicular
(in-plane) conformation in Scheme 2. A positive sign hereby
indicates a stability of the planar configuration versus the
perpendicular one. (Pr) ) propyne.

Table 2. Most Relevant Geometric Parameters for the
Complexes I-IV Obtained at the MP2/RECP Levela

d(MC1) d(MC2) d(C1C2) <(C1C2C3) <(HC1C2)

Structure
I(π)

2.162 2.197 1.242 170.6 166.8

Structure
II(π)

2.024 2.040 1.268 161.5 158.0

d(MC1) d(MCl1) d(C1C2) d(C2Cl) <(C1C2C3) <(HC1C2)

Structure
III(σ)

1.972 2.402 1.325 1.825 137.5 126.5

Structure
IV(σ)

1.910 2.330 1.329 1.829 140.1 123.7

a All bond distances are in Å, all angles in degrees. The symbol
(π) stands for the perpendicular orientations where the alkyne π
orbitals are engaged in the bond to the metal and (σ) symbolizes
the in-plane configuration.
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(spinors) become relaxed with respect to spin-orbit coupling
also in the absence of the small-component basis which
greatly reduces the numerical effort of the calculation.

In order to distinguish spin-orbit coupling effects from
scalar relativistic effects the infinite-order Douglas-Kroll
Hamiltonian (DKINF) was employed including relativity
only at the scalar level. This is of great importance for the
validation of one-component methods which consider only
scalar relativistic effects by applying a RECP. Extensive
potential energy surface and reaction path calculations can
normally not be done at the four-component or even at the
IOTC level.

The HOMO and LUMO orbitals obtained by IOTC and
DKINF Hamiltonians were then visualized at the HF and
DFT level (see Fossgaard et al. for a four-component
realization of DFT30) in order to elucidate differences in the
electronic structure of the gold and platinum complexes. For
all relativistic calculations the B3LYP functional31 was
employed. Since DFT often uses parametrized functionals
which may lead to constant shifts of the occupied Kohn-Sham
orbital energies (see below) the fully relativistic propagator
method32,33 was applied yielding parameter-free correlation
corrections to the occupied orbitals in the outer valence space.
Propagator-based methods give access to final state distribu-
tions resulting from electron detachment/attachment or
excitation processes (see for example refs 34-38 for an
overview). This can be applied to determine the energies of
the occupied valence orbitals including electron correlation
and relativistic effects by calculating the corresponding
ionization spectra of the complexes. As long as the one-
particle picture remains valid (which is in general the case
for valence ionizations) the final state energies reflect the
positions of the occupied orbitals very accurately. If no
electron correlation were taken into account the description
would yield the Koopmans energies, but the propagator
introduces the sought correlation corrections. It should be
mentioned that corrections to the Koopmans energies can
be obtained for occupied orbitals only. In this respect the
propagator method is very useful to compare ab initio
correlation shifts to DFT shifts (see discussion below). The
numerical algorithm necessary for the solution of the
propagator is based on the algebraic diagrammatic construc-
tion (ADC).39

Results and Discussion

The C≡C triple bond in the complexes is elongated from
1.214 Å in free propyne (optimized geometry at the MP2

level) to 1.242 Å (I), 1.268 Å (II), 1.325 (III), and 1.329 in
(IV) clearly indicating an activation of the triple bond in the
π-type complexes (I, II) and a substantial change to C-C
double-bond (sp2) character in the σ homologues (III, IV).
The transition from a sp to a sp2 hybridization on carbon is
also reflected by a pronounced reduction of the C1C2C3 bond
angle from 170.6/161.5 degrees (π) to 137.5/140.1 degrees
(σ). The HC1C2 angles in the σ complexes are even smaller
and reflect the sp2 character of the connected carbon atom.
Despite the significant differences in the carbon hybridization
and bonding type to the metal atom (σ/π) the total energies
are unexpectedly similar as can be seen from the values given
in Table 1.

The relativistic stabilization of the 6s shell together with
a relativistic destabilization of the 5d shell in gold and
platinum leads to a decreased 5d/6s gap enabling larger
participation of the 5d orbitals in the chemical bonding.
In gold, for example this energy gap amounts to 1.150
eV compared to the nonrelativistic value of 5.301 eV.40

We therefore first investigate the metal 5d orbital contri-
butions to the HOMO and HOMO-1 by a population
analysis41 in both complexes. It is known that the absolute
values obtained by a Mulliken analysis exhibit some basis
set dependency (see for example refs 42 and 43 for a good
discussion of this problem), but the procedure is appropri-
ate for comparative purposes as long as basis sets of the
same quality and structure are employed for all species
under investigation. Afterwards, the effect of electron
correlation and spin-orbit splitting on orbital energies and
densities will be analyzed.

Metal Populations in the Occupied Frontier
Orbitals

We first concentrate on the perpendicularly oriented π-type
complexes (I) and (II) of Scheme 2. From Table 3 it can be
seen that despite their neighborhood in the periodic table
the gold and platinum d orbital participations in the HOMOs
of the complexes are substantially different at the HF and
DFT level for both the IOTC and DKINF Hamiltonians.

In the transition metals Sc - Zn the 3d orbitals are more
compact than in the corresponding 4d and 5d series and show
much less participation in the outer valence space than the
higher homologues.44 Despite this, there is no Au 5d
contribution to the HOMO even at the DFT level including
electron correlation and only dominating chlorine p and weak
carbon p character is found for the HOMO. The gold 5d

Table 3. HF and DFT Orbital Populations in Percent of the Perpendicular (⊥) Orientation of the Catalyst/Propyne Moiety
Determined for the IOTC and Douglas-Kroll (DKINF) Hamiltoniansa

method orbital AuCl3...Pr⊥ PtCl2(H2O)...Pr⊥

IOTC HOMO 94.5 Cl p, 3.9 C p 27.4 M d, 44.6 Cl p, 22.6 C p, 1.2 H s
HF HOMO-1 8.6 M d, 88.8 Cl p 20.1 M d, 43.8 Cl p, 28.8 C p, 1.7 H s
DKINF HOMO 95.2 Cl p, 3.8 C p 22.2 M d, 36.3 Cl p, 35.8 C p, 1.9 H s
HF HOMO-1 8.3 M d, 88.7 Cl p, 2.2 C p 26.1 M d, 54.7 Cl p, 15.5 C p, 1.0 H s
IOTC HOMO 94.7 Cl p, 4 C p 42.3 M d, 47.5 Cl p, 7.3 C p
DFT HOMO-1 14.5 M d, 82.4 Cl p 34.1 M d, 42.2 Cl p, 18.1 C p, 1.0 H s
DKINF HOMO 95.1 Cl p, 2.4 C p 37.7 M d, 59.6 Cl p, 1.1 C p
DFT HOMO-1 12.3 M d, 86.1 Cl p 39.4 M d, 33.2 Cl p, 23.8 C p

a Contributions below one percent are not listed; M stands for metal which is either Au or Pt with the corresponding Mulliken charges of
0.815 and 0.731, respectively.
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contributions just appear moderately in the HOMO-1. This
is in stark contrast to the situation of the platinum complex
where the metal and carbon contributions together make up
approximately 50% of the HOMO and HOMO-1 populations.
This pronounced structural difference in the outer valence
orbitals will also lead to modified LUMO densities giving
rise to different affinities to the nucleophile (see next section
for the density plots and the discussion of the energetic
factors).

The next issue to be addressed is the influence of
spin-orbit coupling on the populations. As mentioned before
the IOTC Hamiltonian includes spin-orbit coupling for the
valence orbitals to the same accuracy as a fully four-
component treatment,27 whereas the infinite order Douglas-
Kroll ansatz (DKINF) only treats scalar relativistic effects.
One can therefore extract information about the influence
of SO-coupling by comparing results obtained by these two
Hamiltonians. In the gold complex hardly any effect of SO-
coupling is observed at the HF level of theory, and inclusion
of electron correlation via DFT does not introduce much of
an alteration. This result points to a low sensitivity of the
Au-propyne complex toward SO-coupling justifying a scalar
relativistic treatment. In the platinum complex, however, we
observe significantly larger population changes when going
from the IOTC to the DKINF Hamiltonian at both levels of
electronic structure treatment (HF, DFT). As a consequence,
a purely scalar relativistic description for the platinum
complex is not accurate enough for the correct reproduction
of the orbital populations but may still be useful if orbital
energies and HOMO/LUMO densities change only negligibly
upon inclusion of SO coupling.

Due to the sensitivity of transition metal d electrons toward
electron correlation one may expect substantial changes in
the corresponding d populations as soon as a DFT treatment
is applied for the electronic structure. This is indeed the case
for the platinum-propyne HOMO and HOMO-1 using the
IOTC and DKINF description of relativity. For both Hamil-
tonians a substantial increase of the Pt 5d population is
observed during the transition from a HF to a DFT treatment
(for example, the largest change of 15.5% occurs for the
HOMO obtained by the DKINF Hamiltonian). For the gold
compound, however, neither the HOMOs acquire d character
(in fact, the overall populations hardly change at all) nor is
the d increase in the HOMO-1 as pronounced as in the
platinum case (a maximum change of 5.9% occurs in the
HOMO-1/IOTC case). A significantly lower participation of
the Au 5d orbitals in the valence space and a reduced

sensitivity of these orbitals toward electron correlation may
reflect a more compact d orbital structure in the gold
complex. Another observation is the substantial depletion
of carbon character in the platinum complex HOMOs in favor
of metal d contributions upon inclusion of electron correlation
via DFT.

For the perpendicularly oriented complexes (I) and (II)
we summarize our findings as follows: The populations of
the gold complex show only a weak sensitivity to spin-orbit
coupling and electron correlation, and the d orbitals play a
less important role for the highest and second highest
occupied molecular orbital in all treatments. In contrast, the
carbon and platinum d populations change significantly upon
inclusion of electron correlation and SO coupling leading to
altered LUMO structures as well. The pronounced platinum
5d participation in the outer valence orbitals was also
observed in a number of previously calculated dianionic
complexes of the PtX4, 6

2- type (X)F, Cl) where one would
normally expect a prevailing ligand population.45

We next analyze the orbital populations of the in-plane
structures (III) and (IV) of Scheme 2 that can be found in
Table 4.

At first we now observe a gold 5d HOMO contribution
between 7.6% and 11.1% for all Hamiltonians and methods
which is in contrast to the results for the perpendicularly
oriented Au/Pr complex. Despite the altered overall popula-
tions the same insensitivity to SO coupling is visible in the
gold complex comparing the results for the IOTC and
DKINF Hamiltonian. However, switching from HF to DFT
leads to a remarkable reduction of the HOMO carbon
contribution and only to a minor increase of the gold 5d
population. As it was the case for the perpendicular
complexes the platinum species also exhibits a higher
sensitivity to SO coupling and a very pronounced change of
the 5d character including electron correlation both in the
HOMO and HOMO-1. From the results above we observe
substantial differences between the gold and platinum
complexes both in the perpendicular as well as the in-plane
configuration which will have an impact on the affinity
toward a nucleophile. Structural factors are mainly based on
the different composition of the outer valence orbitals.

The AuCl3 and PtCl2(H2O) fragments of the compounds
(I) and (II) have also been calculated separately in order to
reveal similar trends in the isolated species as occurring in
the complexes. Considering the metal d populations we
observe the same pronounced Pt d orbital participation to
the three highest occupied orbitals, namely 26.7% (HOMO),

Table 4. HF and DFT Orbital Populations in Percent of the in-Plane ()) Orientation of the Catalyst/Propyne Moiety
Determined for the IOTC and Douglas-Kroll (DKINF) Hamiltoniansa

method orbital AuCl3...Pr) PtCl2(H2O)...Pr)

IOTC HOMO 7.6 M d, 65.3 Cl p, 21.9 C p 25.3 M d, 8.3 Cl p, 53.2 C p, 3.6 H s
HF HOMO-1 2.5 M d, 91.8 Cl p, 2.3 C p 6 M s, 50.2 M d, 38.5 Cl p, 1.3 C p
DKINF HOMO 7.6 M d, 66.3 Cl p, 22.2 C p 21.2 M d, 8.1 Cl p, 59.1 C p, 3.9 H s
HF HOMO-1 2.9 M d, 95 Cl p 39.9 M d, 58.5 Cl p
IOTC HOMO 11.1 M d, 77.8 Cl p, 6.7 C p 59.7 M d, 20.5 Cl p, 11.4 C p
DFT HOMO-1 5.7 M d, 89.1 Cl p, 1.6 C p 7.3 M s, 56.9 M d, 9.8 Cl p, 18.5 C p, 1.6 H s
DKINF HOMO 9.7 M d, 80.2 Cl p, 7.9 C p 50.9 M d, 29.8 Cl p, 15.2 C p
DFT HOMO-1 6.4 M d, 91.6 Cl p 48.9 M d, 6.7 Cl p, 28.7 C p, 1.9 H s

a Contributions below one percent are not listed; M stands for metal which is either Au or Pt with the corresponding Mulliken charges of
0.836 and 0.622, respectively.
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14.3% (HOMO-1), and 18.9% (HOMO-2). In AuCl3 the
corresponding d character is significantly lower and amounts
to 4.4% (HOMO), 7.7% (HOMO-1), and 5.2% (HOMO-2),
a behavior which is resembled in the complexes. If one
compares the Mulliken charges of the metal centers in the
free catalyst and in the complex a small depletion of electron
density is observable (0.81 f 0.95 for the Au center and
0.73 f 0.82 for the Pt center). The focus in this work,
however, predominantly lies on the analysis of the corre-
sponding alkyne/catalyst complexes and their reactivity
toward a nucleophile. For an in-depth analysis of the isolated
species we therefore refer to e.g. ref 46.

Energetics and HOMO/LUMO Structures

Considering the orbital energies and structures we first focus
on the perpendicular complexes. Table 5a,b contains the
corresponding orbital energies for all Hamiltonians and
methods. At first we look at the influence of SO coupling
on the orbital energies by forming a total average deviation
∆εaV spanning the range HOMO-1... LUMO+3. ∆εaV is
calculated as the sum of all differences |εIOTC

HF - εDKINF
HF | and

|εIOTC
DFT - εDKINF

DFT | divided by the number of orbitals taken into
account. For the gold complex we obtain a quite low average
deviation of ∆εaV ) 0.021 eV which is not too surprising
due to the small population changes upon SO coupling.
Despite the considerably larger alterations in the orbital
populations ∆εaV for the platinum complex increases only
up to 0.04 eV where the largest contribution stems from the
HOMOs. The direct influence of SO coupling on the highest
occupied and lowest virtual orbitals is therefore small.

An important fact is the negative first LUMO energy in
the Au/Pr complex at the IOTC/HF and DKINF/HF level
reflecting a high affinity toward a nucleophile and the
capability to stabilize an excess electron whereas the Pt/Pr
complex does not possess a negative LUMO energy. This
situation changes pronouncedly when electron correlation is
taken into account via DFT. At first the HOMO/LUMO gap
is substantially reduced from 10.9 to 3.8 eV in the gold
complex and from 11.0 to 4.5 eV in the platinum complex

stressing large electron correlation effects. An even more
striking fact, however, is now the decrease of all LUMO
energies below zero which would indicate a substantially
increased affinity of both complexes toward nucleophiles and
a possibility to bind even more than one excess electron.
According to the lower-lying LUMOs of the Au/Pr complex
this species still forms an even stronger bond to the
nuclophile than the platinum complex, but four negative
LUMO energies for a neutral closed shell system do not seem
to be very reliable. This behavior most probably has its origin
in the difficult interpretation of DFT Kohn-Sham (KS)
orbital energies.

The Kohn-Sham (KS) formulation of DFT47 produces
one-particle functions (orbitals or spinors in the relativistic
DFT) that incorporate electron exchange and correlation
effects through the corresponding functionals. However, the
interpretation of these orbitals is not undisputed. On the one
hand they are seen as purely mathematical constructs in order
to reproduce the total electronic density F48 where on the
other hand a physical meaning is attributed to them due to
the corresponding physical nature of the Kohn-Sham
potential.49,50 If one looks at the occupied orbitals, only the
KS-HOMO energy has the physical meaning of the (nega-
tive) lowest vertical ionization potential,51-57 whereas the
other are seen as merely auxiliary quantities.48 Building on
the empirical observation that approximate Kohn-Sham
energies for the occupied orbitals exhibit a substantial but
nearly constant shift with respect to the experimental
ionization energies,58,59 Chong, Gritsenko, and Baerends
developed the concept of relaxed vertical ionization potentials
(VIPs) and showed a very good agreement of those to the
KS orbital energies.60 In addition, Gritsenko, Braı̈da, and
Baerends61 analyzed the connection between KS and Dyson
orbital theories in the ionization process being relevant for
a detailed understanding of the ε -I relations. In order to
estimate this constant shift of the KS orbital energies in our
systems we performed fully relativistic propagator calcula-
tions of the HOMO energies at the IOTC/ADC(3) level and
observe a substantial overestimation of correlation contribu-
tions in the DFT treatment (2.6 eV for the Au/Pt and 2.4 eV
for the Pt/Pr complex compared to the IOTC/DFT values).
As a consequence, the LUMO energies also incorporate this
correlation error making the strongly negative orbital energies
at the IOTC and DKINF level less troublesome. It should
also be mentioned that the approximate functionals may
suffer from shortcomings due to self-interaction errors in
particular associated with the electron-rich d shells. Consid-
ering the related DFT-LUMO densities one therefore has to
interpret them with care.

For further analysis it is more comprehensive to look at
pictorial representations of the HOMO-LUMO orbital
densities instead of tabulating dominant basis function
coefficients. We commence by displaying the HOMO
densities of the perpendicular gold (left) and platinum (right)
complexes (I) and (II) at the IOTC/HF level in Figure 1.

In both complexes the occupied alkynylic π orbital and
the chlorine lone pairs are clearly visible. The HOMOs
obtained at the IOTC/DFT, DKINF/HF, and DKINF/DFT
level of theory look nearly identical to the IOTC/HF HOMO

Table 5. Orbital Energies at Various Levels of Theory in
eV of (a) the Perpendicular Au/Pr Complex and (b) the
Perpendicular Pt/Pr Complex

orbital
IOTC/

HF
DKINF/

HF
IOTC/
DFT

DKINF/
DFT

IOTC/
ADC(3)

(a) AuCl3...Pr⊥
LUMO+3 1.442 1.452 -0.583 0.582 -
LUMO+2 1.045 1.046 -1.119 -1.120 -
LUMO+1 0.765 0.766 -2.014 -2.001 -
LUMO -0.220 -0.288 -3.820 -3.845 -
HOMO -11.072 -11.075 -7.627 -7.630 -10.218
HOMO-1 -11.456 -11.524 -7.796 -7.850 -10.646
GAP 10.852 10.786 3.807 3.785 -

(b) PtCl2(H2O)...Pr⊥
LUMO+3 2.151 2.152 -0.105 -0.112 -
LUMO+2 1.682 1.690 -0.630 -0.629 -
LUMO+1 1.445 1.445 -1.008 -1.014 -
LUMO 1.173 1.174 -1.800 -1.807 -
HOMO -9.844 -9.959 -6.275 -6.427 -8.676
HOMO-1 -10.119 -10.074 -6.638 -6.506 -9.060
GAP 11.018 11.133 4.475 4.620 -
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for both complexes and need not be displayed separately.
One of the most prominent differences between the perpen-
dicularly oriented Au and Pt complexes is the differing
LUMO density obtained at the IOTC/HF level (see Figure
2) which provides a reasoning for the ease of a nucleophilic
attack on the Au/Pr carbyne centers. In contrast, a nonexistent
Pt/Pr LUMO density at these carbon centers will not lead to
a good overlap of the nucleophile frontier orbital and the
complex. As a consequence, a nucleophilic attack on one of
the Pt/Pr carbyne centers is less promoted. Looking at the
Mulliken charges of the propyne carbon atoms (see Table
7) reveals that the C2 atom always bears the highest positive
charge favoring a Markovnikov addition regardless of
available LUMO densities.

This different behavior toward the nucleophile is in line with
the negative (positive) LUMO energy of the gold (platinum)
complex. The effect of electron correlation (treated at the DFT
level of theory) will certainly influence the LUMO densities
which are visualized in Figure 3. There the IOTC/DFT LUMO
densities at the carbyne atoms of both complexes now show a
close resemblance and do not provide a clear-cut argument for
the observed affinity difference. From the considerations above

one should keep in mind, however, that the DFT HOMO/
LUMO energies bear intrinsic shifts, and the corresponding

Figure 1. HOMO orbital densities for the perpendicular Au/Pr (left) and Pt/Pr (right) complex at the IOTC/HF level. The methyl
group is directed away from the observer.

Figure 2. LUMO orbital densities of the Au/Pr (left) and Pt/Pr (right) complex at the IOTC/HF level. The different orbital densities
at the alkynylic carbon atoms are clearly visible.

Table 6. Orbital Energies at Various Levels of Theory in
eV of the (a) in-Plane Au/Pr Complex and (b) the in-Plane
Pt/Pr Complex

orbital
IOTC/

HF
DKINF/

HF
IOTC/
DFT

DKINF/
DFT

IOTC/
ADC(3)

(a) AuCl3...Pr)
LUMO+3 1.445 1.442 -0.604 -0.607 -
LUMO+2 1.443 1.438 -1.305 -1.308 -
LUMO+1 0.884 0.880 -1.457 -1.453 -
LUMO 0.107 0.055 -3.613 -3.640 -
HOMO -10.720 -10.743 -7.236 -7.277 -9.608
HOMO-1 -10.957 -10.920 -7.417 -7.361 -9.907
GAP 10.827 10.798 3.623 3.637 -

(b) PtCl2(H2O)...Pr)
LUMO+3 1.990 1.988 -0.304 -0.308 -
LUMO+2 1.947 1.954 -0.383 -0.406 -
LUMO+1 1.863 1.860 -0.543 -0.509 -
LUMO 1.264 1.262 -1.107 -1.119 -
HOMO -9.252 -9.336 -5.980 -6.182 -8.072
HOMO-1 -9.705 -9.932 -6.077 -6.242 -8.244
GAP 10.516 10.598 4.872 5.063 -
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densities may therefore also deviate considerably from the actual
situation. For this reason we do not establish our reasoning
purely on DFT results.

In the last paragraph of this section we discuss the in-plane
complexes whose orbital energies are shown in Table 6a,b at
various levels of theory.

Despite the different hybridization of the propyne carbon
atoms similar global trends as in the perpendicular configura-
tions can be observed. The HOMO and LUMO energies are
again all lower in the Au/Pr complex than in the corresponding
Pt/Pr compound, and inclusion of electron correlation leads to
a similarly large increase of the HOMO and decrease of the
LUMO energies. For the determination of the shift introduced
by DFT we again compare the IOTC/DFT HOMO energy in
both complexes to the IOTC/ADC(3) value and obtain 2.4 eV
for the Au/Pr and 2.1 eV for the Pt/Pr complex. In contrast to
the perpendicular gold complex no negative first LUMO energy
is obtained at the IOTC/HF and DKINF/HF level. Naturally
the question arises if any affinity differences can be associated
with the configurational change from perpendicular to in-plane
or if it is related to the type of catalyst. To answer this we again
visualize the corresponding orbital densities for the in-plane
configurations.

In Figure 4 showing the IOTC/HF HOMO densities of the
in-plane Au/Pr and Pt/Pr complexes we do not observe a

substantial difference at the alkynylic carbon atoms and very
similar plots (not displayed) also result in a scalar relativistic
DKINF/HF treatment. From Figure 5 we see the same depletion
of LUMO density at the carbyne atoms of the in-plane platinum
complex calculated at the IOTC/HF level. This difference is
therefore related to the catalyst (gold or platinum center) and
not to the orientation of the alkyne moiety. According to
the nonexistent HF LUMO density on the carbyne positions
the Pt/Pr complex should exhibit a decreased affinity to the
nucleophile. The increased affinity of the gold complex is also
reflected by a considerably lower LUMO energy of +0.107
eV compared to +1.264 eV in the platinum complex.

The visualizations of the KS HOMOs using the IOTC and
DKINF Hamiltonians will not introduce new information and
are omitted. In all cases the KS orbital densities at the carbyne
centers look very similar to the HF results, and SO coupling
does not alter this picture. This is not the case with the LUMO
densities depicted in Figure 6 at the IOTC/DFT level going in
line with the findings for the perpendicular configurations. As
before, the difference in the LUMO densities at the carbon
atoms of both complexes is wiped out and does not allow for
a clear structural argument with respect to affinities.

From this structural analysis we deduce that the type of
catalyst (Au or Pt) influences the electronic structure and the
densities at the reactive centers much more than the geometric
orientation of the two building blocks even if the latter implies
a change of the carbon hybridization. However, due to its
negative LUMO energy the perpendicular gold complex clearly
alleviates a nucleophilic attack, whereas a reorientation in the
platinum compound does not exhibit a comparable behavior.
The low energy barrier of 0.06 eV for a transformation between
the two orientations of Au/Pr leads to nucleophilic reactions
where only the perpendicular type is involved. This may be of
relevance for further mechanistic studies of the nucleophilic
attack.

In total we can summarize our findings as follows. Spin-orbit
coupling has a considerable influence on the orbital populations
in the Pt-containing complexes but leaves the outer valence
compositions in the corresponding gold species nearly unaltered.
Orbital energies of both complexes are hardly modified upon

Figure 3. LUMO orbital densities of the Au/Pr (left) and Pt/Pr (right) complex at the IOTC/DFT level. The LUMO density differences
are now blurred.

Table 7. Mulliken Charges at the DFT/B3LYP and HF
Level Using Relativistic ECPsa

method C1 C2 C3

Au⊥ B3LYP +0.001 +0.0522 -0.273
HF -0.049 +0.0529 -0.274
Au) B3LYP -0.122 +0.0317 -0.263
HF -0.155 +0.0319 -0.244
Pt⊥ B3LYP -0.175 +0.0489 -0.274
HF -0.221 +0.0393 -0.259
Pt) B3LYP -0.226 +0.0201 -0.275
HF -0.315 +0.0387 -0.253
C3H4 HF -0.199 -0.0747 -0.2752

a Au (Pt) stands for the gold (platinum)/propyne complex and ⊥
()) for the perpendicular (in-plane) orientation. The charges of
free propyne are given in the last line. The metal-induced
activation of the C2 atom toward a nucleophilic attack is clearly
visible.
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inclusion of SO coupling which is understandable due to their
closed-shell character. Very differing metal d populations in
the outer valence space lead to large structural alterations in
the LUMOs which can be considered as one main ingredient
for the different catalytic efficiency. Hereby no carbon LUMO
density was found for the platinum complexes making an
overlap with a nucleophilic frontier orbital unfavorable. In
contrast to that both gold complexes exhibit a high LUMO
density together with considerably lower LUMO energies
alleviating a nucleophilic attack both from the structural as from

the energetic point of view. The orientation of the propyne
moiety (perpendicular or in-plane) is hereby irrelevant. Electron
correlation treated at the relativistic DFT level has a major
impact on orbital energies, populations, and densities. The
interpretation of the DFT results especially with respect to virtual
orbital energies is not straightforward as discussed in the text, and
relativistic propagator calculations reveal a considerable overesti-
mation of correlation effects by DFT. Therefore the obtained DFT-
LUMO densities cannot serve as an unambiguous basis for the
structural analysis. For all four species under consideration the

Figure 4. HOMO orbital densities for the in-plane Au/Pr (left) and Pt/Pr (right) complex at the IOTC/HF level. The methyl group
is directed away from the observer.

Figure 5. LUMO orbital densities for the in-plane Au/Pr (left) and Pt/Pr (right) complex at the IOTC/HF level.

Figure 6. LUMO orbital densities for the in-plane Au/Pr (left) and Pt/Pr (right) complex at the IOTC/DFT level. The methyl group
is directed away from the observer.
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central carbon atom bears the highest positive charge, and a
Markovnikov-type attack is therefore most probable.
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Abstract: We present benchmark energetic data for the HCOOH · · ·benzene complexes. The
benchmark data were determined by a composite approach based on CCSD(T) calculations.
Final binding energies (kcal/mol) are in the range of 1.6-4.8 kcal/mol, and they were used as
reference data to test density functionals in the literature. Among the tested local density
functionals without empirical dispersion corrections, M06-L is the best performing functional,
and M06-L/6-31+G(d,p) gives a mean unsigned error (MUE) of only 0.15 kcal/mol. PBEsol and
SOGGA also show promising performance. The best local DFT-D methods are BLYP-D and
PBEsol-D, and they give an MUE of 0.15 kcal/mol after removing basis set superposition errors
by the counterpoise approach. Empirical dispersion corrections greatly improve the descriptions
of noncovalent interactions in HCOOH · · ·benzene dimers. The calculated benchmark data and
intermolecular potential are useful for the parametrizations of new force fields and coarse-grained
models for chemical species such as the acrylic polymers.

1. Introduction

An understanding of noncovalent interactions between a polar
molecule and an aromatic system is of fundamental interest
since these interactions are common not only in biological
systems1,2 but also in many areas of chemistry and materials
science.3-7 An important example of this type of interaction,
water · · ·benzene dimer, has been extensively studied both
experimentally and theoretically.8-14 Recently Crittenden15

carried out a systematical and theoretical study of the long-
range noncovalent interactions between benzene and a series
of hydrides and rare gas atoms. More recently, Imai et al.16

reported a computational study of the amide-π interactions
between formamide (HCONH2) and benzene, and Ottiger et
al.17 performed a theoretical study of the amide-benzene
interactions in the 2-pyridone · · ·benzene complexes. In the
present study, we focus on understanding the noncovalent
interactions between formic acid (HCOOH) and benzene.

The HCOOH · · ·benzene complex can be considered as a
model system for understanding the side-chain interactions in
acrylic polymers (or resins), because they are commonly being

used in the coating and printing industry. Furthermore, the
HCOOH · · ·benzene dimer can be viewed as a model system
for studying pigment-polymer interactions since common pig-
ments such as those based on Cu-phthalocyanine have benzene
rings in their structures, and acrylic polymers have -COOH
side-chains. It is important to understand such physical interac-
tions for rational design of future high-performance materials
for next-generation printing materials and technology.

The experimental or computational studies of the
HCOOH · · ·benzene complex are scarce in the literature. An
objective of the present study is to use Møller-Plesset second
order perturbation theory (MP2)18 and coupled cluster
theory19,20 with single and double excitations and a quasip-
erturbative treatment of connected triple excitations (CCS-
D(T)) to characterize the HCOOH · · ·benzene complexes and
to develop benchmark energetic data for interaction energies
in HCOOH · · ·benzene dimers. A further goal of our study
is to validate a number of low-cost density functional theory
(DFT) methods and to determine if these can describe the
energetics of noncovalent interactions in HCOOH · · ·benzene
complexes.* Corresponding author e-mail: yan.zhao3@hp.com.
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2. Computational Methods

We have employed MP218 and the 6-311+G(2df,2p) basis
set21 to optimize the geometries of the HCOOH · · ·benzene
complexes without any geometrical constraints. We started
with many initial guesses of the dimer configurations for
optimizations, following the procedure described in a previ-
ous paper for HCONH2 · · ·benzene.16 Five stationary points
have been located as the minimum structures on the MP2/
6-311+G(2df,2p) potential energy surface, and they are
shown in Figure 1.

We estimated the CCSD(T) complete basis limit binding
energies in these five complexes as follows

where CBS denotes the complete-basis limit, and SB denotes
a small basis (aug-cc-pVDZ). The MP2/CBS energies are
extrapolated by

where n represents the highest angular momentum in an
augmented correlation-consistent basis set, n ) 3 for the aug-
cc-pVTZ basis, and n ) 4 for the aug-cc-pVQZ basis sets.
We also examine a lower-cost MP2/IB extrapolation using
the aug-cc-pVDZ and aug-cc-pVTZ basis sets. IB denotes
the separate extrapolation22-24 of Hartree-Fock and MP2
correlation energies to the infinite-basis (IB) limit. The
Hartree-Fock energies are extrapolated by

and the MP2 correlation energies are extrapolated by

The parameters R and � in eqs 3 and 4 are determined in a
previous paper;24 the value used for R is 4.93, and that for
� is 2.13. Combining MP2/IB with the (CCSD(T)-MP2)
correction evaluated at the aug-cc-pVDZ basis set, one can
define an estimated CCSD(T)/IB binding energies

This composite approach defined in eq 5 has been shown23

to give very good agreement with experiments for the
predictions of binding energies in the H2O · · ·benzene and
NH3 · · ·benzene systems, provided that counterpoise (Cp)
corrections for basis set superposition error (BSSE) are
included. Therefore we performed all benchmark calculations
with Cp corrections25-27 for BSSE.

We have tested density functionals with the MP2/6-
311+G(2df,2p) geometries. The tested functionals can be
classified according to various rungs of “Jacob’s ladder”.28

The lowest rung is the local spin density approximation
(LSDA), in which the density functional depends only on
spin densities, and the second rung is the generalized gradient
approximation (GGA, in which the density functional
depends on spin densities and their reduced gradient). The
third-rung functionals, meta-GGAs, also depends on the spin
kinetic energy densities. The fourth rung is hyper GGA,28

which employs full or partial exact Hartree-Fock (HF)
exchange. There are two types of hyper GGAs on the fourth
rung, namely the hybrid GGAs (HF + GGA) and hybrid
meta-GGAs (HF + meta-GGA). In this work, the tested
conventional functionals include one LSDA,29-31 9 GGAs
(BLYP,32,33 BP86,32,34 G96LYP,33,35 HCTH,36 mPWPW,37

OLYP,33,38 PBE,39 PBEsol,40 and SOGGA41), three meta-
GGAs (M06-L,42 TPSS,43,44 and VSXC45), 12 hybrid GGAs
(B3LYP,46 B97-1,36 B97-2,47 B98,48 BHandH,49 BHandH-
LYP,49MPW1K,50mPW1PW,37MPW3LYP,33,37,51O3LYP,38,52

PBE0,39 X3LYP53), and 9 hybrid meta-GGAs (BMK,54

PW6B95,55 PWB6K,55 M05,56 M05-2X,57 M06,58 M06-
2X,58 M06-HF,59 and TPSSh43,44).

Recently several DFT-D schemes have been developed60-63

by augmenting the conventional DFT energy with a damped
empirical dispersion term (-C6R-6), these DFT-D schemes have
been shown to give much improved performance for nonco-
valent interactions. In the present study, we test B97-D,60 TPSS-
D,60 BP86-D,60 B3LYP-D,60 PBE-D,60 PBEsol-D,61 ωB97X-
D,62 PBE0-D,63 BMK-D,63 M06-L-D,63 M06-D,63 and SOGGA-
D. SOGGA-D is defined in the present study by using the same
empirical dispersion corrections as PBEsol-D.

In the Grimme’s dispersion damping function60 for DFT-D
calculations, the van der Waals radii are derived from the
radius of the 0.01 a0

-3 electron density contour from ROHF/
TZV calculations of the atoms in the ground state, and
Grimme used a scale factor of 1.1 to scale these radii. The
van der Waals radii in Table 1 of ref 60 are scaled values.
In PBEsol-D (also in SOGGA-D), the scale factor is
increased to 1.42.61 We implemented the new scale factor
in the locally modified Gaussian09 program for PBEsol-D
and SOGGA-D calculations.

All DFT calculations have been performed with the locally
modifiedGAMESS,64NWChem,65andGaussian0966programs.

3. Results and Discussion

3.1. Stationary Points on the Potential Energy of
HCOOH · · ·Benzene Noncovalent Complexes. Figure 1
shows the five minimum structures located by the MP2/6-

Figure 1. Five stationary points on the potential energy
surface of an HCOOH · · ·benzene complex.

De(CCSD(T)/CBS) ) De(MP2/CBS) +
De(CCSD(T)/SB) - De(MP2/SB) (1)

EMP2(n) ) E∞
MP2 + An-3 (2)

EHF(n) ) E∞
HF + AHFn-R (3)

Ecor(n) ) E∞
cor + Acorn-� (4)

De(CCSD(T)/IB) ) De(MP2/IB) + De(CCSD(T)/SB) -
De(MP2/SB) (5)
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311+G(2df,2p) level of theory. The first four complexes (A-
D) are π-hydrogen bonded complexes, in which the hydrogen
bond acceptor is the π-cloud on the benzene molecule. The
fifth complex (E) is bound by the interaction between the
sp2 oxygen in HCOOH and two hydrogens of benzene.

3.2. Benchmark Calculations. Table 1 gives the bench-
mark results for the noncovalent interaction energies in the
five HCOOH · · ·benzene complexes.

Table 1 shows that Hartree-Fock (the HF/IB column of
Table 1) theory severely underestimates the noncovalent
interactions in the HCOOH · · ·benzene complexes because
HF theory gives small or repulsive (or negative) binding
energies (at the MP2/6-311+G(2df,2p) geometries). The
attractive interactions in these complexes are mostly due to
medium-range correlation energies, which are absent in
Hartree-Fock theory.

As shown in Table 1, the MP2/IB calculations agree with
MP2/CBS within 0.2 kcal/mol, but MP2/IB is a much less
expensive method than MP2/CBS. For large systems, MP2/
IB is an efficient alternative to the MP2/CBS approach.

Table 1. Benchmark Results (in kcal/mol) for the Binding Energiesa of the HCOOH · · ·Benzene Complexes

complex HF/IBb ∆MP2/IBc MP2/IBd MP2/CBSe ∆(CCSD(T)-MP2)f CCSD(T)/IBg CCSD(T)/CBSh

A -0.63 4.40 3.77 3.60 -0.45 3.32 3.15
B -1.20 5.25 4.05 3.88 -0.58 3.48 3.30
C 0.18 5.51 5.69 5.44 -0.65 5.04 4.79
D -0.82 4.69 3.87 3.70 -0.47 3.41 3.23
E 0.19 1.54 1.73 1.68 -0.06 1.67 1.62

a The binding energy De is defined in the present study as the equilibrium dissociation energy of the complexes dissociated into HCOOH
and benzene. All calculations employed MP2/6-311+G(2df,2p) geometries. b Extrapolated ∆EHF with eq 3 and the aug-cc-pVDZ and
aug-cc-pVTZ basis sets. c The extrapolated (∆EMP2-∆EHF) results with eq 4 and the aug-cc-pVDZ and aug-cc-pVTZ basis sets. d The sum of
HF/IB and ∆MP2/IB. e The extrapolated ∆EMP2 results with eq 2 and the aug-cc-pVTZ and aug-cc-pVQZ basis sets. f This term is evaluated
with the aug-cc-pVDZ basis set. g This column gives De estimated using eq 5, i.e. the summation of values in the MP2/IB and ∆(CCSD(T) -
MP2) columns. h This column gives De estimated using eq 1, i.e. the summation of values in the MP2/CBS and ∆(CCSD(T) - MP2) columns

Table 2. Binding Energies and Mean Errors (in kcal/mol)
for Local Density Functionalsa

method A B C D E MSEb MUEc

best estimated 3.15 3.30 4.79 3.23 1.62
M06-L 2.60 2.98 4.60 2.71 1.19 -0.40 0.40
SOGGA 2.47 2.38 4.56 2.53 1.29 -0.57 0.57
PBEsol 2.29 2.20 4.30 2.35 1.18 -0.76 0.76
LSDA 4.52 4.81 7.12 4.76 2.48 1.52 1.52
PBE 1.27 1.02 2.85 1.25 0.91 -1.76 1.76
TPSS 0.71 0.30 2.07 0.61 0.48 -2.39 2.39
mPWPW 0.42 0.01 1.80 0.31 0.32 -2.65 2.65
τ-HCTH 0.07 -0.50 1.15 -0.14 0.45 -3.01 3.01
HCTH -0.10 -0.63 0.96 -0.27 0.92 -3.04 3.04
BP86 -0.05 -0.45 1.32 -0.13 -0.16 -3.11 3.11
BLYP -0.73 -1.25 0.29 -0.85 -0.02 -3.73 3.73
OLYP -2.45 -3.38 -1.72 -2.77 -0.66 -5.41 5.41
G96LYP -2.87 -3.67 -2.03 -3.08 -1.76 -5.90 5.90
VSXC 9.14 11.65 12.71 10.72 4.21 6.47 6.47

a Tested with the 6-311+G(2df,2p) basis set and MP2/
6-311+G(2df,2p) geometries. b MSE denotes mean signed error
(same as mean deviation, MD). c MUE denotes mean unsigned
error (same as mean absolute deviation, MAD). d Taken from the
CCSD(T)/CBS results of Table 1.

Table 3. Binding Energies and Mean Errors (in kcal/mol) for Hybrid Density Functionalsa

method A B C D E MSEb MUEc

best estimated 3.15 3.30 4.79 3.23 1.62
PWB6K 2.89 2.97 4.63 3.09 1.62 -0.18 0.18
M05-2X 3.32 3.59 5.43 3.43 1.61 0.26 0.26
M06 2.54 2.90 4.49 2.63 1.26 -0.45 0.45
M06-2X 3.54 4.04 5.68 3.77 1.59 0.50 0.52
PW6B95 2.17 2.18 3.78 2.35 1.22 -0.88 0.88
M05 1.81 1.79 3.39 1.93 1.56 -1.12 1.12
M06-HF 4.44 4.92 6.60 4.59 1.77 1.24 1.24
PBE0 1.58 1.34 3.20 1.55 0.98 -1.49 1.49
B97-1 1.55 1.34 3.00 1.54 1.15 -1.50 1.50
BHandH 4.66 4.94 7.01 4.89 2.72 1.63 1.63
MPW1K 1.36 1.07 2.89 1.29 0.74 -1.75 1.75
B98 1.20 0.91 2.57 1.14 0.94 -1.87 1.87
BMK 1.09 1.08 2.78 1.31 0.25 -1.92 1.92
MPW3LYP 1.10 0.80 2.42 1.05 1.13 -1.92 1.92
BHandHLYP 1.08 0.77 2.41 1.03 0.98 -1.97 1.97
τ-HCTHh 1.04 0.77 2.51 0.98 0.64 -2.03 2.03
mPW1PW 0.95 0.60 2.42 0.86 0.56 -2.14 2.14
TPSSh 0.87 0.48 2.27 0.78 0.54 -2.23 2.23
TPSS1KCIS 0.81 0.42 2.11 0.72 0.66 -2.28 2.28
X3LYP 0.74 0.40 2.04 0.68 0.83 -2.28 2.28
B97-2 0.27 -0.16 1.53 0.14 0.31 -2.80 2.80
B3LYP 0.20 -0.21 1.42 0.12 0.46 -2.82 2.82
O3LYP -1.59 -2.38 -0.67 -1.85 -0.27 -4.57 4.57

a Tested with the 6-311+G(2df,2p) basis set and MP2/6-311+G(2df,2p) geometries. b MSE denotes mean signed error (same as mean
deviation). c MUE denotes mean unsigned error (same as mean absolute deviation, MAD). d Taken from the CCSD(T)/CBS results of Table
1.
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From Table 1, we can see that the small-basis CCSD(T)
corrections contribute -0.06 to -0.65 kcal/mol to the final
dissociation energies. Among the four π-hydrogen bonded
complexes, complex C has the largest binding energy; the
hydrogen donor in complex C is the -OH group of formic
acid, which is a stronger hydrogen bond donor than the C-H
hydrogen donor in the other three π-hydrogen bonded
complexes (A, B, and D). Complex E is the weakest
HCOOH · · ·benzene dimer.

The largest binding energy in HCOOH · · ·benzene dimers
is 4.79 kcal/mol (complex C), which is about 0.2 kcal/mol
less than the binding energy in water dimer (5.02 kcal/mol).67

The binding strength in complex C is stronger than those
between benzene and first- and second-row hydrides (among
them HF · · ·benzene has the largest binding energy of 4.3
kcal/mol, and H2O · · ·benzene has a binding energy of 3.2
kcal/mol).15 According to Imai et al. report,16 the largest
binding energy in HCONH2 · · ·benzene is 3.0 kcal/mol,
which is about 1.8 kcal/mol smaller than the binding energy
in complex C; this result agrees with the fact that HCOOH
is a much stronger hydrogen bond donor than HCONH2.

3.3. Performance of Local Density Functionals. Table
2 gives the test results for local density functionals; we use
the word “local” in the analogy as Becke,68 so that it includes
spin density gradient and spin kinetic energy density (as well
as local spin density) but excludes Hartree-Fock exchange.

Among the tested local functionals, only LSDA and VSXC
overestimate the binding energies, as shown by their positive
MSEs. Other functionals underestimate the binding energies.
Most of the tested local density functionals give a bad
performance with the major exception being the M06-L,
SOGGA, and PBEsol functionals, which gives a mean
unsigned error (MUE) of 0.40, 0.57, and 0.76 kcal/mol,
respectively. Other local functionals have MUEs greater than
1 kcal/mol. It is not surprising that M06-L give a good
performancefornoncovalentinteractionsinHCOOH · · ·benzene
complexes, since the training set of the M06-L functional
contains some noncovalent interaction data. The surprisingly
good performance of the nonempirical SOGGA and PBEsol
functionals is likely due to their diminished gradient depen-
dence41 as compared to PBE. As shown in Table 2, LSDA
overestimate the binding strength, whereas PBE underesti-
mates them. In PBE, the second-order gradient expansion
for exchange is not respected, whereas in SOGGA and
PBEsol, the gradient expansion for exchange has been
restored,40,41 and their exchange enhancement factors are
between LSDA and PBE, so both SOGGA and PBEsol
perform better than PBE. At the high reduced gradient region,
which is important for noncovalent interactions, SOGGA
diminishes more gradient correction than PBEsol,41 so
SOGGA gives slightly stronger binding than PBEsol. Recent
studies40,41,69,70 showed that PBEsol and SOGGA give a very
much better performance for lattice constant predictions than
PBE and LSDA, but M06-L is less accurate for lattice
constants than PBEsol and SOGGA. PBEsol has also been
shown to give an improved description of stereoelectronic
effects in hydrocarbons.61

3.4. Performance of Hybrid Density Functionals. Table
3 presents test results for hybrid functionals.

Among the tested hybrid functionals, PWB6K and M05-
2X functionals give a good performance, as shown by their
small MUEs (0.16 and 0.26 kcal/mol), followed by M06-
2X. The best performing hybrid GGA is PBE0, which gives
an MUE of 1.49 kcal/mol.

HybridfunctionalshaveacomponentofnonlocalHartree-Fock
exchange, thus their computational cost is much higher than
the local functionals. In particular, for the HCOOH · · ·benzene
complex, the best local functional, M06-L, is about six times
faster than the best hybrid functional, PWB6K. PBEsol and
SOGGA are even less expensive than M06-L, and they are
about eight times faster than PWB6K.

Table 4. Binding Energies and Mean Errors (in kcal/mol)
for DFT-Da

method A B C D E MSEb MUEc

best estimated 3.15 3.30 4.79 3.23 1.62
M06-D 3.25 3.71 5.31 3.37 1.50 0.21 0.26
BLYP-D 3.52 3.58 5.22 3.61 1.38 0.24 0.34
M06-L-D 3.31 3.79 5.42 3.46 1.42 0.26 0.34
ωB97X-D 3.63 3.80 5.14 3.63 1.39 0.30 0.39
BMK-D 3.39 3.70 5.46 3.73 1.01 0.24 0.48
PBEsol-D 3.68 3.72 5.77 3.69 1.68 0.49 0.49
BP86-D 3.67 3.77 5.63 3.78 1.06 0.36 0.59
B3LYP-D 3.92 4.02 5.73 4.02 1.68 0.66 0.66
SOGGA-D 3.86 3.90 6.03 3.88 1.79 0.67 0.67
PBE-D 3.93 4.04 5.94 4.04 1.79 0.73 0.73
PBE0-D 4.06 4.16 6.08 4.16 1.79 0.83 0.83
TPSS-D 4.25 4.33 6.19 4.33 1.64 0.93 0.93

a Tested with the 6-311+G(2df,2p) basis set and MP2/
6-311+G(2df,2p) geometries. b MSE denotes mean signed error
(same as mean deviation). c MUE denotes mean unsigned error
(same as mean absolute deviation, MAD). d Taken from the
CCSD(T)/CBS results of Table 1.

Table 5. M06-L Binding Energies (kcal/mol) with Different Geometries and Basis Sets

method A B C D E MSEa MUEb

best estimate 3.15 3.30 4.79 3.23 1.62
M06-L/DIDZ//M06-L/DIDZ 3.06 3.24 4.65 3.05 1.34 -0.15 0.15
M06-L/6-311+G(2df,2p)//M06-L/6-311+G(2df,2p) 2.87 3.16 4.78 2.89 1.44 -0.19 0.19
M06-L/DIDZ//MP2/6-311+G(2df,2p) 2.91 3.17 4.49 2.98 1.30 -0.25 0.25
M06-L/DIDZ//M06-L/MIDI! 2.96 2.84 4.45 2.64 1.38 -0.36 0.36
M06-L/aug-cc-pVTZ//MP2/6-311+G(2df,2p) 2.67 2.99 4.74 2.80 1.00 -0.38 0.38
SOGGA/6-31+G(d)//SOGGA/6-31+G(d) 2.62 2.55 5.36 2.59 1.38 -0.32 0.54
SOGGA/6-311+G(2df,2p)//MP2/6-311+G(2df,2p) 2.47 2.38 4.56 2.53 1.29 -0.57 0.57
PBEsol/6-31+G(d)//PBEsol/6-31+G(d) 2.45 2.41 5.14 2.46 1.26 -0.47 0.61
PBEsol/6-311+G(2df,2p)//MP2/6-311+G(2df,2p) 2.29 2.20 4.30 2.35 1.18 -0.76 0.76

a MSE denotes mean signed error (same as mean deviation). b MUE denotes mean unsigned error (same as mean absolute deviation,
MAD).

Noncovalent Interactions in HCOOH · · ·Benzene Complexes J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2729



3.5. Performance of DFT-D. The results for different
DFT-D methods are shown in Table 4. Table 4 confirms the
finding in previous studies60-63 that empirical dispersion
corrections improve the description of noncovalent interac-
tions. All the DFT-D methods in Table 4 have MUEs less
than 1.0 kcal/mol. Moreover, the MUE of BLYP-D is about
11 times smaller than that of the original BLYP, showing
the effectiveness of the empirical dispersion corrections for
thedescriptionofnoncovalentinteractionsinHCOOH · · ·benzene
complexes. The second best GGA-D method is PBEsol-D.
SOGGA-D uses the same empirical dispersion corrections
as PBEsol-D, but SOGGA-D gives a slightly larger MUE
than PBEsol-D.

3.6. Effects of Geometries and Basis Sets. In previous
sections, we based our discussions on single-point energies
calculated with the MP2/6-311+G(2df,2p) geometries. In this
section, we compare results with the geometries optimized
at the M06-L/MIDI!, M06-L/6-31+G(d,p), SOGGA/6-
31+G(d), PBEsol/6-31+G(d), and M06-L/6-311+G(2df,2p)
levels of theories, where MIDI!71 is a well-balanced and
economical double-� basis set for geometry optimization.
The results are shown in Table 5.

As shown in Table 5, for a given functional, the effect of
geometries and basis sets for the binding energies is small,
and they agree with each other within 0.8 kcal/mol. M06-
L/6-31+G(d,p) gives a smallest MUE (0.15 kcal/mol), and
M06-L/6-31+G(d,p)//M06-L/MIDI! has an MUE of 0.36
kcal/mol. The good performance with the double-� quality
basis set is likely due to a well-known basis set error that
diminishes the underbinding error of an exchange-correlation
functional, as shown recently by Ruzsinszky et al.72 Simi-
larly, PBEsol/6-31+G(d) gives a better performance than
PBEsol/6-311+G(2df,2p).

3.7. Counterpoise Corrected DFT Results. Table 6
presents the Cp corrected binding energies and mean errors.
After removing the BSSEs, the best two performers in Table

6 are BLYP-D and PBEsol-D, with an MUE of 0.15 kcal/
mol. Among the ten best performing functionals, only M05-
2X and M06-2X do not have empirical dispersion correc-
tions, and all other eight functionals are DFT-D methods.
This result again shows the effectiveness of empirical
dispersion corrections and also confirms the finding in
Section 3.5.

3.8. Intermolecular Potential of Complex C. We have
calculated the intermolecular potential of complex C with
the M06-L/6-311+G(2df,2p), PBEsol/6-311+G(2df,2p), SOG-
GA/6-311+G(2df,2p), and CCSD(T)/IB level of theories, and
the intermolecular distance is defined as the distance between
the oxygen atom of hydrogen donor in HCOOH and the
center of mass of the benzene molecule. The intermolecular
potentials are shown in Figure 2.

As shown in Figure 2, the M06-L, PBEsol, and SOGGA
intermolecular potential curves show reasonable agreement
with that of CCSD(T)/IB. Note that the more accurate
CCSD(T)/CBS minimum is above the CCSD(T)/IB mini-
mum by 0.25 kcal/mol, thus shows better agreement with
the DFT results. Figure 2 also shows that, even at 5 Å apart,
the interaction energy is greater than 1 kcal/mol, which is
about twice of the binding energy of neon · · ·benzene van
der Waals complex. This result indicates that the interaction
between HCOOH and benzene is not just due to dispersion
interactions, and the electrostatic contributions play an
important role in the HCOOH · · ·benzene complexes.

Results in Figure 2 confirm that GGAs or meta-GGAs,
even without empirical dispersion correction, might provide
a reasonable description of the noncovalent interactions
arising from overlapped nonbonded density. Nevertheless,
GGAs or meta-GGAs cannot describe the long-range disper-

Figure 2. Intermolecular potential of the HCOOH · · ·benzene
complex. DFT calculations employed the 6-311+G(2df,2p)
basis set without Cp corrections.

Figure 3. Intermolecular potential of the HCOOH · · ·benzene
complex.DFT-ExandHFcalculationsemployedthe6-311+G(2df,2p)
basis set without Cp corrections. The PBE-Ex (PBE exchange-
only) calculations were done without PBE correlation contribu-
tions using the PBE SCF density. The TPSS-Ex (TPSS
exchange-only) calculations were done without TPSS cor-
relation contributions using the TPSS SCF density.
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sion interactions in nonoverlapped densities. They give an
exponential decay instead of the -C6R-6 behavior for the long-
range intermolecular potential.

Table 1 showed that HF theory severely underestimates
the interaction energies in the HCOOH · · ·benzene com-
plexes. An interesting observation from Tables 2 and 3 is
that some global hybrid functionals (e.g., PBE0 and TPSSh)
improve slightly upon corresponding local functionals (e.g.,
PBE and TPSS). In order to understand the origin of this
improvement, we calculated the intermolecular potential with
HF theory, PBE-Ex (PBE exchange-only calculation using

the PBE SCF densities), and TPSS-Ex (TPSS exchange-only
calculation using TPSS SCF densities). The potential curves
are plotted in Figure 3. As shown in Figure 3, for the
intermolecular distance at 3-4 Å, HF theory gives more
attractive interaction than PBE and TPSS exchange func-
tionals. Thus, replacing certain amount of PBE or TPSS
exchange with the HF exchange (as done in PBE0 or TPSSh)
results in more attractive interactions at the 3-4 Å region.
This explains why PBE0 and TPSSh slightly improve upon
the corresponding local PBE and TPSS functionals. Interest-
ingly, PBE and TPSS exchange functionals give more

Table 6. Counterpoise Corrected Binding Energies and Mean Errors (in kcal/mol)

methoda A B C D E MSEb MUEc

best estimated 3.15 3.30 4.79 3.23 1.62
BLYP-D 3.10 3.16 4.73 3.19 1.19 -0.15 0.15
PBEsol-D 3.17 3.19 5.16 3.18 1.43 0.01 0.15
ωB97X-D 3.19 3.35 4.61 3.20 1.15 -0.12 0.15
SOGGA-D 3.34 3.37 5.40 3.35 1.55 0.18 0.21
M05-2X 2.85 3.11 4.87 2.96 1.39 -0.18 0.21
M06-2X 3.10 3.58 5.17 3.33 1.35 0.09 0.22
M06-L-D 2.81 3.25 4.85 2.95 1.12 -0.22 0.25
BP86-D 3.22 3.31 5.10 3.33 0.85 -0.06 0.25
BMK-D 3.02 3.31 5.04 3.37 0.80 -0.11 0.27
M06-D 2.74 3.17 4.74 2.87 1.21 -0.27 0.27
B3LYP-D 3.48 3.58 5.22 3.59 1.48 0.25 0.31
PBE-D 3.47 3.57 5.38 3.58 1.58 0.30 0.31
PBE0-D 3.56 3.67 5.49 3.67 1.57 0.37 0.39
TPSS-D 3.72 3.80 5.57 3.80 1.40 0.44 0.53
M06-HF 3.62 4.10 5.68 3.79 1.37 0.50 0.60
PWB6K 2.42 2.51 4.08 2.63 1.41 -0.61 0.61
M06-L/DIDZ//MP2/6-311+G(2df,2p) 2.42 2.65 3.96 2.47 1.02 -0.72 0.72
M06-L/DIDZ/M06-L/MIDI! 2.47 2.29 3.92 2.15 1.09 -0.83 0.83
M06-L 2.10 2.44 4.03 2.21 0.89 -0.88 0.88
M06 2.03 2.36 3.92 2.12 0.97 -0.94 0.94
M06-L/aug-cc-pVTZ//MP2/6-311+G(2df,2p) 2.02 2.34 4.01 2.17 0.71 -0.97 0.97
LSDA 4.02 4.29 6.51 4.26 2.24 1.05 1.05
SOGGA 1.94 1.85 3.93 2.01 1.05 -1.06 1.06
BHandH 4.18 4.46 6.43 4.41 2.49 1.18 1.18
PBEsol 1.78 1.67 3.68 1.83 0.94 -1.24 1.24
PW6B95 1.73 1.73 3.26 1.91 1.01 -1.29 1.29
M05 1.37 1.33 2.87 1.49 1.34 -1.54 1.54
B97-1 1.12 0.89 2.47 1.10 0.95 -1.91 1.91
PBE0 1.09 0.85 2.61 1.06 0.75 -1.95 1.95
PBE 0.81 0.55 2.30 0.79 0.70 -2.19 2.19
BMK 0.72 0.69 2.37 0.96 0.04 -2.26 2.26
MPW1K 0.81 0.51 2.24 0.74 0.47 -2.26 2.26
B98 0.74 0.45 2.02 0.68 0.72 -2.30 2.30
MPW3LYP 0.65 0.34 1.89 0.60 0.93 -2.34 2.34
BHandHLYP 0.63 0.32 1.87 0.58 0.76 -2.39 2.39
τ-HCTHh 0.55 0.28 1.93 0.50 0.40 -2.49 2.49
mPW1PW 0.41 0.07 1.79 0.33 0.31 -2.64 2.64
X3LYP 0.30 -0.04 1.52 0.25 0.64 -2.69 2.69
TPSSh 0.34 -0.05 1.64 0.25 0.29 -2.72 2.72
TPSS1KCIS 0.32 -0.07 1.53 0.23 0.43 -2.73 2.73
TPSS 0.18 -0.23 1.46 0.09 0.23 -2.87 2.87
mPWPW91 -0.10 -0.52 1.19 -0.21 0.08 -3.13 3.13
B3LYP -0.23 -0.64 0.90 -0.32 0.26 -3.23 3.23
B97-2 -0.22 -0.65 0.95 -0.35 0.07 -3.26 3.26
HCTH -0.52 -1.05 0.44 -0.70 0.74 -3.44 3.44
τ-HCTH -0.48 -1.06 0.49 -0.70 0.17 -3.53 3.53
BP86 -0.50 -0.92 0.78 -0.57 -0.38 -3.54 3.54
BLYP -1.15 -1.68 -0.21 -1.27 -0.21 -4.12 4.12
O3LYP -2.10 -2.89 -1.28 -2.37 -0.49 -5.05 5.05
OLYP -2.98 -3.89 -2.34 -3.29 -0.88 -5.90 5.90
VSXC 8.76 11.26 12.25 10.35 4.01 6.11 6.11
G96LYP -3.30 -4.10 -2.53 -3.51 -1.95 -6.30 6.30

a If basis sets and geometries were not specified, the DFT calculations employed the 6-311+G(2df,2p) basis set and MP2/
6-311+G(2df,2p) geometries. b MSE denotes mean signed error (same as mean deviation). c MUE denotes mean unsigned error (same as
mean absolute deviation, MAD). d Taken from the CCSD(T)/CBS results of Table 1.
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attractive interactions than HF theory at large intermolecular
distance (>4.5 Å), as shown in Figure 3.

4. Conclusions

In the present study, we have employed the MP2 and CCS(T)
methods to study structures and interactions in the HCOOH · · ·
benzene complexes, and we have developed a benchmark
dataforbindingenergiesinfivenoncovalentHCOOH · · ·benzene
dimers. The benchmark data were determined as the sum of
the complete-basis-set limit of MP2 energies and a CCSD(T)
correction term evaluated with the aug-cc-pVDZ basis set.
Final binding energies (kcal/mol) are in the range of 1.6-4.8
kcal/mol, and they were used as reference data to test density
functionals in the literature. Based on these results, we draw
the following conclusions:

1) The small-basis CCSD(T) contributions to the final best
estimates of the binding energies are small, with magnitudes
in the range of -0.06 to -0.65 kcal/mol.

2) The calculated benchmark data and intermolecular
potential are useful for the parametrizations of new force
fields and coarse-grained models for chemical species such
as the acrylic polymers.

3) The largest binding energy in HCOOH · · ·benzene
dimers is 4.8 kcal/mol (complex C), and this binding strength
is weaker than that of water dimer but stronger than
noncovalent interactions between benzene and first- and
second-row hydrides.

4) Among the tested local density functionals without
empirical dispersion corrections, M06-L/6-31+G(d,p) gives
an MUE of only 0.15 kcal/mol. PBEsol and SOGGA also
show promising performance.

5) Empirical dispersion corrections greatly improve the
performance of DFT for the descriptions of noncovalent
interactions in HCOOH · · ·benzene dimers.
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Abstract: The global reaction route mapping (GRRM) method enabled an automated and a
systematic search for routes of chemical reactions on a potential energy surface based on the
anharmonic downward distortion following (ADDF) approach [Chem. Phys. Lett. 2004, 384, 277].
On the other hand, the microiteration technique [Mol. Phys. 2006, 104, 701] has been developed
for full optimizations of transition state (TS) structures for reactions/transformations in large flexible
molecular systems and successfully used in ONIOM(QM:MM) calculations. In the present paper,
combining the GRRM method with the microiteration technique, we developed a microiteration-
ADDF (µ-ADDF) method for automated and systematic TS exploration of large flexible molecular
systems. We showed that the method works well with two test systems, (H2CO)(H2O)100 and
Si6(C12H17)6, in the ONIOM(QM:MM) framework. It is noted that the present µ-ADDF method
can be used for pure quantum mechanics (QM) or molecular mechanics (MM) systems (without
ONIOM) and has been tested successfully in C6H10O pure QM calculations.

I. Introduction

Determination of transition state (TS) structures, first-order
saddle points on a potential energy surface (PES), is essential
in theoretical studies of chemical reaction mechanisms.1,2

Quantum mechanics/molecular mechanics (QM/MM)3-5 and
the more general ONIOM6-8 approaches made applications
of accurate quantum methods, such as ab initio and density
functional methods, possible to very large molecular systems
including biological molecules. For discussing reaction
mechanisms in such systems, a search is required for TS
structures of chemical bond rearrangements in a given
reaction center region surrounded by large substituents or
environmental systems such as protein.

The Newton-Raphson method or the more sophisticated
augmented Hessian approaches, such as the Berny optimiza-
tion algorithm9 and the eigenvector following10 (EF) and the
rational function optimization11 (RFO) methods, are em-
ployed in TS optimizers. Efficiency of these methods strongly
depends on the overall algorithm including the selection of
coordinate system,12-14 the Hessian update scheme,15-18 the
use of the trust radius for limiting step size,19-21 and so on.1

Obviously, standard Hessian-based approaches are not ap-
plicable to very large molecular systems without special care
because of the following two difficulties: (1) quadratic and
cubic increase of Hessian storage and diagonalization costs,
respectively, with respect to the numbers of atoms N, and
(2) selecting initial geometries with only one imaginary
frequency eigenvector parallel to desired reaction routes from
extensive coordinate space of such systems.

Both of the above two difficulties can be greatly circum-
vented by use of the microiteration technique.22-28 In a
geometry optimization algorithm based on the microiteration
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technique in ONIOM or QM/MM method, optimizations of
MM atom positions fixing all QM atoms (microiteration) are
performed before every optimization step of QM atom
positions (macroiteration). Since MM atom positions can be
removed from optimization variables in macroiterations, this
algorithm greatly simplifies the problem preparing initial
structures with the correct Hessian structure. The difficulty
concerning the size of a Hessian matrix is completely
removed in microiterations because first-order optimization
techniques, such as the conjugated gradient method, can be
employed in microiterations. Although many more force
calculations will be required in first-order methods than in
second-order methods, which use (exact or updated) Hessian,
this does not matter in microiterations since the cost of force
calculations is trivial in MM calculations. In the microitera-
tion method, the coupling of both the QM and MM parts is
usually completely neglected in the QM Hessian calculation.
Recently, a fully coupled optimization algorithm was pro-
posed in which quadratic couplings between the QM and
MM regions are taken into account explicitly in macroitera-
tions,29 and it dramatically reduced the number of macroi-
teration steps. Although the first difficulty again arises in
the fully coupled scheme since diagonalization of full Hessian
matrices, including QM/QM, QM/MM, and MM/MM terms,
is required in every macroiteration to take the quadratic
couplings into account, its cost can be reduced to O(N)
scaling by using sophisticated numerical techniques, such
as the iterative Davidson diagonalization30 algorithm and the
fast multipole31,32 method.29 This fully coupled microitera-
tion scheme implemented in a development version of
Gaussian and recently released Gaussian 0933 programs
enabled efficient full optimization of ONIOM(QM:MM) TSs
and intermediates of complex systems, such as the entire
mechanism consisting of multiple steps for the nonheme iron
enzyme isopenicillin N synthase containing as many as 5 368
atoms.34

Augmented Hessian methods, when used in general TS
optimizers, maximize the energy in the direction of the only
imaginary frequency eigenvector. Toward this goal, a user
has to prepare a good initial guess, which already has a
negative eigenvalue (or a lowest positive eigenvalue, which
has eigenvector parallel to the negative eigenvalue direction
at a final TS structure). Therefore, a method that does not
require any initial guess of TS structures is desired to be
combined with the microiteration technique to find all of the
important TS structures for a chemical reaction. Here, two
situations can be considered: (1) both reactant and pro-
duct structures are known beforehand, and (2) only a reactant
structure is available. In the first case, there are many good
so-called double-ended methods,35-43 and some of them can
be applied to multistep cases without knowledge of all
intermediates. One of them, the synchronous transit-guided
quasi-Newton method36 has already been used in combina-
tion with the microiteration technique in Gaussian programs,
although it cannot be employed for multistep reactions unless
one prepares a series of all intermediate structures before-
hand. In the second case, one has to use one-point methods
which gives all of the intermediates and the TSs automati-
cally from only one input structure. There are three such

approaches which have actually been applied to automated
global mapping of ab initio PESs: (1) the gradient extremal
following44-53 (GEF), (2) the reduced gradient following54-60

(RGF), and (3) the anharmonic downward distortion
following61-63 (ADDF). The former two have been applied
to a system composed of only four atoms.53,54 On the other
hand, we proposed the global reaction route mapping
(GRRM) method on the basis of the ADDF approach,61-63

and the GRRM method enabled automated and systematic
global mapping on PESs of given chemical formula in many
small systems.64-69 Hence, the GRRM should be the method
of choice to be combined with the microiteration technique
for exploring PESs of reaction center variables in large
flexible environments.

II. Theory

The GRRM Method. If reaction routes can be followed
in both uphill and downhill directions, then GRRM can be
performed as follows: (1) an equilibrium (EQ) structure is
optimized starting from an arbitrary input structure; (2) the
optimized EQ is added to a list of EQ structures (EQ-list);
(3) all entrances of reaction pathways are searched at one of
EQs in the EQ-list; (4) each pathway is followed in an uphill
direction toward a TS or a dissociation channel (DC); (5)
starting from each TS obtained, an EQ is searched by
following the reaction pathway in a downhill direction; (6)
new EQs are added to the EQ-list; (7) return to (3) if there
is any EQ in the EQ-list to which the procedures (3-6) have
not yet been applied; and (8) exit from the cycle if not. A
completion of this procedure is expected to give a global
reaction route map including all EQs and TSs for a given
chemical formula. Here, downhill walks from TSs can be
performed by using conventional intrinsic reaction coordinate
(IRC) following techniques.70-73 Unfortunately, there is no
technique which is mathematically guaranteed to find out
all entrances of reaction pathways from an EQ structure.
Recently, we suggested a principle that all reaction pathways
can be found as ADD maxima around EQ points.61-63

Although this is not a mathematical theorem either, we have
shown that it worked very well in many previous applica-
tions.64-69 Hence, we proposed the GRRM method using
both uphill (ADDF)61-63 and downhill (IRC)70-73 methods.

Some approximate treatments of the GRRM method can
be considered in which the procedures (3-6) are applied to
only selected EQs, which are important in a specific problem.
For instance, they are applied to only stable EQs or TSs with
less than a given total energy, or they are applied to only
EQs possessing a specified bonding pattern. All of these
treatments are available in the latest version of the GRRM
program.

The ADDF Approach. Many typical potential curves
show a common feature that potential energy always becomes
lower than the harmonic potential defined at the bottom of
the curves in directions leading to DCs and TSs. From this
feature, we proposed a principle that reaction channels can
be found by following ADD maxima starting from an EQ
structure on a PES.61-63 In other words, existence of a flat
region of PES or another EQ should have a certain influence
upon PES around the starting EQ, and such indications can

Transition Structure Explorer in Large Systems J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2735



be detected as ADD maxima at the starting EQ. In many
previous applications, the GRRM method based on the
ADDF approach has found many unknown as well as
(almost) all known reaction channels automatically.61-69 The
ADD maxima can be detected in multidimension by using
the scaled hypersphere search (SHS) technique as explained
below.

There are many local ADD maxima around a starting EQ,
and in the full-ADDF (fADDF) approach all of them are
followed.61-69 We suggested that larger ADDs are related
to lower barrier pathways leading to lower energy EQs,74

by combining the Bell-Evans-Polanyi (BEP) principle75,76

with the above ADD principle. The BEP principle tells that
the deeper minimum of the product side is related to the
lower barrier, whereas the ADD principle says that the deeper
minimum (strong potential lowering interaction) of the
product side is related to the larger ADD of the reactant side.
It follows that the larger ADD is related to the lower barrier
leading to the deeper minimum, and high barrier pathways
can be omitted by comparisons of magnitude of ADDs at
the starting EQ without following them. In the large-ADDF74

(lADDF) approach, one follows only large ADDF pathways
avoiding those suggesting high barriers; this approach has
been applied to H-bond cluster systems74,77-79 and confor-
mation samplings.80,81

The SHS Technique. ADD maxima are searched by
comparisons between harmonic and real (QM, MM, or QM/
MM) energies on an isoenergy hypersurface of harmonic
potential. Such a hypersurface is a hyperellipsoid centered
at the starting EQ and can be converted to a simple
hypersphere if the scaled normal coordinates qi ) λi

1/2Qi are
employed, where λi is the eigenvalue of Qi. In the SHS
technique, ADD maxima can be detected as energy minima
on the scaled hyperspheres, and they are traced by expanding
the hypersphere radius. The method to find all or n-lowest
ADDs on a given scaled hypersphere was discussed in the
previous papers62,74 and will not be repeated. Here, use of
the harmonic reference is essential in the ADDF by the SHS
method, and how to define a good harmonic reference for
reaction center variables was a key point of the present
development.

An angle coordinate (θ1, θ2, ..., θf-1) is used as variables
in the energy minimizations on the scaled hyperspheres with
a given radius r (in hartree1/2) as in the polar coordinate
interpolation.82 In the latest implementation, (θ1, θ2, ..., θf-1)
are defined using a set of orthogonal vectors (u1, u2, ..., uf-1,
v) as f ) 3N - 6 axes. At first, a Cartesian Hessian (exact
or updated) is converted to the one in the scaled normal
coordinate. This is a simple coordinate rotation and scaling.
Here, v is a unit vector pointing to the present position from
the origin (starting EQ), and projections of v are eliminated
from the Hessian by using the projection method.83 Then,
diagonalization of the projected Hessian gives f - 1
eigenvectors ui with nonzero eigenvalues εi. Based on an
expansion at the present position with θi ) 0 for all i, ui,
and V at other points on the sphere can be written as

From eq 1, ∂ui/∂θi ) r, ∂ui/∂θj ) 0 (i * j), ∂2ui/∂θj∂θk )
0, ∂V/∂θi ) 0, ∂2V/∂θi

2 ) r, ∂2V/∂θi∂θj ) 0 (i * j) can be
obtained at the present position with θi ) 0 for all i. Then,
these conditions and ∂2E/∂ui∂uj ) 0 (i * j) give

Here, Hessian in terms of θi is already diagonal, i.e., ∂2E/
∂θi∂θj ) 0 (i * j), without further diagonalization, and ∂E/
∂θi and ∂2E/∂θi

2 are used as gradient components and Hessian
eigenvalues in an optimizer in the GRRM program based
on the RFO and trust radius methods.

Double-Ended Methods in the GRRM Program. We
also have a double-ended method in the GRRM program,
which requires two initial structures but is much faster than
the one-point method in general, since the area to be searched
can be limited to a small region between the two structures.42,43

In the double-ended ADDF (dADDF) method, energy
minima on the scaled hyperspheres are followed in the
reverse direction from a point on a very large hypersphere
to the sphere center with reducing hypersphere radius. If there
exists only one TS between the two structures, the trace of
ADD maximum points is expected to pass through the TS
region, same as the original sphere expansion ADDF
algorithm. Hence, the dADDF can be used as a guide to a
TS region between two adjacent EQs, which we call dADDF-
guided TS search (dADDF-TS) approach.42 On the other
hand, if there exists many EQ structures between the two
chosen starting structures, a harmonic reference defined at a
sphere center is no longer meaningful at a very long distance
from the sphere center. In such a case, the trace of ADD
maximum points may not pass through TS regions. However,
each EQ (minima in f dimension) are still on the traces of
minima on hyperspheres (minima in f - 1 dimension)
followed by the dADDF, and the dADDF will give many
EQs (intermediates) along its traces, where we call this
procedure as dADDF-guided EQ search (dADDF-EQ) ap-
proach.43 It is not guaranteed that all intermediates are
obtained by only one application of the dADDF-EQ to highly
multistep and/or highly curved pathways, and one has to add
some EQs by further applications of the dADDF-EQ to pairs
of EQs obtained in the initial application.43 Finally, one can
find a set of TSs connecting the intermediates by applying
dADDF-TS method to adjacent pairs in a set of EQs prepared
by the dADDF-EQ.

Effective Gradient and Hessian in the µ-ADDF
Algorithm. We assume that there are p () 3N - 6) reaction-
center variables x (coordinates directly involved in the
reaction) and q () 3M) nonreaction-center variables y in a
system composed of N + M atoms. A second-order potential
function for this system can be written as

ui ) rsin θi ∏
j

i-1

cos θj

V ) r ∏
j

f-1

cos θj

(1)

∂E
∂θi

) r
∂E
∂ui

∂
2E

∂θi
2 ) r2εi + r

∂E
∂V

(2)
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where gR are gradients for reaction-center variables, hR, hN,
and hC are Hessian matrix elements for reaction-center and
nonreaction-center variables and their couplings, respectively.
Here, all gradient components for nonreaction-center vari-
ables gN are zero because they are already optimized in
microiteration. In macroiterations, PESs of reaction-center
variables fulfilling the following condition for nonreaction-
center variables is considered

We rewrite eq 4 as the following simultaneous equations:

Solutions of eq 5 for nonreaction-center variables are

where γN are elements of inverse Hessian matrix for
nonreaction-center variables. On the other hand, the follow-
ing condition can be obtained when summation over n is
taken for eq 5 multiplied by yn.

From eq 7, the fifth and sixth terms in eq 3 are canceled
out. Then, substitution of eq 6 into eq 3 without the fifth
and sixth terms gives an effective second-order potential for
reaction-center variables as

This tells that the effective gradients for reaction-center
variables are identical to the original gradients without any
correction, and effective Hessian matrix elements for reac-
tion-center variables can be obtained as

Implementation of the Microiteration Technique in
the GRRM Program. We implemented an interface with
ONIOM in a previous version of GRRM program.80 How-
ever, the lADDF algorithm there worked only in conforma-
tion samplings of flexible parts in large systems because the
ADDs related to conformation changes (with only a few kJ/
mol barriers) are much larger than the ones for chemical
bond reorganization (typically with more than 10 kJ/mol
barriers). Although, in principle, the fADDF can find out all

reaction routes, including chemical bond rearrangement
pathways, it is not applicable in practice to very large
systems. By combining with the microiteration technique,
the fADDF and lADDF can be a practical automated TS
explorer for chemical bond rearrangement reactions in large
flexible systems. In the present implementation, all move-
ments of reaction-center atoms were treated by the GRRM
program as in the case without microiterations, where gR

and the (exact or updated) effective Hessian were employed
for determining each displacement of atoms. Before every
macroiterations (in minimizations on scaled hyperspheres,
EQ and TS optimizations and IRC followings), positions of
nonreaction-center atoms were optimized by using a microi-
teration code in the Gaussian programs, where opt ) tight
criterion was employed. All µ-ADDF algorithms, i.e.,
µ-fADDF, µ-lADDF, and µ-dADDF, are now available in
our GRRM program coupled with the Gaussian programs
(only 0384 and 0933 versions).

It is noted that the microiteration technique is not neces-
sarily limited to the ONIOM method. Division of the
reaction-center and nonreaction-center variables can be made
also within a pure QM system, a pure MM system, or a
different division scheme from the ONIOM model real
division.

As shown in eq 8, gR is already including quadratic
couplings with nonreaction-center variables implicitly. Hence,
quadratic couplings are fully taken into account also in
updated Hessian for reaction-center variables. It is known
that usual Hessian update schemes by using gR can be
unstable when different coordinates are used for different
parts,29 e.g., redundant internal coordinates,12-14 and Car-
tesian coordinates are used for reaction-center and nonreac-
tion-center variables, respectively, in Gaussian programs. In
the SHS technique, as discussed above, we use the angle
coordinate for energy minimization on the scaled hyper-
spheres, and the same problem would happen if Hessian was
updated in the angle coordinate. However, as explained
above, we start with Cartesian Hessian (updated in Cartesian
coordinate) in the process for determining minimization steps.
Since microiterations are also performed in Cartesian coor-
dinate in the Gaussian programs, we have never suffered
from the instability problem in Hessian updates.

Only when exact Hessian is computed, a transformation
of full-Hessian (including all of hR, hN, and hC terms) into
the effective Hessian of eq 9 is needed, where, in the present
applications, exact Hessian was computed at the starting EQ
point in the ADDF, every 50 macroiterations in both
minimizations on scaled hyperspheres and macroiterations
in EQ optimizations, every 5 macroiterations in TS optimiza-
tions, and every 10 macrosteps of IRC followings. In this
transformation, we need the inverse matrix of Hessian for
nonreaction-center variables. Here, we rewrite eq 9 as

where hi ) (hi1
C, hi2

C, ..., hiq
C), and HN is Hessian matrix for

nonreaction-center variables. We have to perform either
inversion of HN or p time evaluations of wj ) HN

-1hj. A

V ) ε0 + ∑ i

p
gi
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1
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p ∑ j
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hij
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matrix inversion requires O(q3) costs, in general, whereas
one wj can be obtained by the iterative conjugate gradient
method with (potentially) much less CPU time. Since p is
much smaller than q, in general, and storage of p wj vectors
is trivial, the latter is used in this study. The most time-
consuming part in the conjugate gradient method is the
calculation of a product of HN with an approximate vector
for wj in each iteration. Its cost can be reduced to O(q) from
O(q2) by a direct algorithm proposed recently.29 This
transformation requires O(q2) memory to keep q × q matrix
elements of HN: ∼0.45 GB for M ) 2 500 atoms (q ) 7 500),
∼1.8 GB for M ) 5 000 atoms (M ) 15 000), ∼7.2 GB for
M ) 10 000 atoms (q ) 30 000). Hence, this transformation
is trivial (relative to QM/MM Hessian calculations) in recent
computers when nonreaction-center atoms are less than
5 000, although QM/MM Hessian calculation itself will be
expensive in such large molecules. Memory size for this
transformation also can be reduced significantly if the direct
algorithm29 is employed in the future. An O(N) approach
with iterative algorithm and inverse Hessian update for
eigenvalues and eigenvectors search introduced in an earlier
paper85 will solve this problem as well.

III. Numerical Tests

In this paper, we show three numerical examples. The first
two, for systems shown in Figure 1, are ONIOM applications
in which the ONIOM model system is assumed to be the
same as the µ-ADDF reaction center. One is reactions of
formaldehyde surrounded by 100 water molecules with H2CO
as the ONIOM QM model system and the microiteration
reaction center. Another is reactions of hexasilaprismane86-88

in which Si6C6 are treated as reaction-center atoms in the
microiteration, whereas Si6H6 with link H atoms is a ONIOM
QM model system. The third example is a pure QM
calculation for cyclohexanone (a cyclic ketone molecule with
a C6 ring) at the semiempirical PM3 level, where a carbonyl
group and two carbons connected to the carbonyl group
(C2CdO) were treated as reaction-center atoms. Performance
of the µ-ADDF calculations for the real systems was
compared with performance of the ADDF calculations for
the model systems.

(H2CO)(H2O)100 in ONIOM. Total energy, gradient, and
Hessian were computed by the ONIOM(HF/6-31G:AMBER)

method by using the Gaussian program. Here, MM charges
on H2CO and H2O are the natural charges of the isolated
molecule and the original TIP3P parameters,89 respectively,
and they are mechanically embedded in the ONIOM calcula-
tions. The initial EQ structure was prepared as follows: (1)
the center-of-mass position of H2CO at HF/6-31G level was
set to the origin, (2) one hundred water molecules with both
random center-of-mass positions and orientations were
distributed in a sphere centered at the origin, and (3)
geometry optimization was performed from the structure of
(2) by using an optimizer in the GRRM program coupled
with the Gaussian microiteration code. Then, the µ-fADDF
method was applied to this initial EQ structure. To see
validity of the effective Hessian in eq 10, an µ-fADDF
calculation with uncorrected Hessian (hR in eq 10) was also
performed for comparison. If the present µ-fADDF algorithm
worked very well, then the numbers of macroiterations will
be comparable to the numbers of total cycles in the fADD
calculation for H2CO, and the latter calculation at HF/6-31G
level was also performed for comparison.

Table 1 compares harmonic frequencies of the effective
Hessian, the uncorrected Hessian, and the model system. As
seen in this table, frequencies of the effective Hessian are
very similar to the ones for the model system, and differences
in ω1, ω2, ω3, and ω6 are only 1-3 cm-1. Although ω4 (CO
stretch) and ω5 (symmetric CH stretch) show relatively large
deviations, this may be because these two modes, especially
ω5, change the volume of H2CO significantly, and such
movements were suppressed by the surrounding waters. On
the other hand, the uncorrected Hessian overestimates all the
frequencies compared to those of the effective Hessian. This
is because an energy-lowering effect via the microiteration

Figure 1. Definitions of real system, reaction-center, and ONIOM model system in the present applications to (a) (H2CO)(H2O)100

and (b) Si6(C12H17)6.

Table 1. Harmonic Frequencies (in cm-1) of the Effective
Reaction-Center Hessian (Heff) of (H2CO)(H2O)100 for the
Uncorrected Reaction-Center Hessian (hR) of
(H2CO)(H2O)100 and for H2CO

effective
Hessian, eq 10

uncorrected Hessian,
hR in eq 10

Hessian for
H2CO only

ω1 1 332 1 348 1 329
ω2 1 371 1 392 1 374
ω3 1 675 1 690 1 674
ω4 1 903 1 906 1 910
ω5 3 170 3 226 3 208
ω6 3 300 3 318 3 299
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(energy minimization for the nonreaction-center atoms) is
omitted in the uncorrected Hessian, whereas it is correctly
included in the effective Hessian via the quadratic couplings.
How these frequency differences of 3-56 cm-1 (0.16-1.8%)
affect the performance of the µ-fADDF will be discussed
below.

Table 2 compares performance of the µ-fADDF with the
effective Hessian, the µ-fADDF with the uncorrected Hes-
sian, and the fADDF for the model system. Here, in all cases,
a TS for both dissociation into H2 + CO and isomerization
into hydroxymethylene were obtained. As expected, µ-
fADDF with the effective Hessian showed almost the same
performance as the model system. Exactly the same numbers
of ADDs with the same characters were followed in these
two cases: two isomerization pathways to hydroxymethylene
via a TS, two direct dissociation routes to H + HCO, one
direct dissociation route to O + CH2, two dissociation routes
to H2 + CO via a TS, and two dissociation routes to H2 +
CO via a non-TS region with symmetric out-of-plane motion.
The numbers of both QM gradient and Hessian calculations
are also very similar to each other in these two cases.
Although the µ-fADDF required bit more QM gradient and
Hessian, this is because (H2CO)(H2O)100 is not invariant
against permutation of two H atoms in H2CO. This symmetry
breaking gives two independent TSs for migration of each
H atom in the isomerization to hydroxymethylene and also
two independent TSs for asymmetric association of two H
atoms in the dissociation to H2 + CO. Only two IRC
calculations were required in the model system, whereas four
calculations were required in the µ-fADDF case, since the
IRC calculation is performed when an independent TS is
found. This can be seen from the ngradient as well as nHessian

ratios between these two cases which are 1.07 and 1.16,
respectively. As explained above, we perform Hessian
calculations with a higher frequency in IRC calculations, and
hence, the higher ratio in nHessian implies that the difference
was not caused in the ADDF process. It follows that the
present µ-fADDF code coupled with a microiteration code
in the Gaussian programs worked nearly perfectly in this
very simple numerical test.

Only 0.16-1.8% overestimation of the harmonic frequen-
cies in the µ-fADDF with the uncorrected Hessian caused
substantial deterioration in performance of the ADDF. Five
extra pathways were followed via non-TS regions, and this
increased the total numbers of gradient calculations to more
than double. This is because minima on the scaled hyper-
spheres, based on wrong harmonic frequencies, are no longer
ADD maximum points. This demonstrates how important
the good harmonic reference is in the ADDF approach.

Another point we have to discuss here is that IRC
calculations in the reverse direction from obtained TSs
sometimes (three out of four TSs) did not come back to the
initial EQ but lead to EQs for (H2CO)(H2O)100 with other
(H2O)100 arrangements. (H2CO)(H2O)100 has numerous local
structures with different (H2O)100 arrangements, and some
of them are connected to one of the four TSs, while others
are not. If one had to prepare correct (H2O)100 arrangements
for each bond rearrangement, then the problem was much
more complicated. However, fortunately, our observation in
this test is that the µ-ADDF was able to find out all of the
four TSs starting from an arbitrary (H2O)100 arrangement,
which does not have direct connection to all four in full-
dimension. This may be because small changes in the
(H2O)100 arrangement caused only negligible effects on the
reference harmonic frequencies of the reaction-center vari-
ables. No significant bumps were detected along traces of
ADDs due to changes in (H2O)100 arrangements. A similar
thing was also observed in the Si6(C12H17)6 case. Hence, to
our recommendation, one does not need to prepare a
conformation of the nonreaction center parts with a direct
connection to a final TS, but it is better to start from a
conformation preferred at a given experimental condition or
an experimental structure.

Si6(C12H17)6 in ONIOM. Total energy, gradient, and
Hessian were computed by the ONIOM(B3LYP/6-31G(d):
UFF) method by using the Gaussian program. The initial
EQ structure and MM-charges were prepared as follows: (1)
a conformation sampling for the hydrocarbon arrangements
with freezing the Si6-cage structure was performed by using
the lADDF method and the UFF force-field with zero MM-
charges on the hydrocarbons, (2) MM charges were estimated
by the QEq90 method at the lowest energy conformer among
about 100 ones obtained in (1) and mechanically embedded
in the subsequent ONIOM calculations, and (3) geometry
optimization at the ONIOM level was performed from the
lowest energy conformer by using an optimizer in the GRRM
program coupled with the Gaussian microiteration code. In
the µ-lADDF calculation, to complete 15 of the largest
ADDF, 45 ADDs were detected on the smallest hypersphere,
and the 30 largest ones were followed among the 45. The
30 ADDs were followed simultaneously, and 15 are omitted
without completion of the ADDF when the other 15
overcame barriers along their traces. The 15 largest ADDF
were completed also in the lADDF calculation for the model
system at B3LYP/6-31G(d) level. The µ-dADDF algorithm
was also tested.

Figure 2a and b shows TSs and products for bond
rearrangements in Si6-cage backbone of hexasilaprizmane
for both the real and the model system, respectively. Only
the lowest energy TS is shown in Figure 2 when there are
more than one TS for a bond rearrangement in the Si6-cage
due to different (a) hydrocarbon arrangement or (b) H atom
direction. Although there are two other reaction pathways
with H atom transfer in the model system, they are not shown
in Figure 2b for simplicity. Among three TSs in Figure 2b,
model-TS3 was taken from previous fADDF results91 for
explanation, although it was not found by the lADDF treating
only 15 ADDs because of its high barrier. In Figure 2a, there

Table 2. Performance of the µ-fADDF for (H2CO)(H2O)100

Compared to the µ-fADDF with the Uncorrected Hessian
and the fADDF for the Model System

µ-fADDF with
effective Hessian,

eq 10

µ-fADDF with
uncorrected Hessian,

hR in eq 10
fADDF for
H2CO only

nADD 9 14 9
ngradient 2 665 5 741 2 482
nHessian 117 192 101

Transition Structure Explorer in Large Systems J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2739



are four different Si-Si bond-breaking patterns in one of
the triangles of the prism, depending on other subsequent
bond breaking or formation: (1) the reaction stops after one
bond breaking via real-TS1, (2) a backward Si-Si bond in
another triangle breaks subsequently via real-TS2, (3) one
bond formation accompanies in addition to the two bonds
breaking like (2) via real-TS3, which leads to a product with
hexasilabenzvalene backbone, (4) a Si-Si bond on the same
side of another triangle breaks subsequently via real-TS4,
which leads to a product with hexasila-Dewar-benzene
backbone. The bond reorganization pattern in model-TS1 is
similar to real-TS3, although another bond breaks in real-
TS3 to reduce steric repulsion among hydrocarbon substit-
uents in crowded parts. The bond reorganization pattern in
model-TS3 is similar to the one in real-TS4, although further
bond formation in model-TS3 is prohibited in the real-TS4
because of an increase of steric repulsion due to the bond
formation. There are two other TSs in the model system
involving H atom transfer from a Si to another Si, and their
bond rearrangement pattern in the Si6 backbone is very
similar to both real-TS1 and -TS2, although C12H17 transfer
in the real system is very difficult because of steric repulsion.
A TS similar to model-TS2 was not found in the real system
by the lADDF treating of only 15 ADDs. Although it might
be found also in the real system if fADDF is performed, we
did not do this test because of its high costs. This PES is
related to the synthesis of Si6(C12H17)6 with the hexasila-
prizmane backbone and the thermal reaction from hexasila-
Dewar-benzene to hexasilaprizmane after photolysis of
hexasilaprizmane.86-88 Such experimental studies aimed at
synthesis of hexasilabenzene, which have not yet material-
ized,92 and PESs between hexasilabenzene and other
Si6(C12H17)6 compounds are of great interest in inorganic

chemistry. PESs for rearrangements of Si6(C12H17)6 among
hexasilaprizmane, hexasila-Dewar-benzene, hexasilabenz-
valene, and hexasilabenzene at a higher computation level
will be discussed in a forthcoming paper together with their
theoretical photoabsorption spectra.

Table 3 shows performance of the µ-lADDF and the
lADDF for the real system and the model system, respec-
tively. Since we set the numbers of ADDs to be followed as
15 in the lADDF treatment, nADD is 15 in both cases. There
were many TSs for similar bond rearrangements in Si6 due
to C1 symmetry in the real system, and this increased the
numbers of IRC calculations significantly. Actually, 14
independent TSs were located in the real system, whereas
only 5 TSs were located in the model system. In this system,
we also tested the µ-dADDF-TS and µ-dADDF-EQ algo-
rithms, which are applied to pathways among hexasilapriz-
mane, hexasila-Dewar-benzene, and hexasilabenzvalene.
Table 3 also shows their performance, where costs for IRC
calculations are not included in ngradient and nHessian for
µ-dADDF. In the µ-dADDF, nADD is always one. Although
performance slightly depends on choices of sphere-center

Figure 2. TSs and products of reactions in the Si6 backbone for (a) Si6(C12H17)6 and (b) Si6H6. Every Si atoms have one (a)
C12H17 or (b) H. Thin (red) lines and dashed (green) lines on TSs show dissociating and generating bonds, respectively.

Table 3. Performance of µ-lADDF for Si6(C12H17)6, lADDF
for Si6H6 (model system), and µ-dADDF for Si6(C12H17)6

µ-lADDF lADDF
µ-dADDF-TS

(PRa-DBb)
µ-dADDF-TS

(PRa-BVc)
µ-dADDF-EQ

(DBb-BVc)

nADD 15 15 1 1 1
ngradient 14540 11020 146d/147e 82d/162f 189e/190f

nHessian 937 438 14d/16e 6d/8f 8e/8f

a Hexasilaprismane type EQ (see Figure 1). b Hexasila-
Dewar-benzene type EQ (see real-eq 4 in Figure 2).
c Hexasilabenzvalene type EQ (see real-eq 3 in Figure 2). d PR
was the sphere-center. e DB was the sphere-center. f BV was the
sphere-center.
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in the µ-dADDF-TS between hexasilaprizmane and hexasila-
Dewar-benzene and in the µ-dADDF-EQ between hexasila-
Dewar-benzene and hexasilabenzvalene, very different in the
µ-dADDF-TS between hexasilaprizmane and hexasilabenz-
valene since hexasilabenzvalene is much closer to the TS
than hexasilaprizmane. In the µ-dADDF-EQ, hexasilapriz-
mane was obtained as unique intermediate, and the total cost
for obtaining the pathway between hexasila-Dewar-benzene
and hexasilabenzvalene by using the µ-dADDF methods is
417-499 gradient and 28-32 Hessian calculations.

C6H10O in Pure QM Calculations. To see the perfor-
mance of the µ-fADDF in the pure QM system, we applied
it to cyclohexanone (a cyclic ketone molecule with a C6 ring)
at the semiempirical PM3 level, where a carbonyl group and
two carbons connected to the carbonyl group (C2CdO) were
treated as reaction-center atoms. The µ-fADDF traced eight
pathways: two isomerization pathways from C2CdO to
C-C-O-C with a C6O seven membered ring via a TS, two
C-C bond dissociation pathways to a (CH2)5CO diradical
chain, a direct oxygen dissociation route, two dissociation
routes to cyclopentane + CO via a TS, and a C-C bond
dissociation route with a H atom transfer from CH2 to CdO
generating CH(CH2)4CHO. Here, this result for C2CO
reaction-center is very similar to the H2CO shown above.
The number of macroiterations was 2 081 (1 996 force and
85 Hessian), and this is again comparable to the performance
of the fADDF in H2CO (see Table 2). In full-QM systems,
costs of microiterations are not negligible, and 20 096 forces
were required in total for microiteration. This implies that
microiterations converged with only 10 iterations on average
because of the following two reasons: (1) the maximum step
size in each macroiteration was limited to 0.1 Å, and (2) the
optimizer of Gaussian programs is very efficient. Hence, the
numbers of force calculations in the present µ-ADDF applied
to full-QM systems can be estimated to be ∼10 times larger
than those of the model systems. This is a significant
improvement over the fADDF since its cost will increase
exponentially depending on the numbers of atoms.

IV. Remarks on Limitations and Future
Applications

An upper limit in the numbers of nonreaction-center atoms,
which can be handled in the present µ-ADDF algorithm
(nMAX), is determined by a memory size for Hessian storage
in the transformation of nonreaction-center Hessian to the
effective Hessian in eq 10. For example, nMAX will be about
10 000 if available memory size is 8.0 GB. Hence, a small
enzyme may be a target of future applications. Further
increase of system size can be achieved by an introduction
of an approximation in which a part of a huge molecule very
far away from a reaction-center is frozen at an initially
optimized or experimental geometry. Systematic search for
TSs by the µ-ADDF with this approximation will give many
candidates of TSs, and then they can be reoptimized in full
dimension by using the microiteration-based optimizer in the
Gaussian programs. This treatment of dividing a huge
molecule into three parts, i.e., reaction-center, nonreaction-
center, and frozen atoms, is already available in the GRRM

program for future studies, although this approximation was
not necessary in the present small systems.

When the numbers of nonreaction-center atoms are less
than nMAX, applicability is determined from the numbers of
reaction-center QM atoms. Although it will strongly depend
on available computer resources and computation levels, we
expect from our previous applications that upper limits may
be ∼20 atoms for fADDF, ∼50 atoms for lADDF, and >100
atoms in dADDF, for example, with DFT with a double-�
basis set on eight or more cores of CPU. For example, in
general, 100 or more atoms are often treated as a QM system
in studies of enzyme reactions to take interactions between
reaction-centers and surrounding residues and/or solvents into
account. This is too much if a fully automated exploration
of potential surface, by using the lADDF, is desired. In this
case, use of the three-layer ONIOM(QM/QM/MM) with a
semiempirical QM method for a medium layer could be used
in an initial search for candidates of TS structures by the
lADDF, where such a medium layer will also be treated by
the microiteration. Then, they can be refined by using the
two-layer ONIOM(QM/MM) and the standard TS optimizer.
An application of the present approach to enzyme reactions
will be a big challenge in the future.

Recently, we made systematic searches for minima on
seams of crossing (MSX) structures possible for nonadiabatic
transitions in photochemical and ion-molecule reactions by
using the GRRM method.93 A coupling of the MSX search
code with the present µ-ADDF code will be an important
development in the future.

V. Conclusion

In this study, we combined the microiteration technique with
the GRRM method. Effective Hessian that includes full
quadratic couplings between both reaction center and mi-
croiteration variables were derived for the reaction center
variables. The standard GRRM program was modified so
that such an effective Hessian can be employed in the full
and large-ADDF GRRM method as well as the double-ended
GRRM method on the basis of µ-ADDF algorithm. Their
performance was tested for ONIOM calculations for (1)
H2CO surrounded by 100 water molecules and (2) a prism-
like Si6-cage with six (C12H17) substituents, where H2CO and
Si6C6 were assumed to be reaction center atoms, respectively,
as well as the pure QM calculations for cyclohexanone. The
number of macroiterations in each application was compared
to the number of total steps in similar calculations of the
model systems, i.e., isolated H2CO and Si6H6. The number
of macroiterations was slightly larger than the number of
total steps in the model system due to symmetry lowering
(from C2v to C1) in H2CO by the surrounding asymmetric
(H2O)100 cluster. This effect was larger in the Si6 case than
in H2CO because of a higher (D3h) symmetry in the model
system. Except for this, the µ-ADDF in both (H2CO)(H2O)100

and Si6(C12H17) worked almost as well as the conventional
ADDF in the model systems in spite of flexible environ-
ments. Therefore, we conclude that the GRRM method
combined with the µ-ADDF algorithm will be a very
powerful tool for exploring PESs of reaction-center variables
in large molecular systems.
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Abstract: Conceptual density functional theory (DFT) based global reactivity descriptors are
used to understand the relationship between structure, stability, and global chemical reactivity.
Furthermore, these descriptors are employed in the development of quantitative structure-activity
(QSAR), structure-property (QSPR), and structure-toxicity (QSTR) relationships. However,
the predictive power of various relationships depends on the reliable estimates of these
descriptors. The basic working equations used to calculate these descriptors contain both the
ionization potential and the electron affinity of chosen molecules. Therefore, efficiency of different
density functionals (DFs) in predicting the ionization potential and the electron affinity has to be
systematically evaluated. With a view to benchmark the method of calculation of global reactivity
descriptors, comprehensive calculations have been carried out on a series of chlorinated
benzenes using a variety of density functionals employing different basis sets. In addition, to
assess the utility of global reactivity descriptors, the relationships between the reactivity-electro-
philicity and the structure-toxicity have been developed. The ionization potential and the electron
affinity values obtained from M05-2X method using the ∆SCF approach are closer to the
corresponding experimental values. This method reliably predicts these electronic properties
when compared to the other DFT methods. The analysis of a series of QSTR equations reveals
that computationally economic DFT functionals can be effectively and routinely applied in the
development of QSAR/QSPR/QSTR.

Introduction

The conceptual DFT based global reactivity and the local
reactivity descriptors are useful quantities to understand the
global reactivity and the local site selectivity, respectively.
Reliable calculation of global reactivity descriptors is
important in conceptual DFT, as these values are used as
input for understanding the relationships between structure,
stability, and reactivity as well as for QSAR/QSPR/QSTR
development.1,2 The working equations used to calculate the
various global reactivity descriptors involve the ionization
potential and the electron affinity of selected molecules.

Computationally, the ionization potential and the electron
affinity are calculated from total electronic energy calcula-
tions on the N - 1, N, and N + 1 electron systems at the
neutral geometry. This method is referred to as “delta SCF”
or “∆SCF” method. Since, this approach is computationally
demanding, these quantities are also calculated using Koop-
mans’ approximation.3 However, this approximation is
suitable for molecules with positive electron affinity but is
less appropriate for systems with negative electron affinity.
De Proft et al. have addressed this issue, and various new
working relations have been proposed to compute absolute
hardness from the ionization potential and the electron
affinity.4,5

Both conventional ab initio wave function theory6 and
Kohn-Sham DFT methods7 have been employed to predict
the ionization potential and the electron affinity and, thus,
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global reactivity descriptors. Prediction of these electronic
properties using wave function theory and DFT approaches
has several limitations.8,9 In this context, DFT methods have
been shown to be more efficient than conventional ab initio
methods due to their excellent cost-to-performance ratio.10,11

The most popular hybrid DFT based B3LYP methods have
been employed in several studies to predict the global and
local reactivity descriptors.12

Numerous studies have been carried out to develop new
exchange and correlation functionals to enhance the quality
of prediction and expand the applicability of DFT methods.7,13

Scuseria and Staroverov have reviewed the various strategies
used to refine functionals for DFT.14 Truhlar and co-workers
have made seminal contributions to the development and
refinement of functionals with wide applicability in chemistry
using diverse set of training and test sets.8,10,11,13,15-18 In
general, two different approaches have been used for the
development of new functionals, viz, nonempirical, and
semiempirical. A nonempirical approach leads to the devel-
opment of ab initio DFT (or pure DFT) in which functionals
are constructed from the first principles with exact con-
straints. In the semiempirical DFT approach, the new
functionals depend on the one or more parameters which
are obtained from fitting to different sets of experimental
data. The following strategies have been applied to design
and develop different new density functionals: (i) local spin
density approximation (LSDA), (ii) generalized gradient
approximation (GGA), (iii) constraint satisfaction, (iv)
modeling exchange-correlation hole, (v) empirical fits, and
(vi) mixing Hartree-Fock and approximate DFT exchanges.

Different functionals used in the literature are referred to
as various rungs of “Jacob’s ladder”.19,20 They are classified
on the basis of the number and the types of the constituents
used in the functionals. The lowest rung is the LSDA in
which the density functional depends only on density, and
the second rung is the GGA in which the density functional
depends on density and its reduced gradient. The third rung
is meta GGA in which the functional also depends on kinetic
energy density. The fourth rung is hybrid GGA, which
employs some percentage of HF exchange. There are two
kinds of DFT methods that fit into the fourth rung of the
Jacob’s ladder, and they are called hybrid GGA (a combina-
tion of GGA with Hartree-Fock exchange). The typical
examples are B3LYP, PBE0, and MPW1K. The other type
is hybrid meta GGA (a combination of meta GGA with
Hartree-Fock exchange). The MPWB1K, MPW1B95, and
TPSSh functionals belong to this category. Both hybrid GGA
and hybrid meta GGA are semiempirical, and they have been

very successful in chemistry. Recently, new density func-
tionals have been developed by combining the method of
constraint satisfaction with parametrization for thermochem-
istry, thermochemical kinetics, and noncovalent interac-
tions.18 These functionals are denoted as M05 and M05-
2X. Subsequently, the same authors have developed M06,
M06-2X, M06-HF, and M06-2L using large energetic
databases. Since several functionals have been developed in
the last five years, it is necessary to analyze the performance
of various categories of DFT methods to predict the global
reactivity descriptors. In this context, the DFT method which
reliably predicts the ionization potential and the electron
affinity is necessary. Hence, we have selected functionals
from different categories. The selected functionals are
presented in Table 1. Various basis sets such as 6-31G*,
6-31G**, 6-31+G*, 6-31+G**, 6-31++G**, 6-311++G**,
aug-CC-PVDZ, and aug-CC-PVTZ have been chosen in this
study. To explore the performance of various new function-
als, the calculated ionization potential and electron affinity
values have been compared with available experimental
values. To benchmark the appropriate method for the
calculation of global reactivity descriptors from QSAR/
QSPR/QSTR perspectives, a series of chlorine-substituted
benzenes have been considered as model systems, and QSTR
has been developed for fish toxicities of these compounds
against Poecilia reticulate.21

Theoretical Background. The chemical potential (µ) and
chemical hardness (η) are defined within DFT as the first- and
second-order derivatives, respectively, of the Kohn-Sham (KS)
energy to the number of particles at constant potential V(rb).3,22-24

where E and N are the total energy and the number of electrons
in the system, respectively, and V(rb) is the external potential.
The global hardness is an indicator of the overall stability of
the system. A maximum hardness principle (MHP) relating
hardness to stability at a constant chemical potential has been
proposed by Pearson.3,22,25 The proof of the same has been
provided by Parr and Chattaraj.26-29 The chemical potential,
µ, is identified as the negative of the electronegativity (�) by
Iczkowski and Margrave.30 Although, these quantities have been
defined based on the KS energy, the same definitions have been
routinely used in the canonical molecular orbital theory. The
most popularly used formulas for the computation of these
quantities use the three point finite difference approximation

Table 1. List of Different DFT Methods Evaluated in This Study

functional type
percentage of Hartree-Fock

exchange
exchange/correlation

functional ref

SVWN5 LSDA 0 Slater’s local ex/VWN no.5 41-43
BLYP GGA 0 Becke88/Lee-Yang-Parr 44, 45
B3LYP HGGA 20 Becke88/Lee-Yang-Parr 44-46
MPWB1K HMGGA 44 modified PW91/Becke95 15, 47, 48
BB1K HMGGA 42 Becke88/Becke95 16, 44, 47
MPW1B95 HMGGA 31 modified PW91/Becke95 15, 47, 48
MO5 HMGGA 28 self-correlation-free 17
MO5-2X HMGGA 56 self-correlation-free 18

µ ) -� ) (∂E/∂N)υ( rb) (1)

η ) (∂2E/∂N2)υ( rb) ) (∂µ/∂N)υ( rb) (2)
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and express µ and η through the ionization potential (I) and
the electron affinity (A).

Ionization potential and electron affinity can be calculated
using ∆SCF method using the formulas given below:

where I and A are obtained from total electronic energy
calculations on the N - 1, N, and N + 1 electron systems at
the neutral geometry. Another DFT approximation originat-
ing from the Koopmans’ theorem3 is

where εHOMO and εLUMO are the KS one electron eigenvalues
associated with the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO), respectively, from approximate DFT calculations
on neutral molecules. These approximations have also been
widely used in the canonical molecular orbital theory.
Various problems in the calculation of µ and η have been
highlighted in a recent study.4 Other methods of calculation
of global hardness have been reported in the literature.4,31-33

Compact finite difference schemes with spectral-like resolu-
tion have been used to calculate hardness as second deriva-
tives of energy with respect to the electron number.31 An
algorithm for computation of density functional based orbital
reactivity indices, such as orbitally resolved hardness and
softness tensors, and total hardness, and the Fukui functions
have been extended to degenerate electronic states.32 Re-
cently, Tozer and De Proft have described the problems
associated with the calculation of absolute hardness.4 A
simple correction to the Koopmans’ expression is highlighted
on the basis of a consideration of integer discontinuity. The
resulting expression does not require the explicit computation
of the electron affinity. The alternative expression for the
hardness provided by Tozer and De Proft is

where I ) I0 is the experimental ionization potential. It can
be further written as

Although there has not been a rigorous definition, the
concept of electrophilicity has been known for several
decades. In 1999, Parr et al. proposed a rigorous definition
based on the energy lowering associated with a maximum
amount of electron flow between two species.34 It is defined
as

Subsequently, a number of studies have been made to
understand the global reactivity and site selectivity of systems
using this new index. A detailed account on various aspects
of this new electrohilicity index has been summarized in a
recent review and update.35

Computational Details. The geometries of the benzene
and 12 chlorine-substituted benzenes are optimized using
various DFT methods listed in Table 1 with 6-31G*,
6-31G**, 6-31+G*, 6-31+G**, 6-31++G**, 6-311++G**,
aug-CC-PVDZ, and aug-CC-PVTZ basis sets. The harmonic
vibrational frequencies are calculated for all the geometries,
which confirm that the obtained structures are minima on
the potential energy surface. The global electronic properties
are calculated using the eqs 3, 4, and 10. Both the ionization
potential and electron affinity values are calculated using
∆SCF procedure (eqs 5 and 6) and Koopmans’ theorem (eq
7). With a view to assess how various reactivity indices
evolve, the global reactivity descriptors computed from
different schemes are also compared with Tozer and De
Proft’s expression for η (eq 8). All calculations are carried
out using Gaussian 03 suite of programs.36

Results and Discussion

Various chlorinated benzenes (CBs) selected in this study
are schematically represented in Figure 1 along with the atom
numbering. Since, the objective of the present investigation
is to explore efficiencies of various DFs, a systematic analysis
has been carried out on the structure, the energy, and the
electronic properties of chlorobenzenes.

Energetics and Structural Details of Chlorobenzenes. It
is well-known that the sterical interaction between any two
adjacent chlorine atoms in substituted benzenes decreases
the stability of the respective isomers. As a consequence,
the lowest stability can be expected for the CBs with chlorine
at ortho and meta positions. The calculated total energies,
the thermodynamic quantities (enthalpy and free energy), and
the relative energies using various methods with 6-31++G**
basis set for all chlorobenzenes along with benzene are
presented in Tables 2-4. The stability of a conformer with
a given number of chlorine atoms is determined by its relative
energy (∆E) with respect to the most stable isomer. For
dichlorobenzenes, all the chosen methods predict the para
isomer (1,4-C2B) of dichlorobenzene as the most stable
isomer, except in the SVWN5 method. It can be found that
SVWN5 method predicts 1,3-C2B as the most stable isomer
(Table 2). This discrepancy may be attributed to the problems
in the treatment of exchange and correlation interactions

µ ) -� ) -1
2

(I + A) (3)

η ) (I - A) (4)

I ≈ E(N - 1) - E(N) (5)

A ≈ E(N) - E(N + 1) (6)

I ≈ -εHOMO, A ≈ -εLUMO (7)

η )
εLUMO - εHOMO

2
+ εHOMO + I (8)

η )
εLUMO + εHOMO

2
+ I (9)

ω ) µ2

2η
(10)

Figure 1. Chlorobenzene template structure with atom
numbering.
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when compared to other functionals. In fact, it can be noted
that the Hartree-Fock exchange in SVWN5 and BLYP is
zero. However, BLYP predicts the trend which is similar to
that of other functionals and is discussed in the subsequent
section. Hence, the inherent features of Slater’s exchange
and the VWN’s correlation functionals may be responsible
for the incorrect experimental trend. Further, the results
clearly show that an intricate balance between the exchange
and correlation terms is necessary for the appropriate
prediction of the structure.

The calculated energy difference between the para and the
ortho isomers from MPW1B95, MPWB1K, BB1K, and
M05-2X methods are similar. It ranges from 1.85 to 1.95
kcal/mol. When compared to these methods, B3LYP, BLYP,
and M05 methods predict marginally higher energy differ-
ences of 2.24 to 2.47 kcal/mol. Similarly, 1,3,5-C3B and
1,2,4,5-C4B are shown to be the most stable isomers,
whereas 1,2,3-C3B and 1,2,3,4-C4B are the least stable
isomers for the tri- and tetrachlorobenzenes, respectively. The
predicted energy difference between the isomers of tri- and
tetrachlorobenzenes follows the same trend as that observed
for dichlorobenzenes. It has been found from the above
analysis that the MPW1B95, MPWB1K, BB1K, and M05-
2X methods predict similar trends, whereas B3LYP, BLYP,
and M05 methods show similar trends, which is different
from the former. The SVWN5 predicted energy does not
show any agreement with the other chosen methods. The

thermodynamic quantities, such as enthalpy and free energy,
as well as their relative values are shown in Tables 3-4.
The trends observed in the ∆H and ∆G calculations are more
or less parallel to that of ∆E.

Tables S1-S2 shown in the Supporting Information
provides the details of both the calculated bond lengths and
angles using various methods with 6-31++G** basis set
along with the experimental values for comparison.37,38 It
is evident from the tables that the calculated geometrical
properties are in good agreement with the experimental
values. It can be found from the Supporting Information
(Table S1) that chlorine substitution in the C1 reduces the
bond length of the C1-C2 and C1-C6 to 0.002 Å, which is
observed in all the methods. The bond lengths predicted by
the M05 and M05-2X methods are closer to the experimental
values when compared to the other methods. The BLYP
method slightly overestimates the bond distances.

Ionization Potential and Electron Affinity. The ioniza-
tion potentials and the electron affinities calculated from
various methods using 6-31++G** basis set employing
Koopmans’ theorem are shown in Table 5, and the results
obtained from the remaining basis functions are shown in
Supporting Information (Tables S3-S8). The experimental
ionization potentials and the electron affinities of CBs
obtained from the NIST standard reference database are also
presented in the same table. It can be found that all selected

Table 2. Calculated Energies E (Hartree) and Relative Energy (∆E, kcal/mol) with respect to the Most Stable Isomer with a
Given Number of Chlorine Atoms using 6-31++G** Basis Set

B3LYP MPW1B95 MPWB1K BB1K SVWN5 BLYP M05 M05-2X

system E ∆E E ∆E E ∆E E ∆E E ∆E E ∆E E ∆E E ∆E

CB -691.86 -691.82 -691.82 -691.81 -689.37 -691.74 -691.68 -691.81
1,2-C2B -1151.45 2.44 -1151.47 1.85 -1151.47 1.85 -1151.45 1.95 -1147.82 1.31 -1151.32 2.47 -1151.28 2.24 -1151.38 1.94
1,3-C2B -1151.46 0.05 -1151.47 0.01 -1151.47 0.00 -1151.46 0.01 -1147.83 0.00 -1151.32 0.01 -1151.28 0.06 -1151.38 0.08
1,4-C2B -1151.46 0.00 -1151.47 0.00 -1151.47 0.00 -1151.46 0.00 -1147.83 0.02 -1151.32 0.00 -1151.28 0.00 -1151.38 0.00
1,2,3-C3B -1611.04 4.74 -1611.12 3.74 -1611.12 3.64 -1611.09 3.96 -1606.27 2.44 -1610.89 4.86 -1610.88 4.21 -1610.95 3.65
1,2,4-C3B -1611.04 2.14 -1611.12 1.73 -1611.12 1.64 -1611.09 1.83 -1606.27 1.13 -1610.90 2.22 -1610.88 1.89 -1610.95 1.63
1,3,5-C3B -1611.05 0.00 -1611.12 0.00 -1611.12 0.00 -1611.10 0.00 -1606.28 0.00 -1610.90 0.00 -1610.88 0.00 -1610.95 0.00
1,2,3,4-C4B -2070.63 2.82 -2070.76 2.13 -2070.76 2.15 -2070.73 2.27 -2064.72 1.33 -2070.47 2.86 -2070.48 2.52 -2070.51 2.10
1,2,3,5-C4B -2070.63 0.40 -2070.77 0.33 -2070.77 0.34 -2070.73 0.36 -2064.72 0.19 -2070.47 0.36 -2070.48 0.30 -2070.52 0.30
1,2,4,5-C4B -2070.63 0.00 -2070.77 0.00 -2070.77 0.00 -2070.73 0.00 -2064.72 0.00 -2070.48 0.00 -2070.48 0.00 -2070.52 0.00
1,2,3,4,5-C5B -2530.21 -2530.41 -2530.41 -2530.37 -2523.17 -2530.05 -2530.07 -2530.08
1,2,3,4,5,6-C6B -2989.79 -2990.05 -2990.05 -2990.00 -2981.61 -2989.62 -2989.67 -2989.64
benzene -232.27 -232.17 -232.16 -232.17 -230.92 -232.15 -232.07 -232.23

Table 3. Enthalpies H (Hartree) and Free Energies G (Hartree) Calculated from B3LYP, MPW1B95, MPWB1K, and BB1K
Methods with 6-31++G** Basis Seta

B3LYP MPW1B95 MPWB1K BB1K

system H ∆H G ∆G H ∆H G ∆G H ∆H G ∆G H ∆H G ∆G

CB -691.77 -691.80 -691.72 -691.76 -691.72 -691.76 -691.72 -691.75
1,2-C2B -1151.36 2.45 -1151.40 2.55 -1151.38 1.91 -1151.42 1.96 -1151.38 1.91 -1151.42 1.80 -1151.36 2.00 -1151.41 1.93
1,3-C2B -1151.37 0.04 -1151.41 0.04 -1151.38 0.00 -1151.42 0.00 -1151.38 0.00 -1151.42 0.00 -1151.37 0.00 -1151.41 0.00
1,4-C2B -1151.37 0.00 -1151.41 0.00 -1151.38 0.02 -1151.42 0.09 -1151.38 0.03 -1151.42 0.15 -1151.37 0.02 -1151.41 0.13
1,2,3-C3B -1610.96 4.82 -1611.00 5.03 -1611.04 3.80 -1611.08 4.07 -1611.04 3.79 -1611.08 4.05 -1611.01 4.03 -1611.05 4.27
1,2,4-C3B -1610.96 2.19 -1611.01 2.28 -1611.04 1.73 -1611.08 1.76 -1611.04 1.72 -1611.08 1.60 -1611.01 1.84 -1611.06 1.73
1,3,5-C3B -1610.97 0.00 -1611.01 0.00 -1611.04 0.00 -1611.09 0.00 -1611.04 0.00 -1611.09 0.00 -1611.02 0.00 -1611.06 0.00
1,2,3,4-C4B -2070.55 2.75 -2070.60 2.87 -2070.69 2.08 -2070.74 2.13 -2070.69 2.10 -2070.74 2.09 -2070.66 2.22 -2070.70 2.22
1,2,3,5-C4B -2070.56 0.37 -2070.60 0.41 -2070.70 0.32 -2070.74 0.34 -2070.69 0.34 -2070.74 0.36 -2070.66 0.35 -2070.71 0.38
1,2,4,5-C4B -2070.56 0.00 -2070.61 0.00 -2070.70 0.00 -2070.74 0.00 -2070.69 0.00 -2070.74 0.00 -2070.66 0.00 -2070.71 0.00
1,2,3,4,5-C5B -2530.15 -2530.20 -2530.35 -2530.40 -2530.35 -2530.40 -2530.30 -2530.35
1,2,3,4,5,6-C6B -2989.74 -2989.79 -2990.00 -2990.05 -2990.00 -2990.05 -2989.94 -2990.00
benzene -232.16 -232.20 -232.06 -232.09 -232.06 -232.09 -232.06 -232.10

a The relative energies of ∆H and ∆G (in kcal/mol) are with respect to the stable isomer of given number of chlorine atoms.
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methods underestimate the ionization potentials. Further, the
magnitudes and signs of the electron affinities have not been
predicted properly by these methods. The values predicted
from the M05-2X method are much closer to the experi-
mental values. The discrepancy in the prediction of these
values may be due to the parametrization of different density
functionals and the limitations of Koopmans’ theorem. In
order to assess the importance of electron relaxation upon

ionization and electron attachment, the ∆SCF approach are
used employing M05-2X/6-31++G** method. The results
are depicted in Table 6. It can be observed that ∆SCF values
are in good agreement with the experimental values.

Global Descriptors of Chlorobenzene. The calculated
chemical hardness, chemical potential, and electrophilicity
index from various methods using 6-31++G** basis func-
tions employing Koopmans’ approximation and different

Table 4. Enthalpies H (Hartree) and Free Energies G (Hartree) Calculated from SVWN5, BLYP, M05, and M05-2X Methods
with 6-31++G** Basis Seta

SVWN5 BLYP M05 M05-2X

system H ∆H G ∆G H ∆H G ∆G H ∆H G ∆G H ∆H G ∆G

CB -689.28 -689.31 -691.64 -691.68 -691.58 -691.62 -691.71 -691.75
1,2-C2B -1147.74 1.39 -1147.78 1.51 -1151.23 2.50 -1151.27 2.60 -1151.19 2.29 -1151.23 2.45 -1151.29 1.96 -1151.33 2.03
1,3-C2B -1147.74 0.00 -1147.78 0.00 -1151.23 0.00 -1151.27 0.00 -1151.19 0.08 -1151.23 0.16 -1151.29 0.01 -1151.33 0.00
1,4-C2B -1147.74 0.02 -1147.78 0.02 -1151.23 0.01 -1151.27 0.01 -1151.19 0.00 -1151.23 0.00 -1151.29 0.00 -1151.33 0.01
1,2,3-C3B -1606.19 2.64 -1606.24 2.88 -1610.82 4.95 -1610.86 5.17 -1610.80 4.35 -1610.84 4.67 -1610.87 3.69 -1610.91 3.75
1,2,4-C3B -1606.19 1.22 -1606.24 1.32 -1610.82 2.27 -1610.86 2.36 -1610.80 1.97 -1610.84 2.12 -1610.87 1.67 -1610.91 1.70
1,3,5-C3B -1606.20 0.00 -1606.24 0.00 -1610.82 0.00 -1610.87 0.00 -1610.80 0.00 -1610.85 0.00 -1610.87 0.00 -1610.91 0.00
1,2,3,4-C4B -2064.65 1.30 -2064.69 1.42 -2070.40 2.78 -2070.45 2.89 -2070.40 2.51 -2070.45 2.69 -2070.44 2.08 -2070.49 2.30
1,2,3,5-C4B -2064.65 0.18 -2064.70 0.22 -2070.40 0.34 -2070.45 0.37 -2070.41 0.34 -2070.45 0.50 -2070.44 0.25 -2070.49 0.39
1,2,4,5-C4B -2064.65 0.00 -2064.70 0.00 -2070.41 0.00 -2070.45 0.00 -2070.41 0.00 -2070.45 0.00 -2070.44 0.00 -2070.49 0.00
1,2,3,4,5-C5B -2523.10 -2523.15 -2529.98 -2530.03 -2530.01 -2530.06 -2530.02 -2530.07
1,2,3,4,5,6-C6B -2981.56 -2981.61 -2989.56 -2989.62 -2989.61 -2989.66 -2989.59 -2989.64
benzene -230.82 -230.85 -232.05 -232.08 -231.97 -232.00 -232.13 -232.16

a The relative energies of ∆H and ∆G (in kcal/mol) are with respect to the stable isomer of given number of chlorine atoms.

Table 5. Ionization Potential (I) and Electron Affinity (A) of Chlorinated Benzenes in eV Calculated from Various Methods
with 6-31++G** Basis Set using Koopmans’ Theorem

expta B3LYP MPWB1K MPW1B95 BB1K SVWM BLYP M05 M05-2X

system I A I A I A I A I A I A I A I A I A

CB 9.07 ( 0.02 -c 6.95 0.80 6.02 1.40 6.02 1.43 5.98 1.35 6.76 2.13 5.97 1.41 7.15 0.49 8.34 -0.32
1,2-C2B 9.06 ( 0.02 0.093 7.07 1.08 6.08 1.64 6.09 1.67 6.04 1.59 6.82 2.37 6.07 1.67 7.23 0.78 8.44 -0.03
1,3-C2B 9.10 ( 0.02 -c 7.13 1.13 6.16 1.70 6.17 1.73 6.12 1.64 6.90 2.43 6.15 1.73 7.32 0.83 8.51 0.03
1,4-C2B 8.92 ( 0.03 -c 6.95 1.16 5.96 1.74 5.97 1.77 5.92 1.68 6.70 2.47 5.97 1.76 7.12 0.84 8.31 0.05
1,2,3-C3B 9.18 ( 0.03 -c 7.29 1.30 6.29 1.82 6.29 1.85 6.25 1.77 7.02 2.55 6.29 1.87 7.46 1.03 8.68 0.21
1,2,4-C3B 9.04 ( 0.03 -c 7.11 1.40 6.09 1.94 6.10 1.97 6.05 1.89 6.83 2.68 6.12 1.98 7.27 1.10 8.46 0.31
1,3,5-C3B 9.30 ( 0.06 0.34 7.43 1.39 6.42 1.92 6.43 1.96 6.39 1.87 7.17 2.66 6.42 1.97 7.62 1.12 8.84 0.32
1,2,3,4-C4B 8.9 -c 7.23 1.52 6.18 2.02 6.20 2.06 6.15 1.97 6.93 2.77 6.23 2.11 7.37 1.24 8.58 0.45
1,2,3,5-C4B 9.02 -c 7.29 1.60 6.24 2.10 6.26 2.14 6.21 2.05 6.98 2.84 6.29 2.16 7.44 1.33 8.65 0.54
1,2,4,5-C4B 9 0.45 7.19 1.64 6.14 2.15 6.16 2.18 6.11 2.10 6.88 2.89 6.20 2.20 7.33 1.35 8.53 0.58
1,2,3,4,5-C5B 8.8 0.729 7.32 1.75 6.26 2.21 6.27 2.25 6.22 2.17 7.00 2.96 6.32 2.45 7.46 1.48 8.67 0.70
1,2,3,4,5,6-C6B 9.0 ( 0.1 0.92 ( 0.10 7.45 2.00 6.36 2.46 6.38 2.53 6.33 2.41 7.11 3.16 6.44 2.80 7.58 1.61 8.81 0.82
benzene 9.24 -1.12 ( 0.03b 7.01 0.42 6.19 1.05 6.18 1.07 6.15 0.99 6.94 1.77 6.04 1.04 7.26 0.11 8.43 -0.72

a The experimental I and A were obtained from NIST standard reference database webbook http://webbook.nist.gov/chemistry. b Ref 47.
c Not listed in NIST database.

Table 6. Ionization Potential (I) and Electron Affinity (A) in eV Calculated using ∆SCF Method

B3LYP/6-31G* M05-2X/6-31++G** expta

system I A I A I A

CB 8.68 -1.54 9.01 -1.09 9.07 ( 0.02 -c

1,2-C2B 8.69 -0.14 9.07 0.01 9.06 ( 0.02 0.093
1,3-C2B 8.75 -0.16 9.12 -0.60 9.10 ( 0.02 -c

1,4-C2B 8.56 -0.92 8.92 -0.58 8.92 ( 0.03 -c

1,2,3-C3B 8.86 0.17 9.24 0.29 9.18 ( 0.03 -c

1,2,4-C3B 8.65 0.16 9.04 0.27 9.04 ( 0.03 -c

1,3,5-C3B 9.00 0.15 9.39 -0.28 9.30 ( 0.06 0.34
1,2,3,4-C4B 8.73 0.44 9.12 0.52 8.9 -c

1,2,3,5-C4B 8.78 0.44 9.17 0.21 9.02 -c

1,2,4,5-C4B 8.66 0.07 9.08 0.05 9 0.45
1,2,3,4,5-C5B 8.76 0.70 9.19 0.75 8.8 0.729
1,2,3,4,5,6-C6B 8.86 0.77 9.29 0.87 9.0 ( 0.1 0.92 ( 0.10
benzene 8.86 -2.10 9.15 -1.48 9.24 -1.12 ( 0.03b

a The experimental I and A were obtained from NIST standard reference database webbook http://webbook.nist.gov/chemistry. b Ref 49.
c Not listed in NIST database.
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equations (eqs 3, 4, 7 and 10) are shown in Tables 7 and 8.
The results obtained using the remaining basis functions are
shown in Supporting Information (Tables S9-S19). The
hardness of most of the CBs decreases with an increase in
the number of chlorine atoms. The overall observation of
the hardness profile indicates that for any of the chosen

method with different basis sets, the maximum and minimum
hardness values lie within ∼0.30 eV in most cases. The
hardness predicted by MPW1B95, MPWB1K, BB1K, BLYP,
and SVWN5 are in close agreement with each other. There
is no such agreement in the values obtained from the other
methods. The hardness and the relative energies of different
CBs have been compared to understand the validity of

Table 7. Global Reactivity Properties, Hardness (η), Chemical Potential (µ), and Electrophilicity (ω) in eV, Calculated from
B3LYP, MPW1B95, MPWB1K, and BB1K Methods with 6-31++G** Basis Set using Koopmans’ Theorem

B3LYP MPW1B95 MPWB1K BB1K

system η µ ω η µ ω η µ ω η µ ω

CB 6.15 -3.88 1.22 4.59 -3.73 1.51 4.62 -3.71 1.49 4.63 -3.66 1.45
1,2-C2B 5.99 -4.07 1.39 4.42 -3.88 1.71 4.44 -3.86 1.68 4.46 -3.82 1.63
1,3-C2B 6.00 -4.13 1.42 4.44 -3.95 1.76 4.46 -3.93 1.73 4.48 -3.88 1.68
1,4-C2B 5.80 -4.05 1.42 4.20 -3.87 1.78 4.22 -3.85 1.76 4.24 -3.80 1.71
1,2,3-C3B 5.99 -4.29 1.54 4.44 -4.07 1.87 4.46 -4.05 1.84 4.48 -4.01 1.80
1,2,4-C3B 5.71 -4.26 1.59 4.13 -4.04 1.97 4.15 -4.01 1.94 4.17 -3.97 1.89
1,3,5-C3B 6.04 -4.41 1.61 4.47 -4.19 1.96 4.50 -4.17 1.93 4.52 -4.13 1.89
1,2,3,4-C4B 5.70 -4.37 1.68 4.14 -4.13 2.06 4.17 -4.10 2.02 4.17 -4.06 1.98
1,2,3,5-C4B 5.69 -4.45 1.74 4.12 -4.20 2.14 4.14 -4.17 2.10 4.16 -4.13 2.05
1,2,4,5-C4B 5.55 -4.42 1.76 3.97 -4.17 2.19 3.99 -4.15 2.16 4.01 -4.10 2.10
1,2,3,4,5-C5B 5.57 -4.54 1.85 4.02 -4.26 2.26 4.04 -4.23 2.22 4.05 -4.20 2.17
1,2,3,4,5,6-C6B 5.45 -4.72 2.05 3.85 -4.46 2.58 3.90 -4.41 2.50 3.92 -4.37 2.44
benzene 6.59 -3.72 1.05 5.11 -3.63 1.29 5.15 -3.62 1.27 5.16 -3.57 1.23

Table 8. Global Reactivity Properties, Hardness (η), Chemical Potential (µ), and Electrophilicity (ω) in eV, Calculated from
SVWN5, BLYP, M05, and M05-2X Methods with 6-31++G** Basis Set using Koopmans’ Theorem and Tozer-De Proft’s
Expression for Hardness

SVWN5 BLYP M05 M05-2X

system η µ ω η µ ω η µ ω η ηa µ ω

CB 4.63 -4.45 2.14 4.56 -3.69 1.50 6.66 -3.82 1.09 8.66 5.06 -4.01 0.93
1,2-C2B 4.45 -4.60 2.37 4.41 -3.87 1.70 6.46 -4.00 1.24 8.47 4.86 -4.20 1.04
1,3-C2B 4.47 -4.67 2.44 4.42 -3.94 1.75 6.49 -4.08 1.28 8.49 4.83 -4.27 1.07
1,4-C2B 4.23 -4.58 2.49 4.21 -3.87 1.77 6.28 -3.98 1.26 8.26 4.74 -4.18 1.06
1,2,3-C3B 4.47 -4.79 2.56 4.42 -4.08 1.88 6.44 -4.24 1.40 8.46 4.73 -4.45 1.17
1,2,4-C3B 4.15 -4.75 2.72 4.15 -4.05 1.98 6.17 -4.18 1.42 8.15 4.65 -4.39 1.18
1,3,5-C3B 4.51 -4.92 2.68 4.46 -4.20 1.98 6.50 -4.37 1.47 8.52 4.72 -4.58 1.23
1,2,3,4-C4B 4.16 -4.85 2.82 4.11 -4.17 2.11 6.13 -4.31 1.51 8.13 4.38 -4.52 1.25
1,2,3,5-C4B 4.14 -4.91 2.92 4.13 -4.23 2.16 6.11 -4.38 1.57 8.11 4.42 -4.60 1.30
1,2,4,5-C4B 3.99 -4.88 2.99 4.00 -4.20 2.21 5.98 -4.34 1.58 7.95 4.45 -4.55 1.30
1,2,3,4,5-C5B 4.04 -4.98 3.07 3.87 -4.38 2.48 5.98 -4.47 1.67 7.97 4.11 -4.69 1.38
1,2,3,4,5,6-C6B 3.95 -5.14 3.34 3.64 -4.62 2.93 5.97 -4.59 1.77 7.99 4.19 -4.81 1.45
benzene 5.17 -4.35 1.83 5.00 -3.54 1.25 7.15 -3.68 0.95 9.15 5.39 -3.85 0.81

a Tozer-De Proft’s hardness expression using eq 10.

Figure 2. Plot between the hardness obtained from the
Koopmans’ theorem and the Tozer-De Proft’s expression
using M05-2X/6-31++G** method.

Figure 3. Plot between the hardness obtained from the ∆SCF
method and the Tozer-De Proft’s expression using M05-2X/
6-31++G** method.
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maximum hardness principle (MHP). The stability (relative
energies in Table 2) of dichloro systems vary as 1,4-C2B >
1,3-C2B > 1,2-C2B. The hardness calculated from all the
methods applying Koopmans’ approximation of these iso-
mers vary as 1,3-C2B > 1,2-C2B > 1,4-C2B (Tables 7 and
8). In contrast, the hardness indices predicted from B3LYP/
6-31G* method employing ∆SCF approach follow the order
of 1,4-C2B > 1,3-C2B > 1,2-C2B (Supporting Information,
Table S20), which is in parallel with the trend in the
stabilities of these dichlorobenzenes. It can be noted that
M05-2X/6-31G* method using ∆SCF does not yield the
same trend. The 1,2,4-C3B isomer shows lowest hardness
among the 1,2,3-C3B and 1,3,5-C3B isomers. The hardness
of 1,2,4,5-C4B isomer of tetrachlorinated benzene marginally
decreases when compared with the other tetrachlorinated
benzenes. For each group of chlorobenzene isomers, in some
cases, as the energy and electrophilicity decreases, the

hardness increases as expected from the principles of
maximum hardness and minimum electrophilicity. These
principles are not very effective in analyzing the relative
stabilities of isomers.3

The hardness values calculated for benzene and CBs using
Tozer and De Proft’s expressions (eq 8) employing M05-
2X/6-31++G** method are also given in Table 8. The
calculated hardness values using Koopmans’ approximation,
∆SCF method, and Tozer-De Proft’s expression are com-
pared in Figures 2 and 3. It can be seen that the relative
trends in these values are similar.

The chemical potential and the electrophilicity index
increase with an increase in the number of chlorine atom
substitutions, which is in line with the results observed in

Table 9. Electrophilicity (ω), Calculated from M05-2X/
6-31++G** Method, and Experimental Free Energy (∆Gg

0

in kcal/mol) of Deprotonation of Benzene and CBs

system ω(eV) ∆Gg
0

CB 0.93 378.6
1,2-C2B 1.04 368.7
1,3-C2B 1.07 366.3
1,4-C2B 1.06 368.8
1,2,3-C3B 1.17 366.8
1,2,4-C3B 1.18 362.6
1,3,5-C3B 1.23 360.8
1,2,3,4-C4B 1.25 360.1
1,2,3,5-C4B 1.30 355.4
1,2,4,5-C4B 1.30 353.7
1,2,3,4,5-C5B 1.38 347.4
benzene 0.81 392.9

Table 10. Regression Analysis of Global Reactivity Descriptors, Hardness (η), Chemical Potential (µ), and Electrophilicity
(ω), Calculated from Various Methods/Basis Set Using Koopmans’ Theorem

R R

method basis set η µ ω method basis set η µ ω

B3LYP 6-31G* -0.933 -0.887 0.949 SVWN5 6-31G* -0.910 -0.862 0.966
6-31G** -0.929 -0.886 0.945 6-31G** -0.903 -0.861 0.966
6-31+G* -0.909 -0.880 0.955 6-31+G* -0.892 -0.848 0.971
6-31+G** -0.900 -0.880 0.960 6-31+G** -0.887 -0.847 0.973
6-31++G** -0.900 -0.880 0.960 6-31++G** -0.887 -0.846 0.973
6-311++G** -0.895 -0.877 0.959 6-311++G** -0.877 -0.841 0.973
AUG-CC-PVDZ -0.892 -0.876 0.963
AUG-CC-PVTZ -0.903 -0.868 0.957

MPWB1K 6-31G* -0.910 -0.868 0.961 BLYP 6-31G* -0.921 -0.889 0.957
6-31G** -0.905 -0.867 0.961 6-31G** -0.915 -0.889 0.961
6-31+G* -0.889 -0.855 0.969 6-31+G* -0.897 -0.882 0.966
6-31+G** -0.883 -0.854 0.971 6-31+G** -0.892 -0.882 0.969
6-31++G** -0.883 -0.854 0.971 6-31++G** -0.893 -0.883 0.969

6-311++G** -0.888 -0.875 0.969
MPW1B95 6-31G* -0.915 -0.871 0.960 M05 6-31G* -0.945 -0.867 0.938

6-31G** -0.908 -0.870 0.960 6-31G** -0.943 -0.864 0.934
6-31+G* -0.895 -0.859 0.966 6-31+G* -0.930 -0.854 0.942
6-31+G** -0.888 -0.857 0.971 6-31+G** -0.924 -0.854 0.946
6-31++G** -0.888 -0.857 0.971 6-31++G** -0.927 -0.854 0.946

6-311++G** -0.916 -0.850 0.946
BB1K 6-31G* -0.913 -0.870 0.961 M05-2X 6-31G* -0.937 -0.869 0.931

6-31G** -0.905 -0.868 0.962 6-31G** -0.936 -0.870 0.931
6-31+G* -0.895 -0.856 0.968 6-31+G* -0.916 -0.861 0.938
6-31+G** -0.885 -0.855 0.968 6-31+G** -0.912 -0.864 0.938
6-31++G** -0.885 -0.855 0.968 6-31++G** -0.912 -0.864 0.938

6-311++G** -0.908 -0.861 0.944

Figure 4. Plot between the electrophilicity (ω) calculated from
M05-2X/6-31++G** method and the free energy (∆Gg

0) of
deprotonation.

2750 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Vijayaraj et al.



the case of hardness. The chemical potential predicted by
MPW1B95, MPWB1K, BB1K, BLYP, and M05 are similar.
There is only a marginal variation in the electrophilicity index
predicted by the MPW1B95, MPWB1K, and BB1K methods.

Relation Between Recativities and Electrophilicity. With
a view to assess how electrophilicity index predicts the
reactivity of a series of molecules, the relationship between
the deprotonation free energies39 of benzene and chloroben-
zenes (Table 9) and the electrophilicity has been explored,
and it is depicted in Figure 4. It can be seen that deproto-
nation free energies vary linearly with electrophilicity, and
thus, electrophilicity provides valuable information about the
relative reactivities of a series of homologous compounds.

Structure-Toxicity Analysis of Chlorobenzenes. With
a view to benchmark the level of calculation of different
global reactivity descriptors for QSTR development, the
toxicity (pC) values of the selected set of nine chlorobenzenes
against Poecilia reticulata have been used. In the develop-
ment of QSTR, the experimental toxicity data (pC) have been
considered as dependent variables and global reactivity
descriptors obtained from all the methods (Tables 7-8, and
Supporting Information, Tables S9-S19) as independent
variables. The QSTRs derived from the multiple regression
analysis employing different global reactivity descriptors
obtained from various levels of calculations are presented
in Tables 10-11.

The ∆SCF method has also been used along with the
Koopmans’ approximation to understand the predictive
power of global reactivity descriptors obtained from different
strategies. The eqs 5 and 6 have been used to predict the
ionization potential and the electron affinity using B3LYP
and M05-2X methods with 6-31G* and 6-31++G** basis
sets, respectively. The predicted regression values using
∆SCF method is shown in the Table 12. The experimental

and calculated toxicity data (pC) for the selected set of nine
CBs are listed in Tables 13 and 14.

As shown in previous studies, electrophilicity index exhibits
very good correlation with the toxicity values when compared
to hardness and electronegativity.40 Even though, the global
reactivity descriptors calculated using different methods show
significant variations as discussed above, the mean deviation
of the properties between all the systems with respect to the
chosen method/basis set is similar. That is the predicted global
reactivity descriptors are varying with respect to the method
and the basis set, but the magnitude of the difference in between
the systems are similar in all the methods. This observation
influences the final regression analysis and predicts the cor-
relation coefficient without major deviation between each of
the methods. Although the ionization potential and the electron
affinity calculated using ∆SCF methods produce good correla-
tion with the experimentally observed data, they do not improve
the correlation coefficient.

In general, the regression values obtained using various
methods are comparable. The overall observation illustrates that
the increasing the number of basis functions in any method
refines the calculated values of the descriptors only. There is
no marked variation in the correlation coefficient. It is an
interesting observation that quantum chemical descriptors such
as the global reactivity descriptors can be routinely used in the

Table 11. Regression Equations Obtained for ω from Various Methods/Basis Sets using Koopmans’ Theorem

method basis set pC R SD method basis set pC R SD

B3LYP 6-31G* (0.582)+3.248ω 0.949 0.219 SVWN5 6-31G* (-0.209)+2.204ω 0.966 0.178
6-31G** (0.539)+3.259ω 0.945 0.227 6-31G** (-0.318)+2.237ω 0.966 0.180
6-31+G* (-0.285)+3.337ω 0.955 0.205 6-31+G* (-0.976)+2.223ω 0.971 0.165
6-31+G** (-0.409)+3.391ω 0.960 0.194 6-31+G** (-1.113)+2.258ω 0.973 0.160
6-31++G** (-0.409)+3.391ω 0.960 0.194 6-31++G** (-1.113)+2.258ω 0.973 0.160
6-311++G** (-0.505)+3.368ω 0.959 0.196 6-311++G** (-1.217)+2.228ω 0.973 0.161
AUG-CC-PVDZ (-0.607)+3.401ω 0.963 0.186
AUG-CC-PVTZ (-0.571)+3.441ω 0.957 0.200

MPWB1K 6-31G* (0.331)+2.868ω 0.961 0.191 BLYP 6-31G* (0.785)+2.553ω -0.889 0.201
6-31G** (0.302)+2.868ω 0.961 0.191 6-31G** (0.658)+2.617ω -0.889 0.191
6-31+G* (-0.446)+2.836ω 0.969 0.171 6-31+G* (-0.074)+2.577ω -0.882 0.179
6-31+G** (-0.589)+2.886ω 0.971 0.165 6-31+G** (-0.192)+2.619ω -0.882 0.171
6-31++G** (-0.589)+2.886ω 0.971 0.165 6-31++G** (-0.192)+2.619ω -0.883 0.171

6-311++G** (-0.352)+2.628ω -0.875 0.170
MPW1B95 6-31G* (0.426)+2.762ω 0.960 0.195 M05 6-31G* (0.645)+3.476ω -0.867 0.240

6-31G** (0.315)+2.808ω 0.960 0.194 6-31G** (0.624)+3.481ω -0.864 0.247
6-31+G* (-0.427)+2.779ω 0.966 0.178 6-31+G* (-0.081)+3.558ω -0.854 0.232
6-31+G** (-0.547)+2.818ω 0.971 0.167 6-31+G** (-0.177)+3.607ω -0.854 0.224
6-31++G** (-0.547)+2.818ω 0.971 0.167 6-31++G** (-0.177)+3.607ω -0.854 0.224

6-311++G** (-0.386)+3.725ω -0.850 0.225
BB1K 6-31G* (0.377)+2.854ω -0.870 0.190 M05-2X 6-31G* (0.454)+4.328ω -0.869 0.253

6-31G** (0.263)+2.903ω -0.868 0.190 6-31G** (0.454)+4.328ω -0.870 0.253
6-31+G* (-0.407)+2.886ω -0.856 0.175 6-31+G* (-0.539)+4.639ω -0.861 0.239
6-31+G** (-0.497)+2.911ω -0.855 0.173 6-31+G** (-0.539)+4.639ω -0.864 0.239
6-31++G** (-0.497)+2.911ω -0.855 0.173 6-31++G** (-0.539)+4.639ω -0.864 0.239

6-311++G** (-0.689)+4.618ω -0.861 0.228

Table 12. Regression Analysis of Global Reactivity
Descriptors, Hardness (η), Chemical Potential (µ), and
Electrophilicity (ω), Calculated from Various Methods/Basis
sets using ∆SCF Method

η µ ω

method/basis set R SD R SD R SD

B3LYP/6-31G* -0.783 0.431 -0.693 0.499 0.734 0.470
M05-2X/6-31++G** -0.738 0.467 -0.768 0.443 0.768 0.443
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development of QSAR/QSPR/QSTR approaches in the indus-
tries without any high computational time and cost.

Conclusions

In this study, an attempt has been made to evaluate how various
DFT methods predict the stability, the electronic properties, and
the reactivities of CBs. In this investigation, some popular
functionals belonging to the pure, GGA, hybrid, and meta and
hybrid meta GGA have been selected. It is evident from the
results that increase in the rigor in the level of calculation leads
to good agreement between the calculated and experimental
values of ionization potentials and electron affinities. Typically,
M05-2X method outperforms the other functionals in the
prediction of ionization potentials and electron affinities of CBs
using Koopmans’ approximation and ∆SCF method. The
ionization potential and the electron affinities calculated from
∆SCF method are in good agreement with the experimental
values when compared to the Koopmans’ approximation. The
trends in the hardness values of CBs calculated from various
schemes are comparable.

The usefulness of global reactivity descriptors in the develop-
ment of structure-activity/toxicity relationships has been il-
lustrated. There is no drastic change in the correlation coeffi-
cients obtained from the linear/multiple regression analysis of
toxicity vs calculated global reactivity descriptors from different
levels of theory. The results clearly show that the reliable
estimates of the trends in the global reactivity descriptors are
sufficient enough to develop QSAR/QSPR/QSTR. This inves-
tigation, once again, reinforces the usefulness of global reactivity
descriptors in QSAR/QSPR/QSTR parlance.
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Abstract: We present a comparison of exchange-only interaction energies obtained using
several standard exchange functionals in the generalized gradient approximation to Hartree-Fock
results for interacting molecules. We observe that functionals with an enhancement factor using
a 2/5 power dependence on the gradient of the density for large density gradients offer
consistently better agreement with Hartree-Fock calculations than that of alternative functionals.
We revisit the functional offering the closest agreement and recalculate it to include its exact
large gradient dependence.

There has recently been a large interest and some progress
in the treatment of van der Waals or dispersion interactions
within or as an adjunct to density functional theory (DFT)
calculations. These include empirical functionals,1-4 a col-
lection of methods of the DFT-D type,5-9 a modified atomic
potential method,10-14 the Becke-Johnson method,15-22 a
nonempirical van der Waals density functional (vdW-DF)23-28

and variants,29 and a number of others.30-43 The develop-
ment and application of such methods are beginning to allow
the application of density functional theory to new classes
of matter and are of great importance. Some of these methods
calculate the exchange energy within Hartree-Fock (HF),
while others use some form of generalized gradient ap-
proximation (GGA). For the former, as the DFT methods
for including dispersion become more efficient, one may look
for a GGA method for replacing the less efficient HF part
of the calculation. For the latter, one may also wish to find
the GGA for exchange which best mimics HF. The evalu-
ation of some of the common GGAs for exchange in
comparison with HF is an aim of this work. As pointed out
by Lacks and Gordon,44 the functionals which are most
accurate out on the long-range tail of the wave function and
so important for van der Waals complexes may be quite
different from those which are most successful for isolated
molecules or dense condensed matter. A systematic study
of the performance of exchange functionals for such systems
of interest will be detailed here.

One important issue which is not addressed here is the
compatibility of a particular exchange functional and the
corresponding approximation for correlation. It is well-known
that one of the reasons for the great success of DFT is the
cancellation of errors between exchange and correlation. Each
can have long-range parts which cancel in their sum, a fact
that can be especially important for developing approxima-
tions for open shell systems. The sole criterion used in this
work is how well each of the tested GGA exchange
functionals reproduce the results of HF. The user will have
to judge whether that is the correct criterion for the matching
correlation approximation to be used.

We begin this paper with a brief description of the issue
of spurious exchange binding and how it may be overcome
by the generalized gradient approximation (GGA). This is
followed by a summary of the exchange functionals we will
be using in our calculations. These exchange functionals are:
PBE,45 revPBE,46 PW86,47 Becke86b,48 and Becke88.49 This
is followed by a comparison of the calculated interaction
energy as a function of molecular separation for pairs of
molecules of various sizes. These calculations are performed
using both HF and exchange-only density functional theory.
The systems we examine are dimers consisting of pairs of
the following atoms: H2, N2, CO2, ammonia, methane, ethene,
benzene and pyrazine. We conclude the paper with a re-
examination of the PW86 functional, which, as we will show,
offers the most consistent agreement with HF interaction
energies. This work follows the pioneering work of Lacks
and Gordon44 and the recent work of Kannemann and* Corresponding author. E-mail: emurray@physics.rutgers.edu.
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Becke,50 who have come to a similar conclusion for the case
of interacting rare gas atoms.

All of the exchange functionals discussed in this paper
use the generalized gradient approximation (GGA) to
exchange, so can be written in terms of an enhancement
factor F(s), where the exchange energy of a system with
density n(r) is given by

with s ) (∇n)/(2kFn), where kF ≡ (3π2n)1/3 is the local Fermi
wavevector, and Ax ) -(3/4)(3/π)1/3.

The issue of this spurious exchange binding has been
studied previously by Harris51 in the case of two interacting
He atoms. In examining the system in terms of the first-
order change in the potential due to the overlap in the
densities:

where R1 and R2 are the nuclear locations and

He noted that the leading contribution to the change in
the energy comes from competition between the kinetic and
the exchange-correlation terms. In HF, both the kinetic term,
which is repulsive, and the exchange term, which is attractive,
are proportional to M2. This yields an interaction energy
which is monotonic in |R1 - R2| and always repulsive, and
which may be written schematically as

However, in the case of LDA, the exchange term is
proportional to M4/3, leading to a situation where LDA can
yield an attractive interaction for small overlaps (small values
of M), so that eq 4 is replaced by

The second term of eq 5 dominates at large separations
and gives spurious binding from exchange alone. This
shortcoming of the LDA is generally counteracted to an
extent by GGAs due to the enhancement factor, increasing
the exchange contribution in regions of small density
overlap. This is because an increasing density overlap
decreases the value of s in the overlap region, thus
reducing the enhancement of a negative contribution to
the energy and thereby giving repulsion, which can
compensate for the LDA’s spurious attraction. However
in a highly inhomogeneous region, a GGA functional
whose enhancement factor becomes flat for large s will
give an exchange energy with the same dependence on
the overlap as in LDA, so that the LDA’s spurious
exchange binding will be exacerbated instead of amelio-
rated in regions of inhomogeneous low density.

In order to illustrate the importance of the asymptotic
behavior of the enhancement factor Fx(s) for large s, we
analyze the gradient exchange energy contribution from
each s for the case of the crossed H2 dimer with the PBE,
revPBE, and PW86 exchange functionals. In Figure 1(a),
we show the explicitly gradient-dependent component of
the differential exchange interaction energy:

where the gradient component of the differential exchange
energy egx(s) is defined by

Figure 1. Large s contribution to exchange repulsion of (a-b)
crossed H2 dimer 4 Å apart, (c) parallel benzene molecules
3.75 Å apart, and (d) benzene molecules in the T configuration
5.0 Å apart. (a) The differential exchange energy of crossed
H2 dimer showing the explicitly gradient-dependent contribu-
tion to the exchange interaction energy from each s value.
(b) The interaction energy ∆E(s) of the crossed H2 dimer as
a function of s, showing the convergence of the exchange
energy as a function of s. Results obtained from PW86,
revPBE, and PBE are compared. Note that, of these, only
PW86 gives correct repulsive interaction (positive ∆E). (c-d)
The interaction energy ∆E(s) of parallel benzene molecules
and benzene molecules in the T configuration as a function
of s, respectively.

Figure 2. Enhancement factors F(s) plotted for the exchange
functionals discussed in this paper.

Ex
GGA[n(r), ∇n(r)] ) Ax ∫ d3rn4/3Fx

GGA(s) (1)

M ) ∫ d3rψHe(r - R1)ψHe(r - R2) (2)

ψHe(r) ) 1

√2
n1/2(r) (3)

δE = (CT
HF - Cx

HF)M2 (4)

δE = CTM2 - CxM
4/3 (5)

∆egx(s) ) egx
2H2(s) - 2egx

H2(s) (6)

egx(s) ) Ax ∫ d3rn4/3[Fx(s(r)) - 1]δ(s - s(r)) (7)
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The term δ(s - s(r)) has been employed previously in
ref 52. Note that in eq 7 the larger LDA component of
the differential exchange energy:

has been explicitly subtracted out, so that the difference
between each GGA flavor is more visible. Figure 1(a)
shows the contribution of gradient exchange energy
∆egx(s) to the interaction energy from each value of s.

By integrating ∆egx(s) over s and adding all the remaining
energy terms ∆ER, the interaction energy ∆E as a function
of s is obtained, i.e.,

Note that ∆ER also contains the LDA exchange energy
contribution arising from ∫0

∞dseLDAx(s). The convergence
of interaction energy ∆E as a function of s is shown in

Figure 3. DFT exchange-only interaction energies calculated using several different exchange functionals compared to HF
results for pairs of interacting molecules. Those structures marked as S22 use geometries taken from ref 58. The separations
refer to the distance between the centers of mass of the molecules.

eLDAx(s) ) Ax ∫ d3rn4/3δ(s - s(r)) (8) ∆E(s) ) ∫0

s
ds'∆egx(s') + ∆ER (9)
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Figure 1(b). Note that ∆E(∞) is equal to the total
interaction energy.

From this it is clear that there is still a significant
contribution for s as large as 25 in the H2 dimer cases and
15 in the benzene cases. We also note that, as will be shown
in our later calculations, the most consistent agreement with
HF results is obtained from functionals with an enhancement
factor proportional to s2/5 at large s. Becke88, which is almost
linear in s for large s, yields overly repulsive interaction
energies in all cases. PBE and revPBE, which are constructed

to tend to a constant as s is increased yield spurious
attractions in several cases.

The PBE and revPBE functionals use a form originally
proposed by Becke53 but with different parameters. The
corresponding enhancement factor can be written as

where both PBE and revPBE set µ ) 0.2195 to recover the
expected low s limit. In PBE, κ is fixed to be 0.804 so the

Figure 4. DFT exchange-only interaction energies calculated using several different exchange functionals compared to HF
results for pairs of interacting molecules. Those structures marked as S22 use geometries taken from ref 58. The separations
refer to the distance between the centers of mass of the molecules.

Fx(s) ) 1 + µs2

1 + µs2/κ
(10)
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local Lieb-Oxford bound is satisfied. This guarantees that
the global Lieb-Oxford bound54 will be satisfied for any
possible density, even if the functional is not valid at that
density. On the other hand, the other functionals discussed
here may exceed the global bound for densities for which
they are invalid. In the revPBE functional, this constraint is
relaxed, and κ ) 1.245 is obtained by fitting to atomic total
energies. The PW86 enhancement factor is given by

with a ) 0.0864, b ) 14, and c ) 0.2. The value of a was
fixed to recover the then expected low-s dependence while
b and c are obtained from a fit to the numerical solution of
an integral derived from the gradient expansion of the
exchange hole with real space cutoffs. The full derivation is
discussed in more detail toward the end of this paper. The
Becke86b functional was derived by considering highly
inhomogeneous systems where it was shown that the large-s
dependence of the enhancement factor should be s2/5. Its final
form was chosen so as to smoothly interpolate between this
large s form and the expected small s form. It can be cast
into a PBE-like enhancement factor as

where µ ) 0.2449 and κ ) 0.5757 are obtained by fitting to
noble gas exchange energies. Finally, the Becke88 functional
is constructed so as to reproduce the exact asymptotic
behavior of a finite many electron system: limrf∞Ux

σ ) -1/r
with Ux

σ the Coulomb potential of exchange charge density
Fx

σ(r,r′). One can also write this in a PBE-like form as

where λ ) 2(6π2)1/3, and µ ) 0.2743 is found by fitting to
noble gas exchange energies. F(s) for each of these func-
tionals is plotted in Figure 2.

Using each of these functionals, we calculate the exchange-
only interaction as a function of separation for pairs of
molecules. These calculations are performed using abinit,55

a plane wave density functional theory code, and a 25 Ha

plane wave energy cutoff with the molecules placed in a 30
× 30 × 30 Bohr box (this is increased to 30 × 30 × 40
Bohr for the benzene and pyrazine systems). The corre-
sponding HF calculations are performed using gamess.56,57

In all of these calculations, the basis set superposition error
is counterpoise corrected. All the systems are calculated using
the aug-cc-pVTZ basis set with the exception of the benzene
and the pyrazine systems, where the aug-cc-pVDZ basis is
used. Testing indicates the error in the HF interaction due
to use of the smaller basis set is j 1% (see Supporting
Information). In each case, we calculate the self-consistent
interaction energy for the respective GGA functional and
for HF. Because of the importance of the cancellation
between kinetic and exchange energies discussed above and
hence, preserving it in our comparisons, we believe this
procedure is more relevant than a comparison of either
exchange energies alone or post process calculations.

The results of these calculations are plotted in Figures 3
and 4. It is clear from the figures that both PW86 and
Becke86b offer, for the most part, better agreement with HF
than the other functionals, with PW86 performing slightly
better. Both of these functionals are proportional to s2/5 for
large s, with Fx

PW86(s) ∼ 0.898s2/5 and Fx
B86b(s) ∼ 0.485s2/5.

A similar conclusion has been reached in previous studies
of rare gas diatomics by Lacks and Gordon44 and more
recently by Kannemann and Becke.50 Here, we find that,
while PW86 and Becke86b are consistently the best for
systems dominated by large s, we found several cases where
PBE was marginally better in the binding region. The error
in the interaction energy (ExGGA - EHF) for PBE, revPBE,
PW86, and B86b compared to the accurate CCSD(T)
calculations of the full binding energy at both the optimal
separation and larger separations is shown in Table 1 for
several systems. This gives a good indication of the effect
on the binding energy of changing the GGA used in the
calculation. It is also important to note that, as can be seen
in the table, the PW86 functional is the only one of those
tested that did not yield spurious exchange binding in any
of the systems examined.

Of primary importance is the question of the true large s
dependence of the integrals solved to obtain the PW86
functional. These are obtained from the expression for the
gradient expansion of the exchange hole density:

where

with
Figure 5. The exchange-only interaction energy for parallel
N2 molecules calculated using both the original and the refit
PW86 functionals along with the HF results.

Fx(s) ) (1 + 15as2 + bs4 + cs6)1/15 (11)

Fx(s) ) 1 + µs2

(1 + µs2/κ)4/5
(12)

Fx(s) ) 1 + µs2

1 + 9
4π

µs sinh-1(λs)
(13)

nx
GEA(r, r + R) ) -1

2
n(r)y(r, R) (14)

y ) J + 4LR̂ · s/3 - 16M(R̂ · s)2/27 - 16Ns2/3
(15)

J ) 72[4 + z2 - (4 - z2) cos z - 4z sin z]z6 (16)
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and z ) 2kFR. In ref 47, it was observed that while nx
GEA

violates the following two conditions for exchange hole:

and

these could be satisfied by applying cutoffs so that:

This yields

where zc ) 2kf Rc and the spherical average (sa) of the
positive part of y is

It is possible to obtain an analytic expression for ysa, which
is given explicitly in ref 64. However, the value of zc(s) and
the final value of Fx(s) must be found numerically.

To obtain the exact large s behavior, it can be shown that
as s becomes large, the value of zc(s) becomes small, allowing
the expression for ysa(s,z) to be replaced by a power series
expansion. Retaining the dominant term we obtain ysa )
(s2z2)/(27�2). With this we can obtain the following analytic
expressions for zc(s) and Fx(s):

Table 1. Error in the Calculated Exchange-Only Interaction Energy (ExGGA - EHF) at Several Separations Alongside the Full
CCSD(T) Binding Energya

ExGGA - EHF

separation (Å) binding energy HF PBE revPBE PW86 B86b

H2 Parallel (ref 59)
3.55 0.04 0.067 -0.100b -0.014 -0.013 -0.026
4.05 0.020 -0.056b -0.032b -0.006 -0.019
4.55 0.008 -0.026b -0.021b -0.002 -0.010b

N2 Crossed (ref 60)
3.87 0.28 0.139 -0.078 0.274 0.086 0.100
4.37 0.028 -0.102b -0.026 0.014 -0.002
4.87 0.008 -0.057b -0.026b 0.006 -0.011b

CO2 Crossed (ref 61)
3.25 0.62 1.13 -0.17 0.70 0.10 0.17
3.75 0.40 -0.29 0.01 -0.05 -0.10
4.25 0.20 -0.18 -0.09 -0.04 -0.08

Ammonia (ref 58)
3.16 3.17 -1.41 0.25 1.57 0.40 0.60
3.66 -1.66 -0.01 0.60 0.16 0.23
4.16 -1.15 -0.06 0.18 0.09 0.09

Methane (ref 58)
3.72 0.53 0.36 -0.12 0.46 0.07 0.13
4.22 0.07 -0.12b 0.11 0.04 0.03
4.72 0.01 -0.09b -0.02b 0.006 -0.02b

Ethene (ref 58)
3.72 1.51 0.82 0.43 1.86 0.63 0.85
4.22 0.003 -0.02 0.62 0.22 0.27
4.72 -0.08 -0.12 0.12 0.08 0.05

Benzene Parallel (ref 62)
3.89 1.74 3.62 -0.63 0.98 -0.44 -0.04
4.39 1.56 -0.71 0.04 -0.48 -0.36
4.89 0.88 -0.60 -0.30 -0.41 -0.39

Benzene T (ref 58)
4.91 2.74 1.55 0.96 2.80 1.22 1.46
5.26 0.10 0.46 1.60 0.70 0.84
5.61 -0.30 0.17 0.84 0.41 0.46

Pyrazine Parallel (ref 63)
3.6 2.5 4.50 0.01 2.02 0.29 0.61
4.1 1.49 -0.35 -0.86 0.11 -1.37
4.6 0.67 -0.30 0.05 -0.04 -0.06

a Except in the CO2 case where the result quoted is from MP2 calculations and the N2 case where an experimental result is given.
Energies are given in kcal/mol. b Values are cases of spurious exchange binding. Several dimers have attractive electrostatic interactions
which dominate at large distances.

L ) 9(2 - 2 cos z - z sin z)/z3 (17)

M ) 9(-z cos z + sin z)/(16z) (18)

N ) 3[8 - (8 - 4z2) cos z - (8z - z3) sin z]/(16z4)
(19)

nx(r, r + R) e 0 (20)

∫ d3Rnx(r, r + R) ) -1 (21)

nx
GGA(r, r + R) ) -1

2
n(r)yΘ(y)Θ(Rc(r) - R) (22)

Fx
GGA(s) ) 1

9 ∫0

zc dzzysa(s, z) (23)

ysa(s, z) ) 1
4π ∫ dR̂yΘ(y) (24)
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and

Thus, we have shown that the exact large s dependence
of the enhancement factor obtained from the PW86
integrals is s2/5. The coefficient of 0.8863, obtained by
exact evaluation the PW86 analytic expressions, is within
2% of the value implied by PW86’s fitted parametrization
(eq 11). Still, it is undoubtedly desirable to use rigorously
correct results, wherever possible, and to that end, we use
this result to refit the numerical results of the integration.
We also correct the small s behavior which was originally
constrained to recover 1 + (7/81)s2 (ref 65) but was later
shown to correctly be 1 + (10/81)s2 (see, for example,
refs 66 and 67). We keep the original form of the
functional as given in eq 11, where a is set by the small
s limit to be 10/81() 0.1234), c is set by the large s
behavior derived above to be 0.163 () 0.8863),15 and the
remaining parameter b ) 17.33 is used to smoothly
interpolate between the two limits and is obtained by
fitting to the numerical solution for Fx(s) for 0 e s e 10.
This constitutes a minor modification to the original PW86
form and does not have a substantial impact on the already
good agreement PW86 exchange energies yielded with HF
in the systems we have looked at. This can be seen in
Figure 5 where the interaction energy of parallel N2

molecules is shown for both the refit and the original
PW86 functionals along with the HF results. The func-
tional parameters are compared in Table 2. The large s
asymptote derived here is probably the most robust feature
of the analytic form for PW86, as it depends on the sum
rule for the exchange hole but not on any of the other
cutoffs that were necessarily imposed for evaluations for
smaller reduced gradient. The situation may be different
for some other functionals.68 As s increases, it passes a
threshold value above which the cutoff that enforces the
negativity of the exchange hole is inoperative. We have
calculated this threshold value numerically to be s )
0.874. The value of zc, which enforces the second cutoff
in eq 22, reduces with increasing s. At this threshold s
value, zc becomes low enough so that the function ysa,
described in eq 24, is restricted to a region where it is
always positive, guaranteeing a negative exchange hole
without any additional cutoffs.

Our analysis of the exchange-only interaction energy
for a series of interacting molecules has shown that
exchange functionals, which behave as s2/5 at large s, offer
a consistent improvement over other commonly used
exchange functionals, with the PW86 functional being
marginally better than Becke86b in the systems we have
examined. The underlying origin of this s2/5 dependence
remains to be explained, although an enhancement factor
that increases with s is necessary to mitigate the spurious
LDA-like behavior identified by Harris (see discussion

following eq 5). We also note that, aside from B88, which
is overly repulsive in these systems, the PW86 functional
was the only functional tested that never yielded spurious
exchange binding in the systems and the separations we
examined. While B86b has a similar form to PW86, this
indicates that the lower rate at which it increases with s,
as can be seen in Figure 2, is not sufficiently large to rule
out this type of spurious binding. Our analysis of the
s-dependence of the exchange energies shows significant
contributions are coming from highly inhomogeneous
regions where s is J10, showing that the large s behavior
is particularly important. We have derived the exact large
s behavior of the integrals solved to obtain the PW86
functional and used this along with corrected small s
behavior to refit the functional to the numerical results
used to derive it. This is not a substantial change to the
functional but allows it to more accurately reproduce the
features of importance in the types of systems of interest.
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Abstract: The complexes between BeX2 (X ) H, F, Cl, OH) with different Lewis bases have
been investigated through the use of B3LYP, MP2, and CCSD(T) approaches. This theoretical
survey showed that these complexes are stabilized through the interaction between the Be atom
and the basic center of the base, which are characterized by electron densities at the
corresponding bond critical points larger than those found in conventional hydrogen bonds (HBs).
Actually, all bonding indices indicate that, although these interactions that we named “beryllium
bonds” are in general significantly stronger than HBs, they share many common features. Both
interactions have a dominant electrostatic character but also some covalent contributions
associated with a non-negligible electron transfer between the interacting subunits. This electron
transfer, which in HBs takes place from the HB acceptor lone-pairs toward the σYH* antibonding
orbital of the HB donor, in beryllium bonds goes from the lone pairs of the Lewis base toward
the empty p orbital of Be and the σBeX* antibonding orbital. Accordingly, a significant distortion
of the BeX2 subunit, which in the complex becomes nonlinear, takes place. Concomitantly, a
significant red-shifting of the X-Be-X antisymmetric stretching frequencies and a significant
lengthening of the X-Be bonds occur. The presence of the beryllium bond results in a significant
blue-shifting of the X-Be-X symmetric stretch.

Introduction
Noncovalent interactions play a very important role in
chemistry, in particular as far as intermolecular interactions1-3

and supramolecular chemistry4-7 are concerned, where the
molecular assemblies are usually held together through
noncovalent and, quite often, weak interactions. Some of
these interactions have special characteristics and, as a
consequence, they constitute a subclass among the different
kinds of intermolecular forces. This is the case of the
conventional8-11 and the nonconventional12 hydrogen bonds
as well as the so-called halogen bonds.13-18 In these cases,
the leading role of the interaction is played by a hydrogen
or a halogen atom, which interacts with two moieties. For
the particular case of the hydrogen bonds, these two moieties
act as a Lewis base, the so-called HB acceptor, and as a

Lewis acid, which is the moiety usually called HB donor,
respectively.

The nature of these interactions was not free of contro-
versy, but it is generally accepted that the electrostatic
component is dominant,19-23 although it is not the only one
responsible for the characteristics of these interactions.
Actually, one of the necessary conditions to have an inter-
or an intramolecular hydrogen bond is to have a hydrogen
atom bonded to an electronegative element (X), so that the
net positive charge on this hydrogen is usually rather high,
favoring its electrostatic interaction with the basic site of
the hydrogen bond acceptor, normally a heteroatom (Y) with
a negative net charge.9 Besides the electrostatic interaction
between the hydrogen atom attached to X and Y, there are,
unavoidably, the polarization effects and a non-negligible
charge transfer from the lone-pairs of electrons of the HB
acceptor toward the σXH* antibonding orbital of the HB
donor.24 Recently, different analysis has clearly shown the
role of this covalent contribution, which is reflected in the
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value of delocalization indexes.25 A very interesting analysis
on the covalent/electrostatic nature of the hydrogen bond in
terms of the interacting quantum atoms approach has been
recently reported by Martı́n Pendás et al.26 The aforemen-
tioned charge transfer process from the lone pairs of the HB
acceptor toward the σXH* antibonding orbital of the HB donor
is necessarily reflected in a weakening of the X-H covalent
bond, which accordingly lengthens, whereas its stretching
frequency is red-shifted. This red shifting is precisely one
of the experimental signatures of these interactions.9,27-29

These characteristics are not necessarily exclusive of
hydrogen bonds, and they could be found whenever an
element, not very electronegative, is covalently bonded to a
more electronegative one and, at the same time, has low-
lying empty orbitals which allow it to behave as a good
electron acceptor. One of the elements which initially fulfill
these conditions is beryllium. Due to its low electronegativity,
it has been shown,30 for instance, that BeH2 may act as a
proton-accepting molecule for dihydrogen-bonded systems.
It is also well established, both from the experimental and
theoretical viewpoints, that BeX2 derivatives are good Lewis
acids,31,32 in particular, the BeCl2 for which different
complexes with nitrogen bases have been synthesized.33 Also
very recently, new complexes between BeCl2 and dimeth-
ylsulfoxide have been isolated and characterized.34 Actually
BeCl2 is a very strong Lewis acid, and somewhat unexpected,
the [BeCl3]- formed by the interaction of BeCl2 with Cl- is
still capable of acting as a Lewis acid forming [BeCl3(L)]-

complexes, which have been recently reported to be
stable.35-39 The bonding in complexes involving BeCl2 and
[BeCl3]- has been analyzed in detail by Frenking and co-
workers40 at different levels of theory, showing that the bond
dissociation energy of Cl2Be-NH3 is larger than that of
Cl3B-NH3, even though Be is less electronegative than B,
and that the main difference in bonding comes from a larger
electrostatic contribution in Be complexes than in boron ones.

The aim of this paper is to analyze the complexes between
BeH2 and other beryllium derivatives and different Lewis
basis under a different perspective. Beryllium is a electro-
positive element, which in the limit could be regarded as a
proton, which has a core of electrons; hence, the question
we would like to answer is whether the aforementioned
interactions involving Be derivatives can be considered a
special kind of weak interactions, sharing some common
characteristics with the conventional hydrogen and halogen
bonds. In other words, we want to answer the question, is it
possible to define “beryllium bonds” in a similar way as we
define hydrogen bonds?

For this purpose, we have considered initially the interac-
tions between BeX2 (X ) H, F, Cl, OH) derivatives with a
set of small compounds, which are able to behave as Lewis
bases and contain as basic sites first-, second- and third-row
atoms, namely NH3, H2O, FH, PH3, SH2, ClH and BrH,
(set A).

This initial set will be enlarged to a total of 13 reference
bases (set B) by including, besides the bases of set A, some
additional bases such as CO, HCN, LiCN, HN)CH2, OCH2,
and CH3NH2. For this set B, we will use as a suitable

example of the larger set of Be compounds investigated, the
Cl2Be derivative.

The possible existence of beryllium bonds may have some
important implications in different fields. It is well established
for instance that the association of beryllium fluoride to ADP
inhibits protein action.41-47 Be is also able to form half-
sandwich complexes with interesting reactivity patterns.48,49

Probably the most relevant aspect of our study concerns
beryliosis or CBD (chronic beryllium disease) a very serious
illness, often fatal, caused by Be metal and Be2+. The
mechanism is not clearly understood yet, but it involves the
interaction of Be2+ with up to four water molecules.50,51 In
relation with CBD, beryllium water clusters have been
studied theoretically52 as well as the possibility that Be2+

could displace H+ from strong hydrogen bonds.53 Hence,
the possible existence of beryllium bonds might offer
alternative mechanisms to beryllium toxicity.

Computational Details

Standard MP2, CCSD(T), and density functional theory
(DFT) calculations have been carried out by means of the
Gaussian-03 suite of programs.54 Among the different
functionals nowadays available, we have chosen the B3LYP
hybrid method,55,56 which is likely the most frequently used
because it yields quite reliable geometries and harmonic
vibrational frequencies, so it would be interesting to assess
its behavior as far as the description of “beryllium bonds”
is concerned. For this purpose, the geometries of the
complexes formed between Cl2Be, taken as a benchmark
case, and the Lewis basis included in set A were initially
optimized at the B3LYP/6-311+G(d,p) and compared with
those obtained when the MP2/6-311+G(d,p) approach was
used. As shown in the Supporting Information, Table S1,
the agreement between both set of values, as far as the length
of the beryllium bond and the value of the ClBeCl angle, is
very good, and only for second- and third-row basic atoms,
the deviations between both sets of values are slightly larger.
Hence, in what follows, we will use systematically B3LYP
optimized geometries but refining the previous ones by using
a larger 6-311+G(3df,2p) basis set expansion. The corre-
sponding harmonic vibrational frequencies, which allowed
us to characterize the stationary points as local minima of
the potential energy surface and to estimate the thermal
corrections to the enthalpy, and the Gibbs free energy were
also obtained at the B3LYP/6-311+G(3df,2p) level of theory.
The same level was used to evaluate the interaction energy
for each complex. This interaction energy was defined as
the dissociation energy of the “beryllium bond”, i.e., as the
negative of the enthalpy obtained by subtracting from the
enthalpy of the complex the enthalpies of the two isolated
monomers. The energies for the particular set of complexes
formed by Cl2Be, were also evaluated using the MP2 and
CCSD(T) methods with an aug-cc-pVTZ basis set, for the
sake of assessing the reliability of the DFT values. The
CCSD(T) and DFT interaction energies were corrected with
the basis set superposition error (BSSE) evaluated by means
of the counterpoise method.57

The bonding of the systems under scrutiny was analyzed
by means of three different approaches, namely the atoms

2764 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Yáñez et al.



in molecules (AIM) theory,58 the electron localization
function (ELF) theory,59,60 and the natural bond orbital
(NBO) method.24 In the framework of the AIM theory, we
have evaluated the electron density at the different bond
critical points (BCP), since the existence of a BCP in the
region between the Be atom and the basic site of the Lewis
base will permit not only to establish the existence of a
“beryllium bond” but also to quantitatively estimate its
strength. Besides, the energy density at the BCP provides
useful clues about the covalent nature of the interaction.

By means of the ELF theory,59,60 it is possible to partition
the molecular space in basins of two types, polysynaptic
basins (generally disynaptic), with the participation of two
(or more) atomic valence shells, and monosynaptic ones,
which correspond to electron lone-pairs,61 because the ELF
function becomes large in regions of space where electron
pairs, either bonding or lone pairs, are localized. ELF grids
and basin integrations have been evaluated with the TopMod
package.62 For the three-dimensional plots, an ELF value
of 0.8 has been used.

The NBO approach24 describes the bonding in terms of
localized hybrids and lone pairs obtained as local block
eigenvectors of the one-particle density matrix. Besides, a
second-order perturbation analysis of the Fock matrix permits
to quantify the interactions between occupied MOs of the
Lewis base and unoccupied MOs of the Lewis acid, in a
typical electron transfer process from the former toward the
latter. The Wiberg bond orders (BO)63 were also evaluated
as defined in the NBO-5G program package.64

Results and Discussion

Full optimized geometries of the complexes formed by the
association of BeX2 (X ) H, F, Cl, OH) derivatives and the
compounds of set A are collected in the Supporting Informa-
tion, Table S2. The interaction enthalpies obtained at the
B3LYP/6-311+G(3df,2p) level are summarized in Table 1.

The first conspicuous fact is that the length of the
“beryllium bond”, considered as the internuclear distance
between Be and the basic site (Y ) C, N, O, F, P, S, Cl, Br)
of the Lewis base, is significantly smaller than the sum of
the van der Waals radii of the two atoms (See Table 1), which
clearly indicates the existence of a significant interaction
between the two monomers forming the complex. The
deformation undergone by the BeX2 compound, which in
the complex is not linear anymore, is a further indication of
the strength of these interactions (See Table 1). The second
important feature is that the interaction enthalpies are very
large for most of the bases, and they are only small when
the basic site is Cl or Br. More importantly, these interaction
enthalpies are in some cases four or five times larger than
the energies involved in typical hydrogen bonds. It must be
reminded here, for instance, that the interaction energy in
the water dimer is about 20 kJ mol-1,65-67 whereas the
enthalpy of some of the beryllium bonds investigated here
are greater than 100 kJ mol-1.

Statistically, it is possible to analyze the ∆Hint values of
Table 1 with regard to NH3 as reference base (R2 ) 0.991),
in terms of the presence/absence Free-Wilson matrix68,69

which is given in the Supporting Information. The values of

this statistical analysis (H2Be 91.3, F2Be 101.0, Cl2Be 96.7,
(OH)2Be 90.0, OH2 -21.0, FH -64.8, PH3 -70.5, SH2

-70.3, ClH -87.3 and BrH -87.3 kJ mol-1) are very close
to those in Table 1, which is an indication of the goodness
of this analysis. All the bases have negative coefficients
because NH3 is giving the strong interaction enthalpies; then,
the order, as far as interaction energies are concerned, is NH3

> OH2 > FH > SH2 > PH3 > ClH ) BrH. Concerning the
beryllium derivatives, the order is F2Be > Cl2Be > H2Be >
(OH)2Be.

In this respect, it is worth to compare the stability of the
beryllium bonds with respect to the hydrogen bonds, in which
the latter can be also formed between the two interacting
systems. To analyze this question, the subset of complexes
formed by Be(OH)2 is very appropriate since this compound
can act as either a HB donor or acceptor. In Figure 1, we
present the structures of the two kind of possible complexes,
those stabilized through beryllium and hydrogen bonds as
well as the calculated interaction energies. It can be noted
that (OH)2Be behaves as a HB donor with respect to NH3,
OH2, PH3 and SH2, which are stronger HB acceptors, whereas
it behaves as a HB acceptor when interacting with FH, ClH
and BrH, which are stronger HB donors. Only for the case
of water, both complexes were found to be almost equally
stable. The important finding to be underlined here is that
beryllium bonds are predicted to be, by far, more stabilizing
than the HBs, and only for FH, ClH and BrH, both
interactions are energetically similar. Nevertheless, as we
shall show in forthcoming sections, even in these three cases,

Table 1. B3LYP/6-311+G(3df,2p) Optimized Be-Y
Distances (RBe-Y in Å), XBeX Angles (in degrees), and
Dissociation Enthalpies (∆Hint, kJ mol-1) of Different
Complexes Involving BeX2 (X ) H, F, Cl, OH) Derivatives
with Lewis bases of the Set A

complex RBe-Y XBeX angle ∆Hint

H2Be-NH3 1.771 138.6 86
H2Be-OH2 1.666 143.6 69
H2Be-FH 1.798 152.1 25
H2Be-PH3 2.285 145.6 24
H2Be-SH2 2.251 147.6 24
H2Be-ClH 2.378 157.0 6
H2Be-BrH 2.611 160.0 4
F2Be-NH3 1.776 137.6 103
F2Be-OH2 1.690 142.1 81
F2Be-FH 1.802 150.2 35
F2Be-PH3 2.342 144.9 30
F2Be-SH2 2.306 146.3 31
F2Be-ClH 2.377 154.3 15
F2Be-BrH 2.603 156.8 11
Cl2Be-NH3 1.745 134.7 106
Cl2Be-OH2 1.653 139.2 81
Cl2Be-FH 1.748 145.7 28
Cl2Be-PH3 2.264 139.3 29
Cl2Be-SH2 2.244 140.8 27
Cl2Be-ClH 2.338 148.2 4
Cl2Be-BrH 2.602 151.4 1
(OH)2Be-NH3 1.770 143.4 84
(OH)2Be-OH2 1.700 148.3 64
(OH)2Be-FH 1.797 155.8 32
(OH)2Be-PH3 2.336 151.4 14
(OH)2Be-SH2 2.306 152.8 16
(OH)2Be-ClH 2.470 162.6 5
(OH)2Be-BrH 2.802 168.0 14
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the beryllium bond is predicted to be stronger than the
hydrogen bond, when evaluated at the CCSD(T) level.

Bonding

The origin of the strength of these intermolecular interactions,
that we have named beryllium bonds, requires an analysis
of their intimate nature. For this purpose, we will examine,
as a suitable benchmark case, the complexes formed between
BeCl2 and the bases included in set B. The B3LYP/6-
311+G(3df,2p) optimized geometries are shown in Figure
2. The interaction enthalpies, obtained at different levels of
theory, have been summarized in Table 2.

The first important point to be emphasized is that all Be
complexes investigated share the same bonding character-
istics, although only those the BeCl2 complexes will be
discussed in detail. To better illustrate this similarity we have
included in the Supporting Information, Figure S1, a
comparison between the molecular graphs and the ELFs of
BeCl2 and BeH2 complexes.

A topological analysis of the electron density of the
systems under scrutiny shows the existence of a BCP
associated with the beryllium bond. The electron density
associated to these BCPs is typical of the interactions
between closed shell systems but larger than those found
for conventional HBs. It is also worth noting that the energy

density, although small in absolute value, is negative in most
cases (See Table 3), pointing out a non-negligible covalent
contribution to these interactions. Note that only for very
strong HBs, the energy density is slightly negative.

This AIM description is in harmony with the NBO picture.
As shown in Table 3, the Wiberg BO of the beryllium bonds
is quite significant in some cases (close or greater than 0.3).
It must be recalled here, that Wiberg BOs of polar covalent
bonds are generally small. Actually, the Wiberg BO for the
Cl-Be polar covalent bond in the isolated BeCl2 molecule
is 0.44, not much greater than some of the values calculated
for the beryllium bonds. No doubt, one important energetic
contributor to the beryllium bonds is of electrostatic origin.
As a matter of fact, the net natural charge of Be in the
complexes investigated is systematically around +0.5,
whereas the basic site of the different bases bear a negative
net natural charge, which varies from -0.87 in CH3NH2 to
-0.16 in HBr. However, there is not a direct correlation
between the net charge of the basic site and the interaction
energy, and, even in the case of CO complexes where the
carbon atom bears a positive net charge (+0.39), still the
interaction energy is of the order of 30 kJ mol-1. Hence,
other factors besides the electrostatic interactions should
contribute to the stability of the beryllium bond. A NBO
second-order perturbation analysis actually shows the exist-
ence of a quite large electron transfer from the lone-pairs of
the Lewis base toward the empty p orbital in Be, and the
σClBe* antibonding molecular orbital (see Table 3). As it is
clearly reflected in Table 3, these second-order orbital
interactions decrease as the electron donor ability of the base
decrease, and therefore, they are smaller in FH complexes

Figure 1. Optimized structures of the two kind of complexes
formed by the interaction of Be(OH)2 with the Lewis bases
included in set A. The left-hand side column corresponds to
the complexes stabilized through a beryllium bond, while those
in the right-hand side column are hydrogen bonded com-
plexes. The interaction enthalpies between both subunits are
given by each structure in kJ mol-1.

Figure 2. Optimized geometries for the complexes between
BeCl2 and the Lewis bases included in set B. Bond lengths
are in Å and bond angles in degrees.
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than in NH3 ones and they are very large for very basic
compounds, such as LiCN, NH)CH2 and MeNH2. In some
cases, the NBO approach actually detects the formation of a
covalent bond between the Be and the basic site of the base,
but this is likely a consequence of the localization scheme
used by this method. In these cases, as indicated in Table 3,
the situation is not essentially difference for the other ones,
in the sense that the bond located implies a rather small
contribution from the hybrid on Be, which is compatible with
the description above in terms of an electron transfer from
the lone-pairs of the base toward the empty orbitals of
Be. This bonding similarity is also mirrored in the analogy
of the ELF for the ammonia and the phosphine complexes
(see Figure 3). This electron transfer is obviously reflected
in the electron population of the initially empty p orbital of
Be, which in the complexes investigated is typically around
0.06 e. This participation of the p orbital in the complex is
actually responsible for the deformation undergone by the
BeCl2 subunit, which accordingly is not linear any more.
Similarly the electron transfer toward the σClBe* antibonding
molecular orbital is reflected in a significant lengthening of

the Cl-Be with respect to the isolated molecule (see Figure
2) as well as in a decrease of the electron density at the
Be-Cl BCP (see Table 4) and of the population of the
V(Be,Cl) disynaptic basin (See Figure 3).

The formation of the complex also has a strong effect
in the frequencies of the BeCl2 subunit. Both in the
isolated molecule and the complexes, the Be-Cl stretching
modes appear as symmetric and antisymmetric combina-
tions. Consistently, with the weakening of the Be-Cl
bonds upon complexation, the antisymmetric combination
appears significantly shifted to the red (See Table 4). The
larger the shifting, the stronger the interaction is between
the lone pair of the base and the σClBe* orbital. However,
the symmetric combination is significantly blue-shifted.
This is so because in the complex the BeCl2 subunit is
bent, and therefore the symmetric stretch of the Be-Cl
bonds is unavoidably coupled with the stretching of the
Be-Y bond. In other words, the symmetric elongation of
the two Be-Cl bonds leads to a compression of the Be-Y
and vice versa. Hence, the stronger the beryllium bond,
the larger the blue shifting of the BeCl symmetric stretch

Table 2. Energetics of Complexes Between Cl2Be and Different Lewis Basesa

∆H0(adi.) ∆H0(adi.) ∆H0(adi.) ∆Hrelax ∆H0 (vert.)
complex B3LYP MP2 CCSD(T) CCSD(T) CCSD(T)

Cl2Be-NH3 106 (104) 126 125 (118) 54 179
Cl2Be-OH2 81 (78) 97 96 (90) 47 143
Cl2Be-FH 28 (24) 39 39 (32) 32 71
Cl2Be-PH3 29 (27) 49 44 (39) 48 92
Cl2Be-SH2 27 (25) 47 43 (38) 38 81
Cl2Be-ClH 4 (1) 20 17 (13) 24 41
Cl2Be-BrH 1 (0) 22 19 (11) 19 38
Cl2Be-HCN 57 (55) 75 71 (64) 48 119
Cl2Be-OCH2 62 (59) 82 82 (75) 53 135
Cl2Be-CO-a 0 0 0
Cl2Be-CO-b 18 (16) 32 26 (20) 33 59
Cl2Be-LiCN 130 (127) 149 147 (139) 67 214
Cl2Be-NHCH2 115 (113) 139 136 (128) 58 194
Cl2Be-MeNH2 117 (115) 147 145 (137) 58 203

a ∆H0 (adi.), ∆Hrelax, ∆H0 (vert.) stand for the adiabatic dissociation energy, the relaxation energy of the products and the vertical
dissociation energy. The values within parentheses correspond to the dissociation energies after the BSSE correction is included. All values
are in kJ mol-1.

Table 3. Electron Density (FBCP, au) and Energy Density (au) at the Be · · ·Y BCP, Electron Population at the V(Be,Y) and
V(Cl,Be) Disynaptic Basins, Wiberg BO Associated with the Be · · ·Y Interaction, and the Second-Order Interaction Energies
(kJ mol-1) between the Lone-Pairs of the Bases and the Empty p Orbital of Be and the σClBe* Antibonding Orbital for the
Complexes Formed between BeCl2 and the Lewis Bases Included in Set B

complex FBCP (energy density) V(Be,Y) (V(Cl,Be)) basin populations BO LPbasef pBe LPbasefσClBe*

Cl2Be-NH3 0.069 (-0.009) 2.08 (1.81) 0.23 87 58
Cl2Be-OH2 0.064 (+0.004) 2.38 (1.81) 0.10 60 56
Cl2Be-FH 0.042 (+0.003) 1.15 (1.86) 0.08 34 38
Cl2Be-PH3 0.042 (-0.011) 2.06 (1.84) 0.24 Be-P bondb

Cl2Be-SH2 0.038 (-0.008) 2.01 (1.85) 0.20 Be-S bondc

Cl2Be-ClH 0.025 (-0.004) -a (1.90) 0.12 32 33
Cl2Be-BrH 0.020 (-0.004) -a (1.92) 0.11 21 24
Cl2Be-HCN 0.057 (0.000) 3.08 (1.84) 0.12 71 56
Cl2Be-OCH2 0.056 (+0.003) 2.48 (1.84) 0.11 85 80
Cl2Be-CO 0.046 (-0.005) 2.59 (1.87) 0.19 Be-C bondd

Cl2Be-NCLi 0.071 (-0.006) 3.08 (1.82) 0.14 105 58
Cl2Be-NHCH2 0.069 (-0.008) 2.59 (1.83) 0.13 75 75
Cl2Be-MeNH2 0.069 (-0.010) 2.15 (1.81) 0.33 Be-N bonde

a No V(Be,Cl) disynaptic basin has been located. b 6% Be (31% s + 69% p) + 94% P (32% s + 68% p). c 5% Be (29% s + 71% p) +
95% S (15% s + 85% p). d 4% Be (35% s + 65% p) + 96% C (67% s + 33% p). e 9% Be (28% s + 72% p) + 91% N (35% s + 65% p).
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becomes; as it is nicely illustrated by the rather good
exponential correlation between the blue shifting and the
electron density at the beryllium bond BCP (see Figure
4).

The existence of a beryllium bond is also ratified by the
ELF analysis, which shows the existence of a disynaptic
V(Be,Y) basin in most of the complexes investigated. As a
matter of fact, only in those cases where the compound
interacting with the BeCl2 molecule is a poor Lewis base,
like HCl, these disynaptic basins are not found, and only a
polarization of the basic site lone-pairs is observed (See

Figure 3). It is also evident from Figure 3 that lone pairs of
the basic site undergo a dramatic volume contraction on
going from the isolated base to the complex. For example,
upon the interaction between Cl2Be and NH3, the volume of
the N lone pair decreases from 92 to 34 au, even though its
population hardly changes. This is a direct consequence of
the strong interaction between the lone pair and the empty
beryllium orbitals (actually in the complex the lone pair
becomes a V(N,Be) disynaptic basin), which leads to very
short distances between the basic site of the Lewis base and
the Be atom and, therefore, to a dramatic volume contraction
of the base lone pair.

The significant geometry distortions triggered by the
complexation process must have a large effect on the
calculated enthalpy40 of the beryllium bond because this is
defined with respect to the isolated and, therefore, unper-
turbed monomers. A more realistic measure of the strength
of the beryllium bonds would be obtained by calculating the
vertical dissociation energy of the complex, i.e., the energy
required to separate the interacting subunits at infinite
distance, but keeping frozen the structure they have in the
complex. This will be equivalent to adding to the adiabatic
dissociation enthalpy the enthalpy involved in the relaxation
of the two subunits from their structure within the complex
to their equilibrium structure. As shown in Table 2, this
relaxation enthalpy (∆Hrelax) is quite large and, for the weaker
complexes, almost equal or even slightly larger than the
adiabatic dissociation energy itself. It is important to note
that the larger the relaxation or deformation energy the
greater the stability of the complex, a fact which is nicely
reflected in the good correlation between the adiabatic and
the vertical dissociation energies (See Figure 5). It is also
worth noting the very good agreement of our calculated
values for the Cl2Be-NH3 complex and those reported
previously in the literature.40

Finally, it is important to notice that the B3LYP adiabatic
dissociation energies, ∆H0(adi.), underestimate the values
obtained at the CCSD(T) level. A similar result was reported
by Frenking and co-workers for the particular case of the
Cl2Be-NH3 complex when the BP86 functional was used.40

It is worth noting that the agreement between B3LYP and
CCSD(T) results improve slightly when including the BSSE
correction because, at the CCSD(T) level this error is 6.7 kJ

Figure 3. Three-dimensional representations of ELF isosur-
faces with ELF ) 0.80 for Cl2Be-containing complexes. Yellow
lobes correspond to disynaptic basins involving H atoms, red
lobes correspond to monosynaptic lone-pair basins, green
lobes correspond to disynaptic basins between two bonded
atoms, and blue lobes correspond to monosynaptic atomic
cores. The population of the different basins is given in e-.

Table 4. Be-Cl Stretching Frequencies (cm-1) and
Electron Density at the Be-Cl BCP (FBCP, au)

νCl-Be (sym. stret.) νCl-Be (asym. stret.) FBCP

isolated BeCl2 339 1 131 0.095
complex
NH3 719 928 0.078
H2O 630 954 0.080
FH 507 1 008 0.089
PH3 539 923 0.082
SH2 523 945 0.083
ClH 461 1 003 0.086
BrH 440 1 025 0.088
HCN 635 913 0.080
CH2O 623 920 0.080
CO 547 954 0.083
LiCN 752 850 0.075
NH)CH2 726 885 0.076
MeNH2 726 897 0.077

Figure 4. Exponential correlation between the blue shifting
of the Cl-Be-Cl symmetric stretch and the electron density
at the beryllium bond BCP. This correlation fulfils the equation:
∆νCl-Be 2.82 exp (39.04 FBe-Y) (R2 ) 0.966).
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mol-1, in average, whereas for the B3LYP calculations is
about three times smaller (2.4 kJ mol-1, in average).

In order to establish whether a high level of electron
correlation is required to adequately describe these bonds,
we have also compared the CCSD(T) and B3LYP values
with those obtained at the MP2 level. In general, the
agreement between CCSD(T) and MP2 values is very
good, and hence, one may rely on the lower level of theory
to get reasonably good estimates for the energies of
beryllium bonds. As a matter of fact, as shown in the
Supporting Information, Figure S2, the correlation between
both sets of values is very good. The correlation between
B3LYP and CCSD(T) estimates is slightly poorer (see
Supporting Information, Figure S3) but still very good,
which means that the B3LYP method correctly reproduces
the stability trends obtained with the much more expensive
CCSD(T) approach. Finally, it should be mentioned that,
in spite of the differences in the energetics obtained with
B3LYP and MP2 (or CCSD(T)) methods, the bonding
picture obtained from B3LYP and MP2 (or CCSD)
densities is essentially the same. The Wiberg BOs and
the electron densities at the BCP vary by less than 0.01
and 0.001 au, respectively. Similarly the populations of
the ELF basins change inappreciably as illustrated in the
Supporting Information, Figure S4, where the ELFs
obtained at the MP2 level for four different complexes,
taken as suitable examples, are compared with the B3LYP
ones.

Conclusions

The complexes between BeX2 (X ) H, F, Cl, OH) with
different Lewis bases are stabilized through the interaction
between the Be atom and the basic center of the base.
These interactions, which we have called beryllium bonds,
are characterized by the existence of a BCP with electron
densities similar to other typical closed-shell interactions
but with energy densities, which in some cases are slightly
negative, indicating the presence of non-negligible cova-
lent contributions. All bonding indices actually indicate
that, although beryllium bonds are in general significantly
stronger than HBs, they share many common features.

Although both interactions have a dominant electrostatic
character they have also some covalent character associ-
ated with a non-negligible electron transfer between the
interacting subunits. In HBs, this electron transfer takes
place from the HB acceptor lone-pairs toward the σYH*
antibonding orbital of the HB donor, whereas in beryllium
bonds they go from the lone pairs of the Lewis base toward
the empty p orbital of the Be and the σBeX* antibonding
orbital. This electron transfer is reflected in a significant
distortion of the BeX2 subunit, which in the complex
becomes nonlinear and in a significant red-shifting of the
X-Be-X antisymmetric stretching frequencies. The pres-
ence of the beryllium bond results in a significant blue-
shifting of the X-Be-X symmetric stretch. Hence, also
similarly to HBs whose experimental signature is the red-
shifting of the XH stretching frequency of the HB
donor,27-29 in beryllium bonds, this signature should be
the red-shifting of the X-Be-X antisymmetric stretch and
the blue-shifting of the symmetric one.
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Abstract: The implementation, optimization, and performance of DFT-D, including the effects
of solvation, has been tested on applications of polar processes in solution, where dispersion
and hydrogen bonding is known to be involved. Solvent effects are included using our ab initio
continuum solvation strategy, COSab, a conductor-like continuum solvation model, modified
for ab initio in the quantum chemistry program GAMESS. Structure and properties are
investigated across various functionals to evaluate their ability to properly model dispersion and
solvation effects. The commonly used S22 set with accurate interaction energies of organic
complexes has been used for parametrization studies of dispersion parameters and relevant
solvation parameters. Dunning’s correlation consistent basis sets, cc-pVnZ (n ) D, T), are used
in the optimization, together with the Grimme B97-D exchange-correlation functional. Both water
(ε ) 78.4) and ether (ε ) 4.33) environments are considered. Optimized semiempirical dispersion
correction parameters and solvent extent radii are proposed for several functionals. We find
that special parametrization of the semiempirical dispersion correction when used together in
the DFT-D/COSab approach is not necessary. The global performance is quite acceptable in
terms of chemical accuracy and suggests that this approach is a reliable as well as economical
method for evaluation of solvent effects in systems with dispersive interactions. The resulting
theory is applied to a group of push-pull pyrrole systems to illustrate the effects of donor/
acceptor and solvation on their conformational and energetic properties.

Introduction

The treatment of van der Waals (vdW, dispersive) interac-
tions is an active field of research as of late, particularly
in the DFT community.1-25 The importance of vdW inter-
actions is clear when considering molecular systems whose
structures are largely influenced, and in some cases totally
determined, by dispersion interactions. Moreover, the stability
of a given molecular charge distribution may also be affected
by its environment, specifically by the polarity of the medium
or solvent. In particular, aromatic or π-conjugated molecules
display a special sensitivity toward the redistribution of
electron density as a function of their nuclear position,
photonic excitation, and polar solvation. In general, chemical

recognition, whether in materials or biological systems,
depends on physio-chemical modulation that may be deter-
mined either qualitatively or quantitatively. Molecules in
close proximity create competition and selection based on
relative free energies of reaction (complexation/association),
excitation (change in electronic state), and/or product forma-
tion (new chemical bond). Proper treatment of dispersion
and solvent effects, both important effects on their own, in
combination still leave open several important questions for
reliable treatment.

Given that dispersion energies are pure electron correlation
effects,26,27 accurate computations via ab initio based wave
functions, including at least single and double substitutions,
can provide good accuracy with adequate basis sets (e.g.,
CCSD(T) method),28 albeit with a significant computational
cost. On the cheaper side of these methods, Møller-Plesset

* Corresponding author phone: +41 44 635 4201; fax: +41 44
635 6888; e-mail:kimb@oci.uzh.ch.

J. Chem. Theory Comput. 2009, 5, 2772–27862772

10.1021/ct900363n CCC: $40.75  2009 American Chemical Society
Published on Web 09/21/2009



perturbation (MP2, MP4) methods,29 while an improvement
over most density functional approaches, tend to be largely
over bound for many systems.30,31 In general, neither
computational solution is economical, particularly for large
molecular systems and complexes. Recent literature including
work of our own, on the other hand, illustrates the effective-
ness of dispersion corrected DFT approaches.7,14,15,32-34

Such methods, coupled to effective strategies for treatment
of solvent,35-42 promise to provide an economical yet
accurate method where both solvent and dispersion effects
dominate. One approach has already been shown in a recent
paper by Riley et al.6 where a slightly modified version of
the semiempirical correction of Grimme14 applied to the
TPSS density functional43 was coupled with the IEF-PCM
approach for continuum solvation.44 However, still not well
understood is a more general view of such DFT-D functionals
together with continuum solvent representations, including
optimal representations of the dispersion correction, effects
of basis set, and representations of the solvent.

Our goals in this work include a) contribution to the
development of semiempirically corrected density function-
als, emphasizing functionals and basis sets that are necessary
for investigations of structure and properties in solution, b)
implementation, optimization, and performance analysis of
the semiempirically augmented density functional theory
(DFT-D) in conjunction with our ab initio implementation
of the conductor-like screening model, COSab, within the
GAMESS software,45 and c) illustration of the combined
DFT-D/COSab method on systems with known dispersion
and solvation phenomenon, presented with an expanded set
of basis sets, functionals, and solvent dielectrics, with
consideration of both structure and properties.

Computational Methods

All calculations reported here were carried out using a locally
modified version of the GAMESS electronic structure
program. In the present work, we consider the semiempiri-
cally corrected functional, B97-D,14 and two conventional
hybrid functionals, B3PW91,46,47 and B3LYP.46,48 Addition-
ally, comparisons are made with the second order Møller-
Plesset perturbation theory (MP2)29 and CCSD(T).28 Dis-
persion corrections were recently implemented and tested
in the GAMESS software, using the ansatz proposed by
Grimme (2006).16 The B97-D functional is a special repa-
rameterization of the original B97 hybrid functional of
Becke.22 The new parameters in the functional form make
B97-D less susceptible to spurious dispersion contamination
in the exchange component than the original functional of
Becke. The dispersion energy in B97-D is entirely handled
by the semiempirical term, leading to smaller errors. For
semiempirically corrected functionals, given the importance
and dependence of the associated parameters on the choice
of functional and basis set, we have carried out parameter
optimization for several basis sets, including TZV2P,49 with
(2d,2p), and Dunning’s correlation consistent basis sets,50

denoted cc-pVnZ, where n ) D for double with [3s2p1d]
contraction, T for triple with [4s3p2d1f] contraction, and Q
for quadruple with [5s4p3d2f1g] contraction. The S22

reference set of data provided by Jurecka et al.51 is used as
a validation test set, in addition to several test systems.

Solvation was taken into account using the most recent
implementation of our COSab solvation method, based on
the original COSMO theory of Klamt and modified for ab
initio theory.52-54 Dielectric permittivities of water (ε )
78.4) and ether (ε ) 4.335) are used for parametrization
studies. An expanded set of dielectrics was used to investigate
a set of substituted pyrroles, for illustration of the method,
including toluene (ε ) 2.38), chloroform (ε ) 5.0), t-butanol
(ε ) 12.0), acetone (ε ) 20.7), methanol (ε ) 32.6), and
water (ε ) 78.4). The parameters of the cavity construction
are 1082 points for the basic grid and 92 segments on the
complete sphere. The outlying charge error was taken into
account via the double cavity approach.53-55 The solvent
radial extent was optimized in the parameter optimization
studies and taken as 1.3 for the application studies. Solvent
atomic radii were taken from Bondi56 or from Klamt.57

Theoretical Approach and Discussion

DFT Dispersion Corrections. Much work has been
carried out to revise and enhance density functionals for
increased accuracy, the most important component of late
being the addition of corrections for dispersion. A particularly
effective and consistent strategy to correct failures due to
lack of dispersion has involved addition of an empirical
potential19,58 to the final DFT energy. This empirical potential
is typically of the form C6R-6, where R are interatomic
distances and C6 dispersion coefficients. Such a strategy has
been formulated and well established by several research
groups.14,15,17,59 In particular, the method of Grimme estab-
lishes a semiempirical dispersion correction that can be
applied to the final result of any mean field calculation that
lacks a sufficient description of dispersion energy.60,61

Typically, this procedure is used in conjunction with density
functional theory (leading to various DFT-D methods)

where the dispersion coefficients C6 are calculated from the
atomic polarizabilities, and the fdmp is a damping function
with the form

This semiempirical correction does not depend on the
electronic structure of the system, and, therefore, optimization
of the relevant parameters must be considered, in particular
the s6 prefactor to the C6 atomic coefficients, the d damping
factor, and the sR prefactor to the vdW radii. The atomic
polarizabilities (which lead to the C6 coefficients), the vdW
radii, and all semiempirical parameters were optimized in
the original paper of Grimme,32 and further work was carried
out by our own group more recently.34 Such parameters have
to compensate for differences in the electronic descriptions
due to basis sets, functionals, and, in the present work, effects

Edisp ) -s6 ∑
i)1

Nnat-1

∑
j)i+1

Nnat C6
ij

Rij
6

fdmp(Rij) (1)

fdmp (Rij) )
1

1 + exp [-d ( Rij

sRRij
0
- 1)]

(2)
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of solvent. The nonlinear parameter, d, is considered optimal
and fixed to the optimized value of Grimme, d ) 20.14

Differences in implementations are mainly in the values of
these parameters. The final mean-field (MF) DFT-D energy
is the result of the direct addition of this dispersion energy
to the computed DFT energy

First Principles Continuum Solvation Theory. We have
developed a rigorous self-consistent approach for the inclu-
sion of electrostatic solvation effects in conventional ab initio
gas phase computations in GAMESS.35,52 This model is
implemented at the RHF (ROHF, UHF), DFT, HDFT, and
MP2 (UMP2) levels, including first and second derivatives.
Our approach to continuum solvent modeling (COSab) arises
from the concepts of screening in conductors, a modification
of the original COSMO theory of Klamt.62 Significant model
features of this approach include a) molecular-shaped cavity
construction, b) efficient solution to energy and derivative
quantities, c) efficient ways of including dynamic correlation,
d) inclusion of an alternate approach using multipoles up to
hexadecapoles, e) assessment of outlying charge effects using
a choice of two strategies, f) general electrostatic solvation
accuracy within 2-6 kJ/mol, and g) several strategies for
inclusion of first solvation shell effects.

We refer the details of the underlying theory of the COSab
method to the original paper52 and instead only point out
the main concepts related to the coupling of this theory with
the semiempirical dispersion corrections for density func-
tional treatments. The treatment of solvent effects within the
continuum model involves the construction of a cavity around
a solute system, with a dielectric continuum representing the
solvent outside the cavity. The molecular electric field arising
from the nuclei and the electronic distribution is screened
by the polarization of this dielectric continuum. The iterated
solute/solvent interaction can be uniquely represented by the
resulting surface charge distribution at the interface to the
continuum. Construction of the molecular cavity relies on
van der Waals radii of Bondi56 scaled by a solvent factor
(cosrad) in the range of 1.2-1.3 that represents the area of
approach of solvent molecules to a solute.57 These radii in
fact ensure that the cavity volumes are approximately equal
to the molar volumes of the compounds and therefore are
not really free parameters57,63 and demonstrated the physi-
cally correct screening energy decay behavior.52

While authors of other solvent models may recommend
different sets of vdW radii,64-66 there is a general agreement
that the cavity size is closely related to the vdW surface.
Recently, Truhlar et al.67 provided a systematic study
showing variation across four popularly used solvent models,
including a discussion of what radii provide the most physical
results and also showing that scaling factors greater than ∼1.4
produce unphysical cavities. These important insights in fact
imply that, for some molecules (e.g., those with diffuse
electronic structure), a small but significant portion of the
solute electron density can extend outside the molecular
cavity. This leads to error in the prediction of solvent
phenomenon, since the solute is not fully represented in the
proper way in its interaction with the solvent. Such errors

are termed outlying charge errors and are most problematic
for systems with diffuse charge localized or anionic systems
and can lead to errors that are substantial (e.g., 40-80 kJ/
mol error). Our present solvation implementation has two
effective strategies for the treatment of outlying charge
error.53,68

It is important to note that the vdW radii involved in the
damping function in eq 2 are different than those used in
the continuum solvation method, as both are optimized
independently using different approaches and for different
properties. As such, one cannot use the same set of vdW
radii values for both contributions. The model for solvation
is in fact independent to that of the semiempirical dispersion
model. Any eventual dependencies of the two effects would
nevertheless be accounted for through the parametrization
of the semiempirical scaling factors within both methods.

Together, the DFT-D+COSab method has a total of 4
parameters to consider for any interdependencies and for
optimization. Three parameters, scaling factor sR and s6 (vdW
radii and dispersion coefficients, respectively), and damping
function exponent, d, arise from the DFT-D method. The
fourth parameter, cosrad, is related to the creation of the
solvent cavity surface. Following the approach used in our
previous work (as well as others),14,34 the value of d is kept
fixed at the value of 20. This leaves investigation into the
behavior of only three parameters, s6, sR, and solvent extent
radii (cosrad), simultaneously with respect to basis set and
functional.

Parameter Optimization. To perform simultaneous op-
timization of the three chosen parameters, a suitable database
of molecules with accurate solvated interaction energies is
required. The S22 set, proposed by Hobza et al.,51 is the
standard database used in all previous considerations of the
DFT-D method. However, this database provides accurate
interaction energies only in vacuum. To obtain solvated
interaction energies, the following term, first proposed by
Riley et al.,6 is used to correct the vacuum energies

In this way, a value for ∆∆Esolv can be calculated, using a
suitable solvation method, to give

Using this approach, one can propose a way forward for
providing chemical accuracy in solution for a reasonable
costs and including important effects of dispersion and
solvation. In addition, this method provides a reasonable way
to take basis set superposition error (BSSE) into account in
solution. This is very important given that continuum
solvation methods do not provide a clear and unique way to
take into account BSSE in the calculations, since there is no
analogue to the counterpoise CP corrections as used in gas
phase. Alternatively, since the optimization of the s6 param-
eter for the B97-D functional including counterpoise cor-
rection shows a minimum at s6 ) 1.4 regardless of basis
set, one could carry out CP corrected solvation energies using
s6 ) 1.4.

EMF-D ) EMF + Edisp (3)

∆EsolV
CP ) ∆EVac

CP + ∆∆EsolV (4)

∆∆EsolV ) ∆EsolV
no-CP - ∆EVac

no-CP (5)
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Computational solvent models are fundamentally different
at the algorithmic level.40 This results in different accounting
of the various aspects of solvation representation within the
quantum mechanics ansatz. For example, models have
different (or missing) representations for cavity descriptions,
solvent radii, outlying charge effects, nonelectrostatic effects,
or other solvent related phenomenon. In particular, com-
parison with experimental data has shown substantial dif-
ference in predictability with different solvent cavity de-
scriptions, which are a function of solvent radii parameters.69

The radii used to generate the spheres associated with the
cavity ultimately govern the volume of the cavity and the
distance between the atoms and the solvent surface. Com-
puted properties depend heavily on the choice of atomic radii.

The specific formalism used by Riley et al.6 involved the
use of the Integral-Equation-Formalism Polarized Continuum
Model, IEF-PCM, together with the use of united atom, UA0,
solvent radii. The general PCM method uses a cavity of
interlocking spheres approximately 20% larger than the vdW
radius. The electrostatics are treated using the Poisson
equation, with Green’s functions used to define the integral
operators determining the apparent charge. Nonelectrostatic
effects are evaluated empirically, using a solvent accessible
surface (SAS). In this way, the surface charge depends only
on the potential and not on the vector electric field, thereby
being less sensitive to numerical instabilities. The specifica-
tion of the solute cavity, defined using the united atom
topological model (UA0), is obtained from spheres centered
on non-hydrogen atoms. The radius of each sphere, which
is dependent on the atom type, connectivity, and number of
hydrogen atoms attached, is based on the Universal Force
Field (UFF).70 This particular choice of radii used for cavity
construction (default for cavity construction in other quantum
chemistry software) has been found to lead to relatively high
mean unsigned errors for solvation phenomenon69,71 and is
typically not recommended for quantitative calculations of
solvation free energies.72-74

Given the known sensitivities to details of solvation model,
it becomes necessary to recalculate solvation reference
corrections for the S22 set of molecules for this work. Here,
we have calibrated a set of corrections for both high and
low dielectric, water (ε ) 78.4) and ether (ε ) 4.33),
respectively. Calculations are performed at the MP2/aug-
cc-pVDZ level of theory similar to Riley et al.6 for
comparative purposes. Results are reported in Table 1.

Optimization of the Solvent Extent Parameter (cosrad).
The algorithm for cavity construction in the COSab-
GAMESS method involves construction of a basic grid
representing the molecular cavity generated from the vdW
surface around the molecule. This is followed by a series of
projections onto the solvent surface, extending the cavity to
approximately a distance of van der Waals + 20-30%.56,57

The cavity segmentation is small enough as to assume
homogeneous charge distribution on each segment. The
standard value for the parameter, cosrad, is typically taken
as 1.2 or 1.3. Here, we actually investigate the response in
the range from 1.1 to 1.5 to better understand the influence
of this parameter on the prediction of solvation.

A first set of calculations was performed at the B97-
D+COSab/cc-pVDZ level of theory, with the dispersion
parameters fixed at d ) 20, sR ) 1.1, and s6 ) 1.0. Further
optimization was undertaken of the more critical s6 parameter
for each value of cosrad to confirm results. Figure 1 and Table
2 summarize these results.

The variation in the mean absolute deviation of the S22
set for the cosrad parameter in the range 1.1-1.5 is within
0.45 kJ/mol for water and 0.13 kJ/mol for ether. An optimal
value of cosrad ) 1.30 is suggested for two reasons. First,
the performance is slightly better for the simultaneous
optimization of cosrad and s6 (see black dots on the graphic).
Second, 1.30 is one of the possible values suggested for the
COSab method (typical values are 1.20 and 1.30). The
general message, however, is that values in the range 1.3 (
0.2 do not affect the general behavior of the method, which
could be surprising given the known sensitivity of electro-
static solvation properties to variation in atomic radii, as
discussed above.

Optimization of DFT-D Parameters (s6 and sR). As in
our previous work,34 we investigate the combined behavior
of the two DFT-D parameters, s6 and sR, using the optimal
value determined for cosrad ) 1.3. The simultaneous opti-
mization of these two parameters is presented in Figure 2 as
a surface function for three different environments, vacuum,
water, and ether, was carried out. Results were investigated
for the B97-D functional with both the cc-pVDZ and cc-
pVTZ basis sets and are illustrated in Figure 2.

The topology of the curves for the three environments
(vacuum, ether, H2O) appear very similar to each other but
with different relative height on the MAD axis. This
similarity in topology suggests that behavior in solvated
environments for these complexes with variation in disper-

Table 1. MP2/aug-cc-pVDZ Solvent Reference Energy
Corrections (kJ/mol) for the S22 Set of Molecules

∆∆Esolv MP2/COSab
(this work)

∆∆Esolv MP2/
IEF-PCMa

S22 complex
reference
number vacuum

ether
ε ) 4.33

water
ε ) 78.4

ether
ε ) 4.33

water
ε ) 78.4

1 -13.26 -3.347 2.301 -4.48 -0.54
2 -21.00 -14.81 -11.21 -14.35 -9.87
3 -77.86 -50.58 -36.65 -32.93 -10.42
4 -66.78 -37.53 -20.67 -33.30 -17.40
5 -86.40 -50.71 -30.79 -39.50 -16.44
6 -69.92 -43.30 -28.83 -36.36 -20.88
7 -68.49 -43.76 -31.25 -36.32 -21.67
8 -2.22 -1.97 -1.84 -2.13 -2.13
9 -6.32 -4.35 -3.39 -4.39 -3.68
10 -6.28 -5.10 -4.48 -5.36 -4.64
11 -11.42 -7.11 -5.10 -7.36 -5.23
12 -18.49 -14.39 -11.89 NAb NAb

13 -42.34 -23.81 -12.76 -16.40 -7.95
14 -21.84 -14.64 -11.30 -14.85 -12.09
15 -51.17 -34.31 -24.31 -32.09 -24.90
16 -6.402 -2.720 -0.92 -2.55 -0.50
17 -13.72 -7.24 -3.64 0.38 7.03
18 -9.832 -6.99 -5.44 -7.20 -0.08
19 -18.66 -9.83 -4.60 -10.96 -5.56
20 -11.46 -9.54 -8.58 NAb NAb

21 -23.97 -16.11 -11.67 NAb NAb

22 -29.50 -21.05 -16.78 -15.61 -7.45

a Reference 6. b Riley et al.6 did not report this value because
of problems in the convergence of the energies.
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sion functional parameters is qualitatively the same. The
differences regarding the MAD from that of the gas phase
are expected due to the fact that these were determined using
MP2/aug-cc-pVDZ in the respective environment, rather than
at CCSD(T)/CBS. However, because we are interested here
in the optimal values of the s6 and sR, if the overall topology
in different environments is truly within a small tolerance
of that observed for the gas phase environment, this
difference in height along the MAD axis can be tolerated.

To compare more closely the variance in surface topology
in different medium, we can project one curve onto either
of the other two and determine any significant point-to-point
differences. These differences are plotted as a surface
function of the two DFT-D parameters in Figure 3, with a
color density map projected on the bottom of each diagram,
for all three possibilities: water vs vacuum, ether vs vacuum,
and water vs ether. Only the B97-D+COSab/cc-pVDZ case
is shown here, since similar results are obtained at the B97-
D+COSab/cc-pVTZ level of theory. In these surface rep-
resentations (Figure 3), blue (negative) means that the
solvated curve was lower than the vacuum (ether) curve in
Figure 2, while red (positive) means that the solvated curve
is higher than the vacuum (ether) curve in Figure 2.

The deviations from zero (red or blue, Figure 3) are in all
cases smaller than 4.2 kJ/mol and in general very small for
both basis sets, confirming the fact that the curves overlap
almost perfectly. Moreover, the intersection of the optimized
s6/sR parameters is always in a minimum deviation region.
From these results, we can conclude that the method behaves
in the same way for both solvents, when the optimization of
the two DFT-D parameters is conducted simultaneously.
When solvated results are compared to the vacuum case, this
general conclusion does not change.

A more detailed slice of the surface functions is shown in
Figure 4 for sR ) 1.1. Numerical values for the corresponding
s6 optimizations are reported in Table 3. As can be seen, the
values of the optimal s6 parameter for the solvated cases
differ only slightly from that used in the vacuum, for each
of the basis sets considered. Additionally, these results also
include indirectly, consideration of BSSE, as shown above.
Therefore, our overall conclusions made in our previous
article, including discussion of BSSE, more extensive
optimization, and summary of values proposed as a function
of basis set, can be extended with good accuracy to the
DFT-D + COSab procedure, for calculation of interaction
energies in solution. As such, these results, together with

Figure 1. Mean absolute deviation of S22 set of molecules as a function of solvent radii extent value (cosrad) at s6 ) 1.0 (red),
and at the optimal s6 for the respective cosrad (black), at the B97-D+COSab/cc-pVDZ level of theory.

Table 2. Summary of Results of Mean Absolute Deviation (MAD, kJ/mol) for the S22 Set Showing Variance in Solvent Radii
Extent Parameter, cosrad, as a Function of s6, at the B97-D+COSab/cc-pVDZ Level of Theory

water ether

solvent extent
parameter, cosrad

MAD with
s6 ) 1.0

corresponding
optimal s6

MAD with
optimal s6

MAD with
s6 ) 1.0

corresponding
optimal s6

MAD with
optimal s6

1.1 8.774 0.93 8.506 7.075 0.97 6.954
1.2 8.749 0.94 8.498 7.063 0.97 6.962
1.25 8.728 0.95 8.506 7.050 0.97 6.954
1.3 8.556 0.96 8.376 7.029 0.98 6.941
1.35 8.544 0.95 8.326 7.029 0.98 6.954
1.4 8.535 0.95 8.334 7.025 0.98 6.958
1.5 8.514 0.96 8.326 7.017 0.98 6.962
variance 0.01326 - 0.00784 0.00048 - 0.00005
std. error 0.04352 - 0.03346 0.00824 - 0.00270
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Figure 2. Optimized s6 and sR empirical dispersion function parameters for the B97-D functional, with cc-pVDZ and cc-pVTZ
basis sets, respectively. Plots are given on the same relative scale.

Figure 3. Water vs vacuum, ether vs vacuum, and water vs ether projection plots, at the B97-D+COSab/cc-pVDZ level of
theory.
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those of Riley et al.6 using a different ansatz for including
solvation effects together with semiempirically corrected
DFT, support that in general, for any treatment of dispersion-
governed systems in solution, no additional considerations
need be made nor specialized optimizations undertaken.

Geometry Optimization. The DFT-D method is typically
parametrized using single point energy calculations on an
accurate gas phase geometry, for each complex in the S22
database. This procedure opens up questions regarding any
variations in methodology and subsequent prediction of
results, when full optimization of geometry is considered
instead of a single point energy calculation. In the case of a
vacuum environment, these questions are not considered
significant due to the fact that the starting geometry is
calculated at a very high level of theory. More specifically,
the optimized geometry for most of the complexes in the
S22 set has been determined with CCSD(T)/QZ, with a few
cases optimized with CCSD(T)/TZ or MP2/TZ-CP. All final
single point energies are then calculated at the CCSD(T)/
CBS level. Explicit details of the optimizations used in each
case can be found in the original paper.51

In contrast, it is not readily clear that the gas phase
optimized geometries are the most appropriate when one is
considering a solvent environment, as one can expect changes
in the structures of the complexes due to their interactions
with the solvent. In particular, one expects a change in
distance between the two monomers in the complex. While
the main purpose of this article is not to search for better
procedures of parametrization of the DFT-D method, one
still must consider possible sources of error due to changes
in geometry and the consequences for the DFT-D + COSab
procedure.

In order to carry out such an analysis, we have calculated
the gradient for all molecular systems in the S22 set with
the B97-D functional across a variety of basis sets, in a water
environment. The root-mean-square deviation (RMSD) and
the largest component (MAX) of the gradient are reported
in Table 4, as a measure of the differences between the
geometries as given in the S22 set and their respective
optimized equilibrium geometries.

These summarized values for rmsd and MAX gradient
indicate that, provided one uses a large enough basis set, a
large majority of the complexes are not far from their gas
phase optimized geometries. As expected, an incremental
increase in basis set size provides a more accurate picture
of just how close the solution phase complexes are to the
optimized gas phase geometry. Cases where there are the
greatest rmsd values, an indication of when solvation changes
are expected to be significant, are highlighted in boldface in
Table 4. For example, complexes that have bond length
differences in the picometer range represent significant
differences when one is trying to obtain chemical accuracy
in structure and associated properties.

To further analyze these results, complexes in the S22 set
were divided into three subgroups according to the nature
of the primary interactions between the molecules. The three

Figure 4. Water vs vacuum, ether vs vacuum, and water vs ether projection plots at the B97-D+COSab/cc-pVDZ level of
theory, represented as a slice through the surface functions from Figure 3.

Table 3. Summary of Results of Mean Absolute Deviation
(MAD, kJ/mol) for the S22 Set Showing Variance in s6 with
Solvent and Basis Seta

solvent basis-set optimized s6 MAD [kJ/mol]

vacuum cc-pVDZ 1.00 4.498
cc-pVTZ 1.18 1.410
cc-pVQZ 1.26 1.381

water cc-pVDZ 0.96 8.376
cc-pVTZ 1.21 6.356
cc-pVQZ 1.28 6.192

ether cc-pVDZ 0.98 6.941
cc-pVTZ 1.19 4.038
cc-pVQZ 1.28 3.820

a cosrad ) 1.3, sR ) 1.1, d ) 20.
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categories of complexes are A) hydrogen-bonded complexes
(1-7), B) predominant dispersion interactions, complexes
(8-15), and C) mixed hydrogen bonding and dispersion,
complexes (16-22). Complexes with the highest rmsd and
MAX gradient within each group are indicated in boldface
in Table 4. In each category, we have chosen one complex
to illustrate results of a full optimization in solution at the
B97-D/cc-pVnZ (n ) D,T,Q) level of theory, starting from
the accurate gas-phase geometry. In category A, H-bond
complexes, formamide dimer (#4) is chosen, with the highest
rmsd gradient at cc-pVTZ and cc-pVQZ, and the second
highest at cc-pVDZ. For category B, the dispersion com-
plexes, the uracil dimer stack (#13) is the complex with
highest rmsd and MAX gradient with all considered basis
sets. Within category C, the mixed complexes, benzene-
HCN (#19) has the highest rmsd and MAX gradient with
cc-pVTZ and cc-pVQZ and also for cc-pVDZ. Data for the
fully optimized solvent (water) structures and energetics for
these three complexes as compared to gas phase are
illustrated and summarized in Table 5.

The most sensitive geometry parameters in these
complexes are the intermonomer distances and the angular
relationship between the two monomers. Table 5 sum-
marizes these values as a function of basis set and
environment for the three complexes considered. The
geometry taken from the S22 set has been optimized in
the gas phase and in water for the basis sets shown. In
the gas phase, each complex shows a different behavior
in the variance of the interatomic distance with respect
to increase in basis set. The intermonomer distance in the
formamide dimer increases significantly with increase in
basis set, with a convergence to the S22 reference value
(∆Reference ) 0.032 Å, 0.001 Å, and 0.005 Å, respec-
tively). Complex 13, uracil dimer, on the other hand,
shows a decrease in intermonomer distance with increase

in basis set, contrary to the reference limit (∆Reference
) 0.008 Å, 0.021 Å, and 0.086 Å, respectively). Addition
of diffuse functions does not change this trend. The
angular relationship between the two monomers is,
however, similar to that predicted at the reference level.
Complex 19 shows an increase in intermonomer distance
with basis set but away from the reference value of 3.387
Å (∆Reference ) 0.031 Å, 0.024 Å, and 0.043 Å,
respectively). The angular dependence in the benzene-
HCN system is relatively the same across basis sets, with
a total variance of ∼5°.

Moving from gas phase to solution phase results in a
significant change in geometry but again different trends for
the three different cases. In the case of the formamide dimer,
the hydrogen bond distance increases by almost 6 pm in
going from the gas to the solution phase. It is known that
high dielectric solvents have a dramatic effect in the
dimerization of formamide.75-77 The increase in the polarity
of the solvent is thought to reduce the dimerization, likely
due to competition from the surrounding medium. This then
causes the opportunity for other bonded forms, from the
rather well-defined double hydrogen bonded form in the gas
phase, to single hydrogen-bond dimers (medium dielectric)
and less well-defined structures in water.

In the second class of complexes, the uracil dimer, the
change in environment from gas phase to solution phase
shows an even more dramatic increase in the distance
between the two monomers (e.g., ∼15 pm for cc-pVQZ).
The uracil dimer can exist in both hydrogen-bonded con-
figurations as well as various stacked arrangements.78 The
stacked and T-shaped conformations, with a large dispersive
energetic component, are less stable than the hydrogen
bonded configurations, albeit less so in the gas phase than
in the solution phase.

Table 4. Summary of Results of RMSD and Maximum (MAX) Gradient Values for the S22 Set As a Function of Basis Set

cc-pVDZ cc-pVTZ cc-pVQZ

molecule RMSD gradient MAX gradient RMSD gradient MAX gradient RMSD gradient RMAX gradient

1 0.0077984 0.0174154 0.0026740 0.0053823 0.0022662 0.0041095
2 0.0105507 0.0191442 0.0056189 0.0124492 0.0051123 0.0120283
3 0.0083584 0.017122 0.0046930 0.0097907 0.0040162 0.0090413
4 0.0090051 0.0234469 0.0062381 0.0166286 0.0058922 0.0159450
5 0.0078098 0.0249773 0.0055591 0.0178010 0.0053169 0.0165761
6 0.0058952 0.0203691 0.0036121 0.0149223 0.0035065 0.0139418
7 0.0068203 0.0221163 0.0044578 0.0146959 0.0042735 0.0130864
8 0.0055312 0.0107665 0.0020459 0.0040859 0.0018506 0.0037130
9 0.0054494 0.0098256 0.0025617 0.0035783 0.0024370 0.0034128
10 0.0052723 0.0124369 0.0022704 0.0058819 0.0021843 0.0056609
11 0.0044198 0.0094194 0.0016463 0.0035123 0.0015786 0.0032221
12 0.0047943 0.0101749 0.0019266 0.0039867 0.0021137 0.0040012
13 0.0075948 0.0222007 0.0055311 0.0150658 0.0052161 0.0132548
14 0.0042266 0.0099944 0.0017430 0.0037012 0.0016530 0.0037704
15 0.0061554 0.0210383 0.0038124 0.0139875 0.0036075 0.0122721
16 0.0066904 0.0164377 0.0025598 0.0047258 0.0026196 0.0057154
17 0.0054453 0.0134867 0.0023467 0.0076936 0.0021896 0.0070529
18 0.0057686 0.0179676 0.0022156 0.0057129 0.0020522 0.0045684
19 0.0049909 0.0141728 0.0063532 0.0313533 0.0068787 0.0340759
20 0.0044762 0.0109458 0.0017516 0.0041108 0.0016882 0.0038493
21 0.0043044 0.0105029 0.0018935 0.0044323 0.0018214 0.0041939
22 0.0049381 0.0122261 0.0022128 0.0071765 0.0021013 0.0065132
average 0.0061953 0.0157358 0.0033511 0.0095761 0.0031989 0.0090911
maximum value 0.0105507 0.0249773 0.0063532 0.0313533 0.0068787 0.0340759
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In the last case, benzene-HCN system, one sees a very
large decrease in the intermonomer distance in the high
dielectric water environment, changing from 3.43 Å to 3.18
Å, at the B97-D/cc-pVQZ level of theory. In addition, the
angular relationship between the benzene and the HCN
changes significantly, from perpendicular in the gas phase,
to canted in the solution environment. Other studies have
also shown that this interaction weakens with stronger
dielectric, with the interaction energy in water being less
than half as strong as in the gas phase (∼15 kJ/mol vs ∼6.5
kJ/mol).6

In all of these cases, taking the optimized gas phase
geometry as the starting point of the solution phase optimiza-
tion, one sees that the gradient of the first step is quite high
(on average 0.006 au), an indication that the solution phase
structure is still far from the gas phase structure. For the
three molecules considered here, one sees maximum geom-
etry changes as high as 16% from that of the gas phase,
depending on the system and level of theory. Such differ-
ences between gas and solution phase can constitute signifi-
cant differences in energetics, for example, if one is trying
to determine interaction energies in solution environment
with a high level of accuracy but is only using gas phase
geometries. In just these three examples, we see over 17 kJ/
mol in energy difference (at the cc-pVQZ level of theory)
between gas and solution phase. In general, one must
carefully consider the implications of geometry optimization

in a solution environment depending on the system and
associated properties of interest.

Illustrative Example: Ground State
Conformational Dynamics of Polar
Processes

Despite the general tendency for molecules to adopt elec-
tronic configurations with minimal charge separation (e.g.,
electroneutrality principle), many important structural and
dynamical features are mediated by charge-separated states.
In particular, the conformational analysis of push-pull
conjugated π systems is strongly influenced by contributions
from zwitterionic states. In donor-acceptor systems, one can
identify a dual-resonance-form model, where the major
contributor is determined by the degree of stabilization of
the charge-separated state. Typically, one of the two reso-
nance forms contributes local double-bond character, mani-
festing a higher rotational barrier. Depending on the nature
of the donor (D)/acceptor (A) pair and the effect of solvent,
the barrier to rotation can span a fairly large range. In
addition to kinetic effects, it is often found that the dominant
equilibrium conformer varies with the medium, with the
conformer of higher dipole moment generally more favored
in media of high dielectric constant.

A particular case of longstanding interest is the barrier to
rotation in push-pull furfural systems, especially due to their

Table 5. Comparison of Optimized Vacuum, Optimized Solvent (Water), and Reference S22 Gas Phase, Geometry
Parameters for Three Complexes of the S22 Set Using Different Basis Setsa

vacuum water

bonds S22 reference CCSD(T)/CBS cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ

#4 1.841 1.809 1.842 1.846 1.860 1.901 1.905
#13 3.365 3.357 3.344 3.279 3.516 3.459 3.434
#19 3.387 3.418 3.412 3.430 3.279 3.226 3.180

vacuum water

angles S22 reference CCSD(T)/CBS cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ

#4 - - - - - - -
#13 13.8 18.4 18.0 14.0 19.9 13.6 12.5
#19 174.6 175.7 177.0 179.6 154.3 153.7 149.4

respective optimized vacuum geometry vs optimized solvated (water) geometry

initial solvated rms (au) from gas phase geometry ∆E (kJ/mol)vacuum-water %max geometry change (vacuum-water)

cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ

#4 0.00905 0.00624 0.00589 1.46 4.595 3.93 1.1 3.8 3.2
#13 0.00760 0.00553 0.00522 10.70 4.51 2.50 5.9 1.6 0.3
#19 0.00499 0.00635 0.00688 16.74 19.30 18.28 8.0 16.5 3.4

a The graphic shows intermolecular distances (blue) and angles (red), as reported in the table.
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importance as components in many biological redox centers
and synthetic molecular devices.79-84 Moreover, these
systems have associated experimental as well as computa-
tional challenges.85 For example, the very small energy
difference between the cis and trans isomers, the possibility
for secondary interactions in some of the analogues as well
as the strong solvent dependencies across a small range of
dielectric (particularly for the parent furan-2-carbaldehyde
system), creates particular challenges for both experimental
as well as computational predictions. Unambiguous assign-
ments of experimental spectral results have made difficult
the predictions of the cis-trans energy difference, ∆ECT, as
well as the barrier to interconversion, Ea, with a wide range
in experimental predictions in both (see, e.g., the Supporting
Information).86 Similar details pose challenges for compu-
tational solvent methods to accurately predict the small
energy differences between isomers and pick up the solvent

detail that reproduces the conformational change as a function
of dielectric. Solvent effects can actually be large enough to
reverse the order of stability between the cis isomer and the
trans isomer. As such, this class of system represents a
particularly good test for the present method. In particular,
here we investigate the parent furfural system and two
analogues, as illustrated in Figure 5.

In our 2000 work, together with the experimental group
of Bain,87 we investigated a full set of push-pull conjugated
pyrrole cognates. Bain and Hazendonk87 used a combination
of three NMR experiments to obtain rate data over 6 orders
of magnitude representing an approximately 150 K temper-
ature range, giving very reliable experimental numbers for
the furfural system. Experimental activation parameters were
obtained with errors less than 1 kJ/mol and 6 J/(mol K) for
∆H‡ and ∆S‡, respectively. The ∆H‡ for toluene, acetone,
and methanol do not obey a simple relationship with ε,

Figure 5. Conformations of furan-2-carbaldehyde (X ) O), thiophen-2-carbaldehyde (X ) S), and pyrrole-2-carbaldehyde (X )
NH).

Figure 6. Rotational equilibrium of trans- vs cis-2-furanaldehyde as a function of wave function type and basis set, relative to
the trans isomer.
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suggesting that the solvent effect is likely more complex than
just the effect of solvent reaction field. Large ∆S‡ values
support this and also implied that equating ∆G‡ and ∆H‡,
as is often done, is not justified even for aprotic solvents.
Using theoretical methods, we previously carried out a full
investigation86 of the effects of method/basis set on prediction
of both ∆ECT and barrier to interconversion. A summary of
these results is shown in Figure 6. Results enable comparison
across basis set as well as wave function type. Basis sets of
at least double-� quality with polarization on both heavy and
light atoms, and preferably diffuse functions, is shown to
be optimal. Our best estimate for ∆ECT (relative to the lower
energy trans form) and barrier was determined with CCSD(T)/
TZV(2d,2p)//MP2/TZV(2d,2p) [∆ECT ) 2.13, ∆ECT-ZPE )
2.48, Ea-ZPE ) 37.62 kJ/mol]. This provided benchmark
values, given the historical controversy regarding the ex-
perimental information. However, less expensive but with
overall good predictability is the MP2/aug-cc-pVDZ level.
Theoretical predictions can be compared to the 1989 IR and
Raman spectroscopic study reporting ∆ECT) 3.42 ( 0.28
kJ/mol and Ea ) 38.96 ( 0.25 kJ/mol.88

We now compare the earlier, more computationally
expensive CCSD(T) and MP2 results, with the present
dispersion enabled functional, B97-D, for analogues 1-3 in

both gas and solution phase. We first consider the parent,
furan-2-carbaldehyde system (furfural), 1. The energy dif-
ference between trans, 1a, and cis, 1b, forms of furfural in
gas phase shows the trans conformation, 1a, to be more
stable by ∼4 kJ/mol, with the exact value dependent on the
level of theory, as previously found. In solution, the larger
dipole moment of the cis isomer, 1b, can preferentially
stabilize this form over the trans conformation. In Table 6,
results with B97-D/cc-pVDZ and B97-D/aug-cc-pVDZ are
compared to other functionals as well as our previous MP2
and reference CCSD(T) results, across a wide range of
dielectrics. Gas phase ∆ECT values are overestimated with
cc-pVDZ with all methods with respect to the benchmark
CCSD(T) values. However, the aug-cc-pVDZ basis provides
sufficiently accurate results for all considered functionals.
The average unsigned difference with respect to MP2 shows
that B97-D provides better results than B3LYP or B3PW91,
at an overall lower computational cost than for hybrid
functionals, MP2, or CCSD(T).

Table 6. Rotational Equilibrium (kJ/mol) of trans- vs cis-2-Furanaldehyde As a Function of Wave Function Type and Basis
Set, for Gas Phase and 6 Different Solventsa,d

cc-pVDZ aug-cc-pVDZ

ε MP2 B97-D B3LYP B3PW91 MP2 B97-D B3LYP tB3PW91

1b 3.72 4.56 (4.61) 4.82 (4.93) 4.65 (4.75) 2.02 1.92 (2.31) 2.03 (2.50) 1.94 (2.40)
2.38 2.29 3.19 (3.35) 3.15 (3.37) 2.98 (3.13) 0.03 -0.10 (1.28) 0.49 (1.07) -0.13 (0.38)
5 1.29 1.96 (2.09) 1.60 (1.86) 2.17 (2.37) -1.47 -1.56 (-1.16) -1.78 (-1.17) -1.73 (-1.13)
12 0.55 1.08 (1.16) 1.17 (1.43) 1.01 (1.21) -2.57 -2.72 (-1.78) -2.22 (-1.57) -3.47 (-2.87)
20.7 0.29 1.00 (1.10) 0.64 (0.83) 1.65 (1.92) -3.06 -3.06 (-1.77) -3.41 (-2.76) -3.87 (-2.03)
32.6 0.15 0.88 (0.98) 0.66 (0.86) 0.65 (0.86) -3.23 -3.44 (-2.12) -3.83 (-3.15) -3.94 (-3.36)
78.4 0.02 0.56 (0.65) 0.88 (1.09) 0.46 (0.69) -3.45 -3.74 (-2.19) -3.09 (-2.39) -3.98 (-3.35)
average unsigned difference

with respect to MP2
- -0.70 (-0.80) -0.66 (-0.87) -0.75 (-0.94) - -0.14 (-0.90) -0.35 (-0.61) -0.36 (-0.43)

difference with respect to
CCSD(T)c for ε ) 1

1.59 2.43 (2.48) 2.69 (2.80) 2.52 (2.62) -0.11 -0.21 (0.18) -0.10 (0.37) -0.19 (0.27)

difference with respect to
experiment for ε ) 1

0.30 1.14 (1.19) 1.40 (1.51) 1.23 (1.33) -1.40 -1.50 (-1.11) -1.39 (-0.92) -1.48 (-1.02)

a ∆ECT relative to the trans isomer 1a in kJ/mol. b Experimental gas phase value reported as 3.42 ( 0.38.88 c CCSD(T)/
DZV(2d,p)//MP2/DZV(2d,p) [∆ECT ) 2.99, Ea ) 42.91 kJ/mol], CCSD(T)/TZV(2d,2p)//MP2/TZV(2d,2p) [∆ECT ) 2.13, Ea ) 39.16 kJ/mol],
and CCSD(T)/aug-cc-pVDZ//B3PW91/aug-cc-pVDZ [∆ECT ) 2.26, Ea ) 41.10 kJ/mol].86 d Zero point corrected values are given in
parentheses.

Table 7. B97-D/aug-cc-pVDZ Dipole Moments of trans-
and cis-Conformers for 2-Furanaldehyde, 1, in Gas Phase
and 6 Different Solventsb

2-furanaldehyde

dipole (D)

ε cis trans TS ∆ECT,a kJ/mol

1 4.46 3.85 2.82 -1.92 (-2.31)
2.38 5.29 4.57 3.24 0.10 (-1.28)
5 5.87 5.07 3.52 1.56 (1.16)
12 6.31 5.45 3.72 2.72 (1.78)
20.7 6.47 5.59 3.79 3.06 (1.77)
32.6 6.55 5.66 3.82 3.44 (2.12)
78.4 6.64 5.74 3.86 3.74 (2.19)
∆(gas-water) 2.18 1.89 1.04 5.66 (4.50)

a ∆ECT relative to the trans isomer 1a in kJ/mol. b Zero point
corrected values are given in parentheses.

Figure 7. Comparison of calculated ∆ECT as a function of
dielectric for various wave function types using the aug-cc-
pVDZ basis set. The insert figure shows an enhanced view
with additional calculated points of the x axis region from ln(ε)
) 2.5-3.5.
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The general trend across the range of dielectrics (natural
log scale), from toluene (ε ) 2.38) to water (ε ) 78.4) for
the parent system, for a variety of wave function types, is
shown in Figure 7. Notably, the B97-D and MP2 curves are
very similar in predictability, while the two hybrid DFT
methods show considerable variance, particularly the B3LYP
method. We have carried out additional computations for
the B3LYP curve around the region of ε ) 5.0, and, in fact,
the prediction is shown to be continuous around these points,
rather than exceptions (see, e.g., Figure 7 insert graph). This
region corresponds to the cross over between preferences
for cis over trans conformation. The overall dipole moment
change over the span of dielectrics is ∆µ ) 1.9 D for a
corresponding change in ∆∆ECT ) 4.50 kJ/mol. The slope
of the curve on the ln(ε) plot is relatively steep illustrating
the strong change preference toward the cis-2-furanaldehyde
form over the trans-2-furanaldehyde form in higher dielectric.
While it is true that the trans-2-furanaldehyde form relieves
the lone-pair/lone-pair oxygen repulsion that is found in the
cis-2-furanaldehyde form, in higher dielectric the higher
dipole moment of the cis form relative to the trans form
will eventually dominate, changing that preference.

To further illustrate donor/acceptor properties in these
systems, we have investigated thiophen-2-carbaldehyde (X
) S) and pyrrole-2-carbaldehyde (X ) NH). Table 8
summarizes the gas phase results for the three analogues.
Unlike the parent system, thiophene-2-carbaldehyde, 2, has
a more polar S-cis conformation and is therefore more stable
in the gas phase than is the S-trans conformation. Although
the dipole difference between S-cis and S-trans is smaller
than in 1, one still expects preferential stabilization of the
former conformation in solvent. Similarly, pyrrole-2-carbal-
dehyde, 3, is also found to have a more stable cis-
conformation in the gas phase. Importantly, the less polar
N(H)-cis form gains stabilization due to the possibility for

intramolecular interaction between the hydrogen of the
nitrogen and the oxygen of the furan ring. In this case,
however, unlike either 1 or 2, the dipole moment would
suggest a substantial preferential stabilization of the trans
conformation in solution environment, due to the significantly
larger dipole of the NH-trans structure, so the two effects,
weak interactions in the cis form and strong dipole stabiliza-
tion in the trans form, are competitive.

The tautomeric equilibrium in solution phase is in general
found to be dependent on both ∆ECT and ∆µ. Table 9
summarizes the effects of dielectric variance for analogues,
2, S, and 3, N(H). One sees a consistent preference for the
cis isomer in both the calculated ∆ECT as well as the
predicted dipole across the full span of dielectrics. In 3, N(H),
as observed in the gas phase results, we see the competition
between the hydrogen bond stabilization present in the cis
isomer, and the stronger dipole component present in the
trans isomer. The result is a preference for the cis isomer
across the span of dielectric, since the weak hydrogen bond
interaction will only partially compensate for the more
dramatic solvent dipole effect in the N(H)-trans conformation.

A subtle feature of the solvation model capability is observed
with system 2, S, due to the second row element, sulfur. In
particular, the detailed nature of the cavity construction algo-
rithm is an inherent part of the quality of the solvation model.
Different regions of the molecular cavity can have different
sensitivity to surface discretization, depending on how rapidly
varying the surface charge is, and may require a higher level
of discretization to track this change properly. In the case of
thiophen-2-carbaldehyde, one can observe this phenomenon.
Figure 8 shows a comparison of ∆ECT as a function of ln(ε)
for a normal cavity discretization and a highly refined cavity
discretization. Checking also the effects of outlying charge and
zero point energy, one sees that each of these have a consistent

Table 8. B97-D/aug-cc-pVDZ Calculated Gas Phase Energetics and Dipole Moments for 1-3

energeticsa dipole

X ∆ECT expt
preferred tautomer

in gas phase Ea expt cis trans TS
preferred tautomer
in solution phase expt

O 1.9 3.42 ( 0.28b trans 55.2 38.96 ( 0.25b 4.5 3.8 2.8 cis 3.97 (µcis)c

3.52 (µtrans)c

3.52 (µTs)c

S -3.85 4.1 ( 0.4 cis 45.5 - 4.1 3.7 2.8 cis 3.52 (µcis)d

NH -14.7 - cis 57.1 - 3.1 4.6 2.7 trans 2.48 (µcis)e

a ∆ECT relative to the trans isomer, 1a, in kJ/mol. b Reference 88. c cis and trans from ref 89. TS value calculated from bond dipoles, ref
90. d Reference 91. e Reference 92.

Table 9. B97-D/aug-cc-pVDZ Dipole Moments of trans- and cis-Conformers for Thiophen-2-carbaldehyde, 2 (X ) S), and
Pyrrole-2-carbaldehyde, 3 (X ) NH), in Gas Phase and 6 Different Solventsa

S NH

ε cis trans TS
preferrence wrt

dipole in solution ∆ECT cis trans TS
preferrence wrt

dipole in solution ∆ECT

1 4.08 3.68 2.82 cis 3.85 (4.41) 3.07 4.64 2.74 trans 14.7 (14.0)
2.38 4.88 4.39 3.26 cis 4.28 (4.96) 3.72 5.54 3.19 trans 11.7 (11.5))
5 5.44 4.89 3.56 cis 4.66 (5.35) 4.18 6.19 3.49 trans 9.36 (9.17)

12 5.87 5.27 3.78 cis 5.10 (5.82) 4.53 6.67 3.72 trans 7.28 (7.21)
20.7 6.02 5.41 3.86 cis 5.06 (5.90) 4.66 6.84 3.79 trans 5.37 (5.40)
32.6 6.10 5.48 3.90 cis 5.19 (5.97) 4.72 6.94 3.83 trans 6.26
78.4 6.20 5.57 3.95 cis 4.84 (5.73) 4.80 7.04 3.87 trans 4.48 (4.33)

a ∆ECT relative to the cis isomer, 1b, in kJ/mol.
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effect across dielectric and are not responsible for the incon-
sistent trend in the data.

Figure 9 shows comparison of solvation trends for all three
analogues at the B97-D/aug-cc-pVDZ level of theory. The
curves illustrate the dipole versus electrostatic trends across
the span of dielectrics for the different types of functional-
ities. In particular, pyrrole-2-carbaldehyde 3, shows a steep
slope in the opposite direction as that of the parent furfural
system, for the reasons explained above. In the sulfur
substitution, the smaller change in dipole over the span of
dielectrics, results in only a small increase in stabilization
energy across the span of dielectrics.

Comparison of barrier height with available experiment
is difficult due to the lack of experimental values for the
substituted systems. For 2, the experimentally available value
of 42.27 ( 0.63 kJ/mol in CH2Cl2 solution93,94 and 43.11 (

1.26 kJ/mol in the pure liquid95 agrees well with the
calculated barrier of 43.60 kJ/mol for ε ) 12.0 and 44.57
kJ/mol in water. Figure 10 shows a general trend of
calculated Ea for the three systems studied. The increase in
barrier to interconversion to the trans form shows steady
increase for both 3 and 2, corresponding to the stronger
preference for the cis isomer with increasing dielectric,
somewhat attenuated in the parent system as observed above.
The sulfur system barrier is considerably less than the other
two, again reflecting the relatively small increase in stabiliza-
tion with increase in dielectric.

Conclusions

Detailed chemical treatments of molecular and electronic
structure, including the effects of the environment, can offer

Figure 8. Variation in ∆ECT as a function of dielectric for two levels of cavity discretization (a) and as a function of outlying
charge and zero point energy (b) for thiophen-2-carbaldehyde, 2.

Figure 9. Comparison of calculated ∆ECT as a function of
cavity discretization (a) and as a function of outlying charge
and zero point energy (b) for thiophen-2-carbaldehyde, 2.

Figure 10. Comparison of calculated Ea (cisfTS) as a
function of dielectric (ln(ε)).
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significant challenges unless highly accurate methods are
employed. We present here an accurate and yet cost efficient
way of including solvent effects with dispersion enabled
density functional theory, such that a self-consistency is
maintained with respect to the solvent charges and the
interaction potential. Numerical values for corresponding s6

semiempircal dispersion parameters are reported. As shown,
values of optimal s6 parameters for solvation theory differ
only slightly from that used in the vacuum, for each of the
basis sets considered. Results include indirectly, consideration
of BSSE. The resulting DFT-D + COSab procedure can be
extended with good accuracy for prediction of interaction
energies in solution.

We have applied the DFT-D + COSab method to one
category of push-pull conjugated heterocycles, with
known challenges associated with prediction of isomer
preference and barrier to interconversion in solution
environment. The behavior of changing donor/acceptor on
both gas and solution phase, conformational preferences,
and internal rotational barrier show the importance of
dispersion, hydrogen bonding, and solvation in the
computational model. The dispersion corrected DFT model
with appropriate basis set reproduces the trends in the
known experimental data and projects trends across a large
span of dielectric.

Acknowledgment. This work was supported by the
Swiss National Science Foundation.

Supporting Information Available: Table of experi-
mental relative energies of cis-, trans-, and transition state
of furfural in different solvents. This material is available
free of charge via the Internet at http://pubs.acs.org.

References

(1) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157–
167.

(2) Benighaus, T.; DiStasio, R. A., Jr.; Lochan, R. C.; Chai, J.-
D.; Head-Gordon, M. J. Phys. Chem. A. 2008, 112, 2702–
2712.

(3) Hill, J. G.; Platts, J. A.; Werner, H.-J. Phys. Chem. Chem.
Phys. 2008, 8, 4072–4078.

(4) Silvestrelli, P. L. Phys. ReV. Lett. 2008, 100, 053002.

(5) Tarnopolsky, A.; Karton, A.; Sertchook, R.; Vuzman, D.;
Martin, J. M. L. Phys. Chem. A 2008, 112, 3–8.

(6) Riley, K. E.; Vondrasek, J.; Hobza, P. Phys. Chem. Chem.
Phys. 2007, 9, 5555–5560.

(7) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007,
9, 3397–3406.

(8) Grimme, S.; Antony, J.; Schwabe, T.; Mück-Lichtenfeld, C.
Org. Biomol. Chem. 2007, 5, 741–758.

(9) Grimme, S.; Mück-Lichtenfeld, C.; Antony, J. J. Phys. Chem.
C 2007, 111, 11199–11207.

(10) Neese, F.; Schwabe, T.; Grimme, S. J. Chem. Phys. 2007,
126, 124115.

(11) Grimme, S.; Neese, F. J. Chem. Phys. 2007, 127-
154116.

(12) Grimme, S.; Steinmetz, M.; Korth, M. J. Chem. Theory
Comput. 2007, 3, 42–45.

(13) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2,
1009–1018.

(14) Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.

(15) Jurecka, P.; Cerny, J.; Hobza, P.; Salahub, D. R. J. Comput.
Chem. 2006, 28, 555–569.

(16) Grimme, S. J. Chem. Phys. 2006, 124, 034108–034115.

(17) Grimme, S. J. Comput. Chem. 2004, 25, 1463–1473.

(18) von Lilienfeld, O. A.; Tavernelli, L.; Rothlisberger, U. Phys.
ReV. Lett. 2004, 93, 153004.

(19) Wu, Q.; Yang, W. J. Chem. Phys. 2002, 116, 515–524.

(20) Wu, X.; Vargas, M. C.; Nayak, S.; Lotrich, V.; Scoles, G.
J. Chem. Phys. 2001, 115, 8748.

(21) Mooij, W. T. M.; van Duijneveldt, F. B.; van Duijnevelt-van
de Rijdt, J. G. C. M.; van Eijck, B. P. J. Phys. Chem. A.
1999, 103, 9872.

(22) Becke, A. D. J. Chem. Phys. 1997, 107, 8554–8560.

(23) Meijer, E. J.; Sprik, M. J. Chem. Phys. 1996, 105, 8684.

(24) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996,
77, 3865–3868.

(25) Hobza, P.; Zahradnik, R. Chem. ReV. 1988, 88, 871.

(26) Kutzelnigg, W. Pair correlation theories. In Modern Theoreti-
cal Chemistry; Schaefer, H. F., Ed.; Plenum Press: New York,
London, 1977; pp 129-188.

(27) Kutzelnigg, W. J. Mol. Struct. (Theochem) 1988, 181, 33.

(28) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-
Structure Theory; J. Wiley: New York, 2000.

(29) Møller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618–622.

(30) Bates, D. M.; Anderson, J. A.; Oloyede, P.; Tschumper, G. S.
Phys. Chem. Chem. Phys. 2008, 10, 2775–2779.

(31) Bachorz, R. A.; Bischoff, F. A.; Hoefener, S.; Klopper, W.;
Ottiger, P.; Leist, R.; Frey, J. A.; Leutwyler, S. Phys. Chem.
Chem. Phys. 2008, 10, 2758–2766.

(32) Antony, J.; Grimme, S. Phys. Chem. Chem. Phys. 2006, 8,
5287–5293.

(33) Cerny, J.; Jurecka, P.; Hobza, P.; Valdes, H. J. Phys. Chem.
A 2007, 111, 1146–1154.

(34) Peverati, R.; Baldridge, K. K. J. Chem. Theory Comput.
2008, 4, 2030–2048.

(35) Baldridge, K. K.; Jonas, V. J. Chem. Phys. 2000, 113, 7511.

(36) Cammi, R.; Frediani, L.; Mennucci, B.; tomasi, J.; Ruud, K.;
Mikkelsen, K. V. J. Chem. Phys. 2002, 117, 13.

(37) Chen, W.; Gordon, M. S. J. Chem. Phys. 1996, 105, 11081–
11090.

(38) Christiansen, O.; Mikkelsen, K. V. J. Chem. Phys. 1999, 110,
8348.

(39) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Chem. Phys.
2001, 114, 5691–5701.

(40) Cramer, C. J.; Truhlar, D. G. Continuum SolVation Models:
Classical and Quantum Mechanical Implementation; VCH
Publishers: New York, 1995; Vol. 6.

(41) Giesen, D. J.; Gu, M. Z.; Cramer, C. J.; Truhlar, D. G. J.
Org. Chem. 1996, 61, 8720.

(42) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. ReV. 2005, 105,
2999.

(43) Tao, J. M.; Perdew, J. P.; Staroverov, N.; Scuseria, G. E. Phys.
ReV. Lett. 2003, 91, 146401.

Optimization of DFT-D including effects of solvent J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2785



(44) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55,
117–129.

(45) Schmidt, M.; Baldridge, K. K.; Boatz, J. A.; Elbert, S.; Gordon,
M.; Jenson, J. H.; Koeski, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.
J. Comput. Chem. 1993, 14, 1347–1363.

(46) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.

(47) Perdew, J. P. Electronic Structure of Solids; Akademie
Verlag: Berlin, 1991.

(48) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785–
789.
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(89) Mönnig, F.; Dreizler, H.; Rudolph, H. D. Z. Naturforsch.,
A: Phys Sci. 1965, 20, 1323.

(90) Abraham, R. J.; Siverns, T. M. Tetrahedron 1972, 28, 3015–
3023.

(91) Bertran, J. F.; Ortiz, E.; Ballester, L. J. Mol. Struct. 1973,
17, 161.

(92) Marstokk, K.-M.; Mollendal, H. J. Mol. Struct. 1974, 23,
93.

(93) Casarini, D.; Lunazzi, L.; Macciantelli, D. J. Chem. Soc.,
Perkin Trans. 2 1985, 1839–1844.

(94) Lunazzi, L.; Placucci, G.; Chatgilialoglu, C.; Macciantelli, D.
J. Chem. Soc., Perkin Trans. 2 1984, 819.

(95) Pethrick, R. A.; Wyn-Jones, E. J. Chem. Soc. A 1969, 713.

CT900363N

2786 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Peverati and Baldridge



Structures and Energetics of SrFeO2.875 Calculated within
the GGA + U Framework

Wen Lai Huang* and Qingshan Zhu

State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

Received August 4, 2009

Abstract: The energetics and electronic properties of SrFeO2.875 have been systematically
calculated with the fully relaxed atomic positions at both GGA and GGA + U levels, and different
spin-polarized configurations have been considered. Many atoms besides the nearest neighbors
of the oxygen vacancy have been found to be influenced by the vacancy in terms of positions
and electronic structures. The obtained magnetic moments suggest the high-spin character of
the Fe 3d electrons, in combination with the larger exchange splitting compared with the crystal
field splitting. The local states at the Fermi level are found to be situated within the π* band in
the nonmagnetic case and the σ* bands in the ferromagnetic and antiferromagnetic cases. The
energy values concerning the oxygen-vacancy formation from SrFeO3 to SrFeO2.875 have been
deduced with the correction of the O2 overbinding error and the consideration of the oxygen
partial pressure and the temperature.

1. Introduction

SrFeO3-δ species have been investigated extensively, due to their
interesting electronic, magnetic, and transport properties. Their
flexible accommodation of highly mobile oxygen vacancies,
in combination with high electronic conductivity, makes them
appealing for applications such as electrodes of solid oxide fuel
cells, electrochemical catalysts, membranes for oxygen separa-
tion, and gas sensors. At low temperatures (below certain
composition-dependent transition temperatures), the oxygen-
vacancy ordered phases have been observed as the SrnFenO3n-1

series, where n ) 1, 2, 4, 8, and ∞ after updated by the report
of SrFeO2.

1 However, at elevated temperatures the cubic
perovskite structure remains up to δ ) 0.5 with disordered
oxygen vacancies, and corresponding research is essential to
the high-temperature applications.

Although the perfect SrFeO3 has been explored theoretically
at various levels, the computational investigation on the
defective SrFeO3-δ with δ * 0 seems relatively limited.
Koslowski2 has analyzed the electronic structures of the cubic
nonmagnetic (NM) SrFeO3-δ with 0 e δ e 0.5, using simple
but physically transparent models. It is found that with increas-

ing δ, the density of states (DOS) at the Fermi level (EF)
decreases, and the localization of eigenfunctions at EF increases.
Meanwhile, the obtained EF lies at the top of the σ* band,
independent of δ, which has been taken as a discrepancy from
the previous hypothesis of Goodenough.3 Shein et al.4 have
calculated the electronic properties of the cubic ferromagnetic
(FM) SrFeO2.875 at the generalized gradient approximation
(GGA) level based on the density functional theory (DFT) and
obtained the vacancy formation energy of 2.90 eV.

The present work aims to analyze systematically the structural
and electronic properties of the cubic SrFeO2.875 at the GGA +
U level, considering the NM, FM, and G-type antiferromagnetic
(AFM) configurations. Since such a level might not be suitable
for metallic phases,5 the pure GGA level is adopted as well to
facilitate comparison. In order to evaluate the influence of
oxygen-vacancy formation, and to deduce the formation energy,
equivalent calculations are performed on the SrFeO3 counter-
parts. The thermodynamic corrections are provided to account
for the oxygen partial pressure and temperature.

2. Computational Details

The adopted atomic positions for the NM, FM and AFM
SrFeO3 are illustrated in Figure 1 (a) to (c), respectively.
The experimental lattice parameter a ) 3.869 Å was

* Corresponding author phone: +86-10-62650558; fax: +86-10-
62536108; e-mail: wlhuang@home.ipe.ac.cn.
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employed in the present work as in the literature.6 As for
the AFM SrFeO3, we utilized a (SrFeO3)8 supercell rather
than the body-centered tetragonal primitive cell (SrFeO3)2

(as adopted by Jaya et al.6) so as to decompose the Fe 3d
orbitals into comparative components, and in light of the
majority-spin directions, the Fe atoms are divided into Fe(1)
and Fe(2) types. The SrFeO2.875 is modeled via a (SrFeO2.875)8

supercell, built by removing the central oxygen atom of the
(SrFeO3)8 supercell and then shrinking the lattice constant
from 2 a to 2 ap, where ap ) 3.864 Å as treated in the
literature.1 According to the coordination environments and
distances from the oxygen vacancy, Fe, Sr, and O atoms are
classified into three (Fe1 to Fe3), two (Sr1 and Sr2), and
seven (O1 to O7) kinds, respectively. In the AFM (Sr-
FeO2.875)8 supercell, as shown in Figure 1 (d), each type of
Fe atom can be distinguished further based on their majority-
spin orientations, e.g., Fe1(1) or Fe1(2). To manifest the two
different computational levels, the cases corresponding to
the pure GGA level are labeled as NM1, FM1 and AFM1,
while those at the GGA + U level are denoted by NM2,
FM2, and AFM2.

Calculations were conducted via the plane-wave pseudo-
potential (PW-PP) DFT method as implemented in the
Quantum-ESPRESSO package.7 The Perdew-Burke-Ernzer-
hof (PBE)8 GGA was employed for the exchange-correlation
functional. Ultrasoft pseudopotentials (US-PPs) were used,
where 3d and 4s states were considered for Fe with 8 e, 4s,
4p, 4d, 5s, and 5p states for Sr with 10 e, and 2s and 2p
states for O with 6 e. All the pseudopotentials were generated

with scalar-relativistic calculations, and nonlinear core cor-
rections (NLCC) were included in the pseudopotentials of
Fe and Sr. Within the GGA + U scheme, the value of U )
4.3 eV was applied to the Fe species.

The kinetic energy cutoffs of 40 and 500 Ry were
employed for the smooth part of the electronic wave
functions and the augmented electron density respectively
to achieve a total-energy difference below 1 meV/atom,
accompanied by a Monkhorst-Pack9 k-point grid (centered
at the Γ point) of 8 × 8 × 8 for SrFeO3 and 4 × 4 × 4 for
(SrFeO3)8 and (SrFeO2.875)8. The cold smearing10 of 0.01 Ry
was selected, and all the atomic positions in (SrFeO2.875)8

were relaxed until all components of the residual forces were
smaller than 0.026 eV/Å via the Broyden, Fletcher, Goldfarb,
Shanno (BFGS)-based method.11 The tetrahedron method12

was exploited to calculate the DOS, and the atomic popula-
tions were analyzed using both the Löwdin13 (included in
the Quantum-ESPRESSO package7) and the Bader14 (by
means of the program developed by Henkelman et al.15)
methods.

In order to figure out the oxygen-vacancy formation energy
during the transformation from SrFeO3 to SrFeO2.875, the
triplet O2 was relaxed, and subsequent calculations were
performed in a 10 Å cubic box, as employed by Choi et
al.16 with a k point at the Γ. The kinetic energy cutoffs of
80 and 500 Ry were chosen for wave functions and charge
density, respectively, to ensure a total-energy difference
below 2 meV/atom.

To determine the reduction limit of the O2 partial pressure,
the total energy values of Fe and SrO were computed
additionally with the experimental lattice parameters,17 using
the same cutoffs as for SrFeO3, and the k points were sampled
with a separation about 0.04 1/Å in each of the three
reciprocal lattice directions.

3. Results and Discussion

3.1. Atomic Positions and Populations. As explicated
in Table 1, the relaxation generally leads to apparent changes
in the positions of the nearest-neighbor (NN) (Fe3, Sr2, and
O7) atoms of the oxygen vacancy in SrFeO2.875, but many
atoms beyond experience certain influences as well, espe-
cially Sr1 atoms whose displacements (away from the
vacancy equally along the x- and y-axes, and additional
variation also appears along the z-axis for the AFM cases)

Figure 1. The adopted (a) NM and (b) FM SrFeO3 unit cells
and AFM (c) (SrFeO3)8 and (d) unrelaxed (SrFeO2.875)8

supercells. The arrows show the majority-spin orientations of
the Fe atoms in the spin-polarized cases.

Table 1. Displacements (Å) of the Atoms in SrFeO2.875

Due to Relaxation

NM1 NM2 FM1 FM2 AFM1 AFM2

Fe1 0.015 0.004 0.013 0.015 0.012 0.008
Fe2 0.022 0.020 0.023 0.022 0.021 0.016
Fe3 0.191 0.204 0.080 0.048 0.074 0.058
Sr1 0.101 0.101 0.040 0.031 0.028 0.036
Sr2 0.061 0.072 0.093 0.093 0.060 0.070
O1 0.000 0.000 0.000 0.000 ≈ 0.000 ≈ 0.000
O2 0.000 0.000 0.000 0.000 ≈ 0.000 ≈ 0.000
O3 0.000 0.000 0.000 0.000 ≈ 0.000 ≈ 0.000
O4 0.031 0.023 0.011 0.017 0.029 0.034
O5 0.000 0.000 0.000 0.000 ≈ 0.000 ≈ 0.000
O6 0.000 0.000 0.000 0.000 ≈ 0.000 ≈ 0.000
O7 0.180 0.183 0.144 0.174 0.209 0.218
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are even more sizable than Sr2 in the NM cases. All the
Fe1 and Fe2 atoms move along the z-axis. The Fe2 atoms
in all cases and the Fe1 atoms in the NM cases approach
the vacancy, while the Fe1 atoms in the FM and AFM cases
are displaced away from the vacancy. The O4 atoms shift
away from (or toward) the vacancy along the x-axis in the
FM (or NM and AFM) cases and away from the vacancy
along the z-axis in all the cases, and the displacements along
the z-axis are more significant than along the x-axis. In
comparison with the FM results calculated using the atomic
orbitals as basis sets,4 the present work offers the same trend
and comparable displacement values for the NN atoms. The
eight NN O7 atoms relax toward the vacancy (basically along
the z-axis), whereas the two NN Fe3 and four NN Sr2 atoms
retreat from the vacancy (along the z-axis for the former and
equally along the x-axis and y-axis for the latter except for
the AFM cases where slight shifts along the z-axis have also
occurred). Such results can be interpreted based mostly on
the electrostatic interactions within the ionic pictures. Ac-
cording to the simple empirical model in the Kröger-Vink
notation, Of VO

•• + 1/2 O2 (g) + 2 e′, the oxygen vacancy
is positively charged and thus attracts the negative oxygen
and repulses positive Fe and Sr ions in the lattice. Similar
phenomena have been encountered in the literature, e.g., the
oxygen vacancy repulses the neighboring Ti atoms, and the
Sr or Ti vacancy repels the neighboring oxygen atoms in
the defective SrTiO3.

18 The absolute values of the displace-
ments are in the order of O7 > Sr2 ≈ Fe3 for the FM and
AFM configurations and of Fe3 > O7 > Sr2 in the NM cases.
These findings can be roughly correlated with the corre-
sponding charges and interatomic distances. Neglecting the
charge transfer induced by the vacancy formation, Fe3
exhibits the highest nominal valence (+4), along with the
shortest distance from the vacant site (1/2 ap, compared with
�2/2 ap for those of Sr2 or O7 before relaxation), and the
largest displacements can be expected. Reduction due to the
charge transfer (described below) weakens the electrostatic
interaction between Fe3 or Sr2 and the vacancy and yields
their smaller displacements, while reverse results might be
anticipated for the negatively charged O7.

To elucidate the vacancy-incurred charge transfer, we
analyzed the atomic populations in both SrFeO3 and Sr-
FeO2.875. The Löwdin results of SrFeO3 and SrFeO2.875 are
provided in Table 2. It is obvious that the vacancy transfers
charges principally to the NN atoms, and the order of transfer
amount is generally Fe3 > Sr2 ≈ O7. To make a crosscheck
on the tendency, the Bader analyses were complemented, as
in Table 3, and coherent tendencies can be observed.

A comparable amount of charge transfer to Fe3 shortens
its displacement in the NM cases less than in the FM and
AFM cases, owing to the relatively larger dispersivity of the
3d orbitals (that accept the charges) in the NM cases, and
the Fe3 shows still greater displacements than O7 and Sr2
in the NM cases. The longer displacements of O7 than Sr2
might be ascribed qualitatively to the larger charge transfer
to Sr2 as well as the steric factor: the smaller size of oxygen
and more space and thus more feasibility to approach the
vacancy.

Introduction of the Hubbard U term enlarges the displace-
ments of O7 in all cases, Fe3 in the NM case, and Sr2 in the
NM and AFM cases, while it reduces those of Fe3 in the
FM and AFM cases. Electrostatic analysis can offer a
reasonable explanation again. Take the displacements of Fe3
as an example. In comparison with the GGA method, the
GGA + U level generates smaller occupancy difference
between Fe1 and Fe3 in the NM case and larger ones in
the FM and AFM cases. Assuming that the Fe1 atoms receive
no influence and charge transfer from the vacancy formation,
the above results mean that the charge transfer to Fe3 is
smaller in the NM case, and larger in the FM and AFM cases,
when the U term is introduced. This is in accord with the
displacement changes.

To describe the charge distribution among the Fe 3d
orbitals, the relevant Löwdin populations are listed in Table
4. Referring to SrFeO3, the Fe3 atoms in NM SrFeO2.875

accept electrons largely on the 3dz2 or 3dx2 - y2 orbital. It is
also evident that the 3dxz, 3dyz, and 3dxy orbitals contribute
more than the 3dz2 and 3dx2 - y2 ones to the Fe magnetic
moments in the FM and AFM cases. The oxygen vacancy
enhances the spin polarization on the Fe3 3dz2 orbital and
weakens that on the Fe3 3dx2 - y2 orbital, while the Fe2 atoms

Table 2. Löwdin Populations (e) of the Atoms in SrFeO3

and SrFeO2.875

NM1 NM2 FM1 FM2 AFM1 AFM2

a Fe 6.71 6.81 6.45 6.31 6.45 6.36
Sr 9.86 9.85 9.90 9.93 9.90 9.92
O 6.45 6.42 6.51 6.55 6.51 6.54

b Fe1 6.68 6.81 6.47 6.31 6.43 6.35
Fe2 6.72 6.82 6.45 6.28 6.42 6.33
Fe3 6.85 6.87 6.52 6.38 6.53 6.47
Sr1 9.84 9.83 9.88 9.90 9.88 9.90
Sr2 9.88 9.88 9.93 9.96 9.93 9.95
O1 6.44 6.44 6.51 6.55 6.51 6.52
O2 6.42 6.44 6.51 6.55 6.51 6.52
O3 6.46 6.45 6.54 6.59 6.55 6.58
O4 6.44 6.42 6.52 6.56 6.53 6.54
O5 6.44 6.41 6.52 6.55 6.52 6.55
O6 6.40 6.33 6.50 6.63 6.55 6.58
O7 6.48 6.45 6.54 6.57 6.54 6.56

a SrFeO3. b SrFeO2.875.

Table 3. Bader Populations (e) of the Atoms in SrFeO3

and SrFeO2.875

NM1 NM2 FM1 FM2 AFM1 AFM2

a Fe 6.21 6.29 6.09 6.02 6.08 6.05
Sr 8.37 8.37 8.38 8.39 8.38 8.39
O 7.14 7.12 7.18 7.20 7.18 7.19

b Fe1 6.21 6.29 6.09 5.99 6.04 6.09
Fe2 6.22 6.31 6.13 6.03 6.09 6.05
Fe3 6.39 6.37 6.25 6.19 6.21 6.21
Sr1 8.41 8.41 8.39 8.40 8.40 8.41
Sr2 8.41 8.41 8.42 8.42 8.42 8.42
O1 7.19 7.19 7.19 7.23 7.20 7.17
O2 7.20 7.18 7.22 7.25 7.21 7.24
O3 7.17 7.16 7.22 7.24 7.23 7.25
O4 7.16 7.14 7.22 7.24 7.21 7.21
O5 7.17 7.12 7.22 7.21 7.23 7.20
O6 7.03 7.06 7.13 7.21 7.18 7.17
O7 7.15 7.13 7.18 7.21 7.21 7.21

a SrFeO3. b SrFeO2.875.
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show a vacancy-induced increase in the magnetic moments
of almost all five 3d orbitals.

3.2. Electronic Band Structures. Regardless of the
reduction from SrFeO3 to SrFeO2.875, the magnetic patterns
(NM, FM, or AFM), and the change in computational level
from pure GGA to GGA + U, the band sequence remains
unchanged: Sr 4s, O 2s, and Sr 4p form the lowest three
occupied bands sequentially with increasing energy, the
hybridization of O 2p and Fe 3d exists around EF, and Sr
4d, Fe 3s, Sr 5s, and Sr 5p contribute to the bands of higher
energy. Figures 2-4 depict the total and partial density of
states (PDOS) of the species in NM, FM, and AFM
configurations, respectively, calculated within the GGA +
U scheme. In the displayed energy range, the Fe 4s states
exhibit negligible density though plotted, and the trivial
contribution of Sr 5s and 5p has been omitted. The (P)DOS
peaks in SrFeO2.875 are generally lower but wider than their
counterparts in SrFeO3, and some peaks have decomposed,
due to the lowering of the symmetry.

Based on simple models, Koslowski has reported the
decreasing DOS at EF with increasing δ for NM SrFeO3-δ.
This trend has not been reproduced in our NM1 cases (8.77
and 9.02 states/(eV fu) for SrFeO3 and SrFeO2.875, respec-
tively) but appears somewhat in the NM2 cases (7.63 and
7.56 states/(eV fu) for SrFeO3 and SrFeO2.875, respectively),
considering δ ) 0 and 0.125. By the way, Jaya et al. has
given a value of 11.94 states/(eV fu) for NM SrFeO3.

6

The obtained values of the total magnetic moment are 3.61
and 4.05 µB/fu (formula) for FM1 and FM2 SrFeO3,
respectively, whereas the counterparts for SrFeO2.875 are 3.79
and 4.25 µB/fu correspondingly. The absolute magnetic
moment of AFM1 SrFeO3 is 3.13 µB/fu, and that of AFM2
SrFeO3 is 3.56 µB/fu. In contrast, the AFM1 and AFM2 cases
of SrFeO2.875 yield 3.36 and 3.70 µB/fu, respectively. It is

Table 4. Löwdin Populations (e) of the Fe or Fe(1) 3d Orbitals in Different Cases

z2 xz yz x2 - y2 xy total

v V v V v V v V v V v V

NM1a 0.95 1.52 1.52 0.95 1.52 6.45
NM2a 0.79 1.66 1.66 0.79 1.66 6.55
FM1a 0.77 0.34 1.00 0.32 1.00 0.32 0.77 0.34 1.00 0.32 4.53 1.65
FM2a 0.88 0.36 0.99 0.20 0.99 0.20 0.88 0.36 0.99 0.20 4.73 1.31
AFM1b 0.78 0.46 0.98 0.26 0.98 0.26 0.78 0.46 0.98 0.26 4.50 1.68
AFM2b 0.86 0.46 0.99 0.16 0.99 0.16 0.86 0.46 0.99 0.16 4.68 1.41
NM1c 0.92 1.54 1.54 0.91 1.52 6.43
NM1d 0.92 1.50 1.58 0.94 1.53 6.47
NM1e 1.12 1.49 1.49 0.96 1.54 6.60
NM2c 0.75 1.70 1.70 0.74 1.68 6.56
NM2d 0.74 1.60 1.79 0.76 1.68 6.57
NM2e 0.78 1.66 1.66 0.88 1.63 6.61
FM1c 0.79 0.34 0.99 0.32 0.99 0.32 0.77 0.35 0.99 0.34 4.54 1.67
FM1d 0.81 0.32 0.99 0.29 0.99 0.32 0.86 0.31 0.99 0.29 4.65 1.53
FM1e 0.86 0.31 0.99 0.35 0.99 0.35 0.70 0.39 0.99 0.32 4.53 1.72
FM2c 0.89 0.35 0.99 0.19 0.99 0.19 0.88 0.36 0.99 0.19 4.75 1.28
FM2d 0.90 0.34 0.99 0.19 0.99 0.15 0.93 0.33 0.99 0.18 4.81 1.19
FM2e 0.95 0.29 0.99 0.22 0.99 0.22 0.81 0.41 0.99 0.22 4.74 1.36
AFM1f 0.79 0.45 0.99 0.24 0.99 0.24 0.80 0.44 0.99 0.24 4.55 1.61
AFM1g 0.81 0.41 0.99 0.24 0.99 0.23 0.88 0.38 0.99 0.23 4.66 1.50
AFM1h 0.92 0.41 0.98 0.31 0.98 0.31 0.58 0.49 0.99 0.28 4.46 1.80
AFM2f 0.86 0.46 0.99 0.16 0.99 0.16 0.87 0.46 0.99 0.16 4.69 1.39
AFM2g 0.89 0.43 0.99 0.16 0.99 0.14 0.93 0.38 0.99 0.15 4.80 1.26
AFM2h 0.95 0.42 0.99 0.22 0.99 0.22 0.68 0.51 0.99 0.21 4.60 1.59

a Fe in SrFeO3. b Fe(1) in SrFeO3. c Fe1 in SrFeO2.875. d Fe2 in SrFeO2.875. e Fe3 in SrFeO2.875. f Fe1(1) in SrFeO2.875. g Fe2(1) in
SrFeO2.875. h Fe3(1) in SrFeO2.875.

Figure 2. Total and partial DOS of NM2 (a) SrFeO3 and (b)
(SrFeO2.875)8.
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obvious that both the Hubbard U term and the oxygen
vacancy have improved the magnetic moments.

In order to reveal the bonding characteristics, we provide
the components of O 2p and Fe 3d orbitals and their
overlapping. The GGA + U results for SrFeO3 are given in

Figure 5. For the NM2 case, the σ bonding is within - 5.7
∼ - 3.6 eV, the π bonding covers - 5.6 ∼ - 2.3 eV, the
π* antibonding emerges in the energy range of - 0.8-0.3
eV, and the σ* antibonding is apparent in 0.4-4.3 eV. The
observed crystal field splitting is about 1.2 eV, and the Fermi

Figure 3. Total and partial DOS of FM2 (a) SrFeO3 and (b) (SrFeO2.875)8.

Figure 4. Total and partial DOS of AFM2 (a) (SrFeO3)8 and (b) (SrFeO2.875)8.
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level is situated in the π* antibonding region, which is
coincident with the result of Matar.19 In the FM2 case, the
majority spin channel shows the σ, π bonding and π*, σ*
antibonding within - 8.2 to - 5.8, - 8.0 to - 6.5, - 2.5 to
- 1.2, and - 0.3-2.1 eV, respectively, and for the minority

spin channel, the observable regions are - 6.0 to - 4.0, -
4.4 to - 0.8, 0.9-2.1, and 0.7-4.5 eV correspondingly, with
the exchange splitting around 2.9 eV. The larger exchange
splitting than the crystal field splitting favors the high-spin
(HS) structure. Regarding the AFM2 case, the energy ranges
concerning the σ, π bonding and π*, σ* antibonding are -
7.0 to - 6.2, - 6.8 to - 6.4, - 3.0 to - 0.7, and - 1.8-0.7
eV, respectively, for the Fe(1) majority spin part and - 6.7
to - 4.0, - 3.0 to - 2.3, 2.0-2.5, and 2.2-4.0 eV for the
Fe(1) minority spin one.

Figures 6-8 plot the PDOS of O 2p and Fe 3d orbitals in
SrFeO2.875 obtained within the GGA + U scheme. The
oxygen vacancy has tailored the structural and electronic
properties apparently, removing the orbital degeneracies.
Referring to those in SrFeO3, the 2p (as well as 2s, not
shown) orbitals of O6 and O7 exhibit the most significant
difference. The σ bonding and σ* antibonding between O6
2p and Fe3 3d becomes highly localized, and in the NM2
case such bonding might be the strongest among the O 2p-
Fe 3d pairs, appearing within the lowest energy range. A
half-metallic feature can be noticed in FM2 SrFeO2.875.

To further discern the states at EF, the local DOS (LDOS)
isosurfaces are presented in Figure 9, rendered via the
XCrySDen code.20 Associated with Figures 6-8, Figure 9
shows that the states at EF correspond to the π* antibonding

Figure 5. Overlap between O 2p and Fe 3d orbitals in (a)
NM2, (b) FM2, and (c) AFM2 SrFeO3.

Figure 6. The components of (a) O 2p and (b) Fe 3d PDOS
in NM2 SrFeO2.875.
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for NM2 SrFeO3 and SrFeO2.875, and the σ* antibonding in
the spin-up channel for FM2 SrFeO3 and SrFeO2.875. The
AFM2 SrFeO2.875 displays the σ* antibonding of the Fe1 and
Fe2 3d orbitals with the 2p orbitals of adjacent oxygen atoms
at EF, while the local states of AFM2 SrFeO3 at EF manifest
the nonbonding nature. Koslowski2 has explored NM Sr-

FeO3-δ using simple models and found that the σ* antibond-
ing states arise at EF, which is reckoned as a difference from
Goodenough’s hypothesis.3 However, Goodenough has
predicted the π* antibonding states at EF based on low-spin
(LS) Fe4+, expecting FM coupling. Concerning the NM
pattern, the exchange splitting is neglected, and it is

Figure 7. The components of (a) O 2p and (b) Fe 3d PDOS
in FM2 SrFeO2.875.

Figure 8. The components of (a) O 2p and (b) Fe 3d PDOS
in AFM2 SrFeO2.875.
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reasonable that the crystal field makes the partially filled π*
orbitals and empty σ* ones for Fe4+ (3d4). This is consistent
with the results of Matar19 and Jaya et al.6 for SrFeO3, and
the partially filled σ* band achieved by Koslowski might be
ascribed to some deficiencies of the Anderson-Mott-Hubbard
model or its approximation.2 Once the spin polarization is
incorporated, the HS configuration has been found favorable
experimentally19 and theoretically,6,19 which offers the σ*
states at EF. Based on the competitive crystal field splitting
and exchange splitting, and the resultant magnetic moments,

the principal HS pattern is confirmed for both SrFeO3 and
SrFeO2.875 in the present work.

On the basis of the theorem of Anderson,21 the orbital
localization is expectable in disordered systems. Koslowski2 has
discovered the increasing localization of states at EF with δ in
SrFeO3-δ. Similarly, as depicted in Figure 9, a reduced number
of states appear in SrFeO2.875 in comparison with SrFeO3,
signifying the vacancy-induced localization at EF. The orbital
localization might also be implicated in the larger magnetic
moments of SrFeO2.875 configurations than those of SrFeO3

Figure 9. The local DOS isosurfaces at EF of NM2 (top), FM2 (middle), and AFM2 (bottom) SrFeO3 (left) and SrFeO2.875 (right),
rendered with an isovalue of 1.0.
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counterparts, for localized electrons might carry spontaneous
atomic moments while collective electrons might not.3

3.3. Vacancy Formation Energetics. Congruent with the
reports in the literature,19,22 both the present GGA and GGA
+ U calculations fail to predict the experimentally identified
AFM ground state of SrFeO3. At the GGA level, the FM
SrFeO3 was computed to be 1.308 and 0.235 eV/fu more
stable than the NM and AFM patterns, respectively, while
the values are 2.098 and 0.196 eV/fu with the GGA + U
approach, respectively. In comparison, Matar19 reported that
the FM state is 0.224 eV/fu more stable than the AFM state,
via both the LMTO-ASA (linear muffin tin orbital-atomic
sphere approximation) and the ASW (augmented spherical
wave) methods (where), and Shein et al.22 gave a value of
0.262 eV/fu using the LSDA (local spin density approxima-
tion) + U formalism with U ) 6.0 eV and the exchange
parameter J ) 0.6 eV.

For the triplet O2, we obtained the relaxed O-O bond
length of 1.236 Å, and the calculated vibrational frequency
of 1572.2 cm-1. These agree well with the results calculated
under the GGA-PAW (projector augmented wave) scheme
and the experimental values.16

Following the reduction reaction, 8 SrFeO3f (SrFeO2.875)8

+ 1/2 O2 (g), at the GGA level, the oxygen-vacancy
formation energy is evaluated as

where E(O2)GGA is the total energy of the triplet O2, while
E((SrFeO2.875)8)GGA and E(SrFeO3)GGA are the total energy
values of (SrFeO2.875)8 and SrFeO3 at this level, respectively.
We obtain the Evf1 values of 0.35, 1.51, and 0.92 eV for the
AFM, FM, and NM cases correspondingly. By comparison,
Shein et al.4 have reported that a value of 2.90 eV for the
FM case, using the GGA approach as well, but Troullier-
Martins norm-conserving pseudopotentials, the atomic orbit-
als basis sets, Sr 5s24p64d0 configuration (8 e), and a value
of 3.7054 Å for both a in SrFeO3 and ap in (SrFeO2.875)8.

It is known that the O2 molecule is overbound within both
the LDA and GGA frameworks (the experimental binding
energy of O2 is about - 5.23 eV,23 in comparison with the
GGA value5,24 around - 5.99 or - 6.02 eV), which might
cause an underestimate for the O-vacancy formation energy.
By fitting the calculated formation energy of nontransition
metal oxides from metals and O2, and comparing with the
experimental formation enthalpy values, Wang et al.5 derived
a shift of 1.36 eV/O2 (i.e., 0.68 eV per oxygen atom). This
is larger than the binding energy difference and is surmised
to be related with the electron transferring to (oxidation) or
from (reduction) the oxygen 2p orbitals. Therefore, the
correction in this aspect might suggest an addition of 0.68
eV to the calculated O-vacancy formation energy. In the other
aspect, treating 3d metal states using LDA or GGA causes
the well-known self-interaction error that incorrectly in-
creases the energy of the reduced state (with more d
electrons), thus overestimating the O-vacancy formation
energy. It is found that the GGA + U scheme can remove
this error for many systems to some extent via suitable U

values.5 Since this error is opposite to and hence cancels
the O2 overbinding error to a certain degree, giving rise to
better agreement with experiments, it is better to correct or
uncorrect these two errors simultaneously. However, the
above-mentioned cancellation is rather arbitrary, and the
uncorrected results are essentially unreliable. Therefore, we
evaluated further the corrected Evf2 values, using the GGA
+ U energetics and the 0.68 eV/O correction as expressed in

where E((SrFeO2.875)8)GGA+U and E(SrFeO3)GGA+U are the total
energy values of (SrFeO2.875)8 and SrFeO3 achieved at the GGA
+ U level. The Evf2 results are 0.23, 1.35, and 1.32 eV for the
AFM, FM, and NM structures, respectively.

Neglecting the pV (pressure p and the cell volume V) and
vibrational contributions of the solid phases as in the
literature,25-27 the temperature and pressure dependence of
Evfi (i ) 1 and 2) can be deduced simply by replacing the
1/2 E(O2)GGA term in eqs 1 and 2 with the O chemical
potential µO(T, p(O2)) at the temperature T and the O2 partial
pressure p(O2), and the resultant expressions are

where µO(T, p(O2)) ) 1/2 E(O2)GGA + 1/2 ∆G(∆T, po(O2),
O2) + 1/2 kBT ln(p(O2)/po(O2)), kB is the Boltzmann constant,
and po(O2) is the O2 partial pressure at the standard state,
i.e., 1 atm. Using the 1/2 ∆G(∆T, po(O2), O2) values tabulated
by Reuter and Scheffler,25 the Evfi(T, 1 atm) ∼ T and Evfi(700
K, p(O2)) ∼ p(O2) plots are provided in Figure 10. Different
magnetic configurations have been presented here to facilitate
mutual comparison; however, it should be noted that the TN

of SrFeO3 is around 130 or 134 K,6,19 and in ordered
SrFeO2.875 the magnetic pattern was observed merely below
about 85 K.28 The lower and upper limits of p(O2) in Figure
10(b) were determined using the technique analogous to that
in the literature for other systems.25,27 The O-rich limit is
defined as the point beyond which gas phase O starts to
condense,25,26 that is, let µO(T, p(O2)max) ) 1/2 E(O2)GGA +
1/2 ∆G(∆T, po(O2), O2) + 1/2 kBT ln(p(O2)max/po(O2)) ) 1/2
E(O2)GGA, and obtain p(O2)max ) 3.25 × 1010 atm at T )
700 K. The O-poor limit is determined considering the
coexistence of NM SrFeO3 (the FM and AFM cases give
much lower limits), the body-centered cubic (bcc) FM Fe,
SrO, and gaseous triplet O2. Within the GGA scheme, let
µO(T, p(O2)GGA,min) ) 1/2 E(O2)GGA + 1/2 ∆G(∆T, po(O2),
O2) + 1/2 kBT ln(p(O2)GGA,min/po(O2)) ) 1/2 E(SrFeO3)GGA

- 1/2 E(Fe)GGA - 1/2 E(SrO)GGA, where E(SrFeO3)GGA,
E(Fe)GGA, and E(SrO)GGA are the total energy values of NM
SrFeO3, bcc FM Fe, and SrO respectively, we acquire
p(O2)GGA,min ) 8.08 × 10-14 atm at T ) 700 K. As to the
GGA + U situation, the 0.68 eV/O correction is introduced,
and the lower limit p(O2)GGA+U,min is calculated to be 9.86

Evf1 ) E((SrFeO2.875)8)
GGA + 1/2E(O2)

GGA -

8E(SrFeO3)
GGA (1)

Evf2 ) E((SrFeO2.875)8)
GGA+U + 1/2E(O2)

GGA -

8E(SrFeO3)
GGA+U + 0.68 eV (2)

Evf1(T, p(O2)) ) E((SrFeO2.875)8)
GGA + µO(T, p(O2)) -

8E(SrFeO3)
GGA (3)

Evf2(T, p(O2)) ) E((SrFeO2.875)8)
GGA+U + µO(T, p(O2)) -

8E(SrFeO3)
GGA+U + 0.68 eV (4)
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× 10-16 atm at T ) 700 K, according to 1/2 kBT
ln(p(O2)GGA+U,min/po(O2)) ) 1/2 E(SrFeO3)GGA+U - 1/2
E(Fe)GGA+U - 1/2 E(SrO)GGA - 1/2 E(O2)GGA - 1/2 ∆G(∆T,
po(O2), O2) - 0.68 eV, where E(SrFeO3)GGA+U and
E(Fe)GGA+U are the total energy values of NM SrFeO3 and
bcc FM Fe SrO, respectively, calculated at the GGA + U
level. It is evident that the Evfi(T, p(O2)) decreases with the
increasing T or decreasing p(O2). At p(O2) ) 1 atm for the
NM structure, the Evf1(T, p(O2)) reaches zero around T )
850 K, and Evf2(T, p(O2)) ) 0.22 eV at 1000 K. Regarding
the NM cases at T ) 700 K, the oxygen-vacancy formation
becomes thermodynamically favorable (exothermic) at p(O2)
below 2 × 10-3 atm within the GGA framework (eq 3) or 3
× 10-9 atm at the GGA + U level with the 0.68 eV/O
correction (eq 4). Compared with the data of other systems,18,29

such ease of oxygen-vacancy formation in SrFeO3 accounts
for its potentially wide application to catalysis or electroca-
talysis (e.g., solid oxide fuel cells), oxygen separation, and
sensors.30

In view of the difficulty in evaluating magnetic systems
using US-PPs,31 we have chosen additionally another Fe US-
PP including 3s and 3p semicore states with 16 e in total to
check some results, and general agreement has been ob-
served. The total energy value of FM SrFeO3 obtained with
this PP within the GGA scheme is 1.316 and 0.269 eV/fu
lower than those in the NM and AFM cases, respectively,
and the corresponding values at the GGA + U level are 2.446
and 0.278 eV/fu. The atomic positions of SrFeO2.875 relaxed
with this PP exhibit only slight divergences from those in
Table 1, and the acquired Evf1 values are 0.35, 1.59, and 1.00
eV for the AFM, FM, and NM configurations, respectively,

agreeing very well with the preceding ones. The correspond-
ing Evf2 values of 0.07, 1.29, and 1.09 eV here display
seemingly large deviations from the aforementioned results,
but considering the around 0.09 eV uncertainty of DFT
methods,32 such differences might be acceptable.

4. Conclusions

Using the PW-PP DFT method, we have calculated the
structural, electronic, and magnetic properties of SrFeO2.875

within the GGA (+ U) frameworks, taking NM, FM, and
AFM patterns into account. By referring to SrFeO3, the
vacancy-induced changes have been clarified.

Beyond the NN Fe3, Sr2, and O7 atoms, Sr1, Fe2, O4,
and Fe1 in SrFeO2.875 have undergone observable positional
modifications during the relaxation as well though the
population analyses reveals that the oxygen-vacancy forma-
tion transfers charges predominantly to the Fe3 atoms,
especially the 3dz2 and 3dx2 - y2 orbitals for the NM config-
uration. This also indicates that the constrained relaxation
(within the NN region) is insufficient to determine the
structures and energetics of this species.

The reduced DOS at EF for NM SrFeO2.875 has been
reflected only slightly at the GGA + U level, while the
vacancy-caused localization of the states at EF has been
verified by the magnetic moments and LDOS results. The
states of SrFeO2.875 at EF are found to be π* for the NM
structure and σ* for the FM and AFM patterns.

With the correction of the O2 overbinding error using the
value in the literature,5 the NM and FM cases create similar
values of the oxygen-vacancy formation energy at the GGA
+ U level, which are much smaller than those of many other
oxides, indicative of the easy reduction of SrFeO3. The values
in the AFM cases are extremely small, implicating the
extraordinary ease of the transform under such a magnetic
pattern.

Supplementary calculations using an alternative Fe US-
PP involving 3s and 3p semicore states have yielded
generally consistent results, indicating that treating only 3d
as the semicore states with NLCC seems adequate to
represent the present systems.
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Abstract: A strategy is described for a fast all-atom molecular dynamics simulation of
multimillion-atom biological systems on massively parallel supercomputers. The strategy is
developed using benchmark systems of particular interest to bioenergy research, comprising
models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves
using the reaction field (RF) method for the computation of long-range electrostatic interactions,
which permits efficient scaling on many thousands of cores. Although the range of applicability
of the RF method for biomolecular systems remains to be demonstrated, for the benchmark
systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other
structural properties, and mean-square fluctuations in excellent agreement with those obtained
with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-
atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations
of very large systems for time scales approaching the microsecond would, therefore, appear
now to be within reach.

1. Introduction
Molecular dynamics (MD) simulation is a powerful tool for
the computational investigation of biological systems.1 Since
the first MD study of a protein in 1977, which simulated
<1000 atoms for <10ps,2 significant progress has been made
in the time and length scales accessible, and it is now
common to probe systems of ∼105 atoms on time scales of
∼100 ns. This increase in scope has allowed many processes
of biological interest to be characterized. However, there is
clear interest in further extending both the time and the length
scales beyond those currently accessible.

Recent algorithmic3-6 and hardware developments have
allowed MD studies to be extended to multimillion-atom
systems.7-9 Current supercomputers, such as the “Jaguar”

Cray XT5 at Oak Ridge National Laboratory used for the
present study, are beginning to assemble over 1 × 105 cores
and in this way reach petaflop nominal speeds. However,
the challenge for MD, and other applications, is to achieve
efficient scaling up to ∼1 × 104 to 1 × 105 cores, i.e., the
simulations are limited by the parallel efficiency of the MD
algorithms.

The computationally most demanding part of MD simula-
tion of biological systems is the treatment of long-range
interactions, which in nonpolarizable force fields is repre-
sented by Coulomb and van der Waals (Lennard-Jones)
terms.10 While the van der Waals interaction is almost always
truncated at a cutoff distance Rvdw, the electrostatic interaction
extends to longer ranges. A common method to treat the
electrostatics is to directly calculate the Coulomb interaction
for any pair of atoms separated by less than another cutoff
distance Rcoul and, outside this distance, to calculate the
interactions with the Particle Mesh Ewald11,12 (PME) method
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(assuming periodic boundary conditions are applied to the
system). By using an Ewald summation to split the Coulomb
interaction into a short-range part that converges quickly in
real space and a long-range part that converges quickly in
reciprocal space, the PME method reduces the computational
cost of N particles interacting with each other from O (N2)
to O(N ln N). The reciprocal space sum is performed by using
the fast Fourier transformation (FFT).

Most MD calculations have been performed using PME.
Although PME suffers from artifacts introduced by the
periodicity,13-17 it is fast on a small number of processors,
and FFT-based electrostatics methods are also very successful
on special purpose hardware. However, on massively parallel
computers, the full electrostatic treatment via the PME
method presents a performance barrier, arising from the state-
of-the-art implementation of PME, which requires two FFT
steps. The FFT algorithm in turn requires one or two global
transposes which, on a message passing system, is inherently
limited by the bandwidth and the latency of the network.
As more nodes are used to simulate a system, each MD time-
step can be calculated faster, and thus, the time between
communications becomes shorter. If the time for the global
transpose is of the same order of magnitude as the computa-
tion time, then the required communication becomes a
bottleneck for the parallel efficiency. The same reasoning
explains why, when running on the same number of cores,
the parallel efficiency of a large system (e.g., 1 × 106 atoms)
is much better than that of a small system (e.g., 1 000 atoms):
the time needed to compute a single time step on a single
processor is much longer in case of a large system. Therefore,
for a large system, many more cores can be used before the
communication bottleneck occurs. As a result, larger systems
can often be simulated at about the same speed (in ns/day)
as smaller systems.

An alternative method to PME, that avoids the electrostat-
ics bottleneck, is the reaction field (RF).18-21 In RF it is
assumed that any given atom is surrounded by a sphere of
radius, rc, again within which the electrostatic interactions
are calculated explicitly. Outside the sphere, the system is
treated as a dielectric continuum. The occurrence of any net
dipole within the sphere induces a polarization in the
dielectric continuum, which in turn interacts with the atoms
inside the sphere. Due to the approximate treatment of
electrostatics outside the cutoff sphere, the RF method in
principle does not yield accurate results for systems that
contain full charges. Nevertheless, the RF model allows the
replacement of the infinite Coulomb sum by a finite sum
modified by the reaction field and, therefore, limits the
parallel scaling less than the PME method.

Many simulations have used the RF model for electrostat-
ics in the past.14,22-30 Testing of the accuracy of RF for
charged biomolecular systems has also been performed. A
study on the thermodynamics of the folding of a short peptide
with a net charge of -1 found that a RF simulation produces
results similar to those with the PME calculations and
experiments:27 the free energy surfaces derived from both
the RF and the PME calculations exhibit the same single
minimum, which corresponds to a �-hairpin, the experimen-
tally determined native state of the peptide. The main

difference between the PME and the RF results concerned
the structures of the less frequently sampled unfolded
configurations. The validity of the RF has also been discussed
in an extensive examination of the effects of force fields
and electrostatics treatments on the secondary structure
propensity and the sampling in the peptide folding simula-
tions.30 It was found that the electrostatics treatment has little
effect on the folding characteristics of the peptides, with the
PME exhibiting a slightly lower rmsd relative to the native
state, but the RF had slightly better sampling. Earlier studies
on a highly charged protein crystal,23 a RNA hairpin in
solution,24 and a small, highly charged globular protein25

also found that RF produced similar structures23-25 and
conformational spaces sampled24,25 compared to PME.
However, the studies in refs 23-25 involve relatively short
trajectories (between 1.5 to 5 ns) and, therefore, do not
provide a rigorous test of the use of the RF in representing
longer time scale dynamics. In ref 30, it was shown that large
conformational changes in proteins in solution can occur on
the microsecond time scale, and these might, in principle,
be sensitive to electrostatics.

The present paper outlines a strategy for fast and accurate
all-atom simulation of multimillion-atom biomolecular sys-
tems that do not contain charged groups. The benchmark
systems used in the present study are cellulose in water and
models of lignocellulosic “biomass”. Lignocellulosic biomass
is a complex material composed of crystalline cellulose
microfibrils laminated with hemicellulose, pectin, and lignin
polymers.31 In recent years, there has been a revived interest
in biomass structure, as biomass offers a potentially abundant
and cheap source of sugar for industrial biofuel production.32

Due to its complexity, lignocellulose poses significant
challenges to MD simulation. Among these are the charac-
teristic length scales (Å-µm) and time scales (ns-µs and
beyond) of events pertinent to the recalcitrance of biomass
to hydrolysis into sugars.32 To access these length and time
scales, standard MD protocols must be modified to scale up
to massively parallel machines. Two technical problems are
addressed. First, we compare the accuracy of MD using PME
and RF on the benchmark systems, and, second we examine
the scaling of MD of large systems on a petascale
supercomputer.

The present comparative studies show that the examined
properties derived using PME are well reproduced using the
computationally less demanding method of RF. Scaling
benchmarks on multimillion-atom systems show that the use
of the RF drastically improves the parallel efficiency of the
algorithm relative to PME, yielding ∼30 ns/day. Conse-
quently, microsecond time scale MD of multimillion-atom
biomolecular systems appear now within reach.

2. Methods

2.1. Simulation Setup. The simulations were performed
using cellulose33 and lignin34 force fields parametrized for
the CHARMM energy function35 using GROMACS 4.0.44

as the MD software. The validation of the use of the RF is
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particularly important in the present benchmark systems,
since the force fields were not parametrized using the RF
method.

The GROMACS simulations were performed with the
electrostatic treatments RF, PME-cutoff, PME-switch, and
shift and switch (see Table 1). The analytical expression for
electrostatic potential, Vrf with the RF method is

where ε is the dielectric constant outside the radius rc, and
r is the distance separating two charges. In the present work,
we employ ε ) ∞. This has the advantage that the force is
continuous at the cutoff distance, whereas RF with a finite
dielectric constant is subject to errors due to force discon-
tinuity. Apart from this significant improvement, the Cou-
lomb forces of the RF with ε ) ∞ and 78.5 are almost
identical (see Figure 1).

In switch and shift a function S is added to the Coulomb
force Fc, giving a total force Ft ) Fc + S. S is a third-degree
polynomial acting over interatomic distances r where R1 < r
< Rcoul and is zero otherwise, Rcoul being the cutoff radius.36

R1 is zero for shift and corresponds to the switch-on distance
for the switch method (in this study R1 ) 0.8 nm and Rcoul

) 1.2 nm, more details on the simulation parameters follow
in the next paragraphs). The polynomial is constructed so
that S(r1) ) S′(r1) ) Ft(rc) ) Ft′(rc) ) 0. The switch, shift,

RF, and Coulomb functions are shown in Figure 1. The
switch electrostatics was immediately found to produce
severe artifacts, including a strong suppression of the
fluctuations of the heavy atoms of the cellulose. Consequently
the switch simulation was not further considered for detailed
analysis. We suspect the switch-induced errors to have been
enhanced by the periodicity in the fibril.

In the so-called “atom-based” cutoff, the electrostatic
interactions between atoms that are separated by less than
the cutoff distance, are explicitly calculated. Some MD codes,
such as CHARMM37 and GROMACS4 but not NAMD,3

subdivide molecules into neutral “charge groups”. These
charge groups are composed of a small number of covalently
bonded atoms, such as a methyl group or the HO-C-H
moiety of cellulose (see Figure 7). A group-based cutoff can
then be defined in which the electrostatic interactions between
all atoms belonging to two “charge groups” are calculated
explicitly, as long as the geometric centers of the two groups
are separated by less than the cutoff distance.

The introduction of the cutoff distance, rc, is accompanied
by a meaningful reduction in the computational cost of the
electrostatics only if the list of atoms that are separated by
less than the cutoff distance is not calculated at every step.
A list of neighbor atoms is created containing all pairs
separated by the neighbor list distance, Rne, which is greater
than the cutoff distance rc. The list of neighbors is calculated
and updated after nlist steps, with nlist usually taking values
between 10 and 24. The neighbor search distance, Rne, must
be large enough to ensure that undesirable events in which
atoms jump abruptly in or out of another atom’s cutoff sphere
do not occur. This would happen, for example, if two atoms
are initially separated by > Rne, but after the nlist simulation
steps move significantly closer, to a distance < rc.

The crystal structure of the I� allomorph of cellulose38 was
used. This cellulose structure has two chains per triclinic
unit cell, which will be referred to as the “origin” and the
“center” chains. The shape of the fiber was hexagonal.39

Figure 2 shows structural details of the model. Details on
the models of the lignin molecules are presented elsewhere.40

For the simulations in which the effects of varying the
electrostatic model were examined, the cellulose contained
80 monomers per chain (36 chains) and was solvated with
70 656 TIP3P41 water molecules, producing a model totaling
272 556 atoms. A triclinic box was used with a 60° angle
between the two short box vectors. The systems were
equilibrated for 1ns and then simulated for 20 ns with a time
step of 2 fs. For each simulation setup, five simulations with
different initial velocities were run. Neighbor searching was
performed every 10 steps. All bonds were constrained using
LINCS42 (order: 3, iterations: 2). Temperature coupling was
performed with the Nosé-Hoover43 algorithm (τ ) 1ps)
during equilibration and the Berendsen44 algorithm (τ )
0.1ps) during production. Pressure coupling was performed
with the Berendsen algorithm (semi-isotropic, τ ) 4 ps)
during equilibration and the Parrinello-Rahman45 (isotropic,
τ ) 4 ps) algorithm during production.

For all lignocellulose simulations with the RF, a dielectric
constant of ε ) ∞ and a group-based cutoff were employed
with the so-called reaction field-zero method, which uses

Table 1. Sets of Benchmark Simulations Performeda

simulation index electrostatic treatment

1 PME with switch
2 PME with cutoff
3 RF
4 shift

a Each set comprises five 20 ns trajectories initiated from the
same structure but with different initial velocity distribution.

Figure 1. Coulomb force as a function of the distance
between opposite charges. Coulomb is the Coulombic force
without modification. RF is the reaction field with ε ) ∞ outside
the cutoff radius. For RF78.5, ε ) 78.5 outside the cutoff
radius. Shift and switch are computed as described in the user
manual of GROMACS.36 The switch distance after which the
Coulomb function is altered is 1nm.

Vrf ) (1 + (ε - 1)r3

(2ε + 1)rc
3)r-1 - 3

ε
rc(2ε + 1)

(1)
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spline interpolated tables instead of the analytical expres-
sion.36 For the RF, shift, and PME with switch runs a
neighbor list-search distance of 1.5 nm, a electrostatic and
VDW cutoff of 1.2 nm, and a switch distance of 0.8 nm
were used. For PME without switch a neighbor list-search
distance of 1.2 nm, a electrostatic cutoff of 1.2 nm, a VDW
cutoff of 1.0 nm, and a VDW switch distance of 0.8 nm
were used.

In a first analysis step, the simulations were inspected
visually. This inspection showed that a strong artifact can
arise in the case where only a small buffer region is employed
between the cutoff radius and the neighbor list-search
distance. To determine the optimal width of the buffer region,
a series of simulations was performed varying the width from
0 to 0.3 nm in 0.1nm steps. Simulations using non-PME
electrostatics and buffer regionsof <0.3 nm exhibited artificial
deterministic linear translation of whole cellulose fibers along
their axes with a speed of ∼1m/s. Thus, for all further
analysis, a buffer region of 0.3 nm was used for non-PME
electrostatics.

For the supercomputing performance comparisons, a
system was constructed of lignocellulosic biomass containing
52 lignin molecules each with 61 monomers, the same
cellulose fibril as described above and 1 037 585 TIP3P water
molecules, totaling 3 316 463 (or 3.3 million) atoms. All
simulation settings, apart from bond constraints, were the
same as the RF settings for cellulose given above. All bonds
involving hydrogens were constrained with LINCS46 (order:
4, iterations: 1). For the sole purpose of extending the scaling
tests to a larger system, an additional model system contain-
ing 64 000 dipeptide molecules (GLY-PRO) and 1 280 000
water molecules, totaling 5 376 000 atoms, was also con-
structed. The system was simulated with the same protocol
and parameters as the 3.3 million atom lignocellulose system.
The detailed system setup is described elsewhere.47 For the
PME simulations in Figure 9, the NAMD multiple time step
method was used, in which the long-range electrostatics is
computed only every third step and, in addition, a smaller
buffer was used.

Topologies were generated in CHARMM48 and converted
using a locally modified version of psfgen49 (see Supporting
Information for details). The correctness of the converted
topology and force field was checked by comparison with
CHARMM and NAMD (see Supporting Information). All
analysis was performed using the tools provided by
GROMACS.50,51 The NAMD trajectories were converted for
analysis to GROMACS format and reordered with catdcd.52

Molecular drawings were made with QuteMol.53

2.2. Supercomputer Performance Measurements. The
performance tests were run on JaguarPF, a Cray XT5
massively parallel processing (MPP) computer with over
150 000 Opteron 2.3 GHz cores. JaguarPF has a LINPACK
performance of over one petaflop and a SeaStar 2+ intercon-
nect. The internal timings of GROMACS 4.0.4 and NAMD
(CVS version) were used. Both CHARM++ and NAMD
were built with the Cray-XT4 optimized settings available
in the source code. For all tests, all eight cores of each node
were used. No special benchmark partition was setup, and
as a result, the benchmarks were subject to the regular
placement of nodes by the scheduler. The Cray-XT scheduler
does not allow consecutive blocks of nodes to be allocated,
and the run time varied depending on the node placement.
The IO time was included in the benchmarks.

For RF with GROMACS, all parameters were as described
in the system setup Section 2.1. For PME with NAMD, a
neighbor list-search distance of 1.35 nm, a multiple time step
method with a full electrostatic frequency of 3 and a steps-
per-cycle of 24, and a grid spacing of 0.13 nm was used
(this relatively large spacing was used to ensure good
performance by the PME/NAMD simulation). A variation
was observed in the speed (in ns/day) of the benchmark runs
that used the same number of cores. This variation was
caused by the reading input/writing output (IO time) and the
task placement.

The IO time was found to be impacted by latency problems
caused by Lustre scaling (due possibly to the meta data
server). The currently available profiling data do not con-
clusively identify the relative contribution of Lustre and node
placement to the variation of the performance. We have
chosen to consider only the best three times (although all
12 times are given in the Supporting Information), as the
best three times reflect the optimal performance of the Cray
XT5, i.e., when the Lustre system and node placement do
not impede the performance of the MD codes. Each MD
run was limited to a wall clock time of 10 min. For the
thermostat and barostat, the total energy and virial were
computed every 10 steps in RF/GROMACS and every 24
steps in PME/NAMD. The calculation of the total energy/
virial requires a MPI_Allreduce communication, and there-
fore, more frequent updates would limit the scaling. For the
domain decomposition (DD), the 12 288 cores were arranged
in a 3D 96 × 16 × 8 grid. The load balancing works by
changing the volume of the DD cells relative to each other.
For the minimum DD cell length, 0.77, 0.68, and 0.34 of
the average length were used for X, Y, and Z respectively.

Figure 2. The model of the simulated cellulose fibril showing: (a) the cross-section and (b) a side perspective. The fibril consists
of 18 origin chains (blue) and 18 center chains (green). The axes of the unit cell are also indicated.
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3. Results

3.1. Comparison of Simulations with Different Electro-
static Methods. As will be discussed in Section 3.2, fast MD
simulation of the 3.3 million atom lignocellulose system can
be obtained using the RF method for treating the electrostatic
interactions. This section is devoted to examining the
accuracy of RF for the biomass test systems. For this,
structural and dynamical properties are compared in simula-
tions using different electrostatic methods for both the solvent
and the solute. The particular choice of properties for
comparison in the case of the solute is based on their
structural importance and anticipated sensitivity to possible
electrostatic artifacts.

In order to investigate the dependence of dynamical
properties on the chosen electrostatics method, the set of MD
simulations listed in Table 1 was analyzed. The system of a
cellulose fibril in aqueous solution, i.e. without lignin, was
chosen for this comparison. Lignin was omitted since
significantly longer trajectories would be required for the
convergence of dynamical properties due to its amorphous
character, thus, complicating the comparison.

Quantities were calculated that were expected to be
particularly sensitive to electrostatics. Two functions probing
the electrostatic-induced structure and dynamics are the total
dipole moment of the fiber and the Kirkwood function
between the dipoles of different chains, the latter providing
information on the distance-dependent correlation of mo-
lecular dipoles. Finally, three specific dihedral angles were
selected for comparison due to their structural importance
in cellulose.

3.1.1. SolVent. The applicability of the reaction field
method for pure water has been discussed in literature (see
for example refs 22, 26, and 28). Different implementation
schemes exist which can be classified into two groups,
namely atom and charge-group based truncation methods.

A suitable function for probing the structural artifacts of
water is the Kirkwood factor, Gk(r), which is given by54

where µbi and µbj are the electric dipole moments of water
molecules i and j, respectively. Gk(r) is a measure for the
orientational ordering of the dipole moments of the solvent
molecules. In earlier work, significant discrepancies were
found between PME and RF78.5 (i.e., RF with εr ) 78.5)
in the simulation of bulk water.26,28 We, therefore, investi-
gated the cause of these discrepancies. To reproduce the
earlier results, a simulation setup of bulk water as described
in ref 28 was constructed. The resulting Kirkwood factor
for water is shown in Figure 3 for four distinct electrostatic
treatments with this setup: (a) PME, (b) RF with an infinite
dielectric constant ε and group-based cutoff, termed RF in
Figure 3, (c) RF with ε ) 78.5 and group-based cutoff and
(d) RF with ε ) 78.5 and an atom-based cutoff. For RF (b)
interpolation of tabulated values was used and for RF78.5
(c and d) the analytical expression of RF was used directly.

The RF method with ε ) ∞ shows the best overall
agreement with PME in terms the of residual difference. For

group-based cutoff RF78.5, the Kirkwood function is very
different from PME with a deep minimum around the cutoff
distance, agreeing with the previous observations.26,28 We
performed several additional simulations (not shown) to find
the reason for this difference of Gk(r) for RF78.5. It turns
out that the discrepancy arises from the combination of the
neighbor-list search with the behavior of the analytical RF
expression (eq 1). It is possible to simulate with an atom-
based neighbor list, by splitting the water molecule into three
charge groups, as proposed originally in ref 22. Using this
atom-based cutoff and updating the neighbor list at each step,
the disagreement between RF78.5 and PME can be reduced,
yielding a general agreement on the shape of the curve.
However, in what follows, all lignocellulose simulations were
performed using an infinite dielectric constant and a group-
based cutoff.

GROMACS calculates the electrostatic interaction for all
atom pairs included in the neighbor list. The distance between
atoms for which the electrostatic interaction is calculated can
be larger than the cutoff distance in two cases: for a group-
based cutoff or a neighbor-list search with frequencies <1/
step. In the former case, only the group center needs to be
within the cutoff distance for all atoms of the group to be
included in the list. In the latter, it is sufficient for the atom
to be within the distance at the time of the neighbor-list
search, even if it moves outside afterward. The analytical
equation (eq 1) of RF78.5 is negative for distances longer
than the cutoff distance. Consequently, we conclude that the
earlier observed difference between RF and PME26,28 arises
from the negative interaction of atom pairs separated by
distances longer than the cutoff distance, caused by the
group-based neighbor-list search. Using a spline interpolated
table for RF78.5 instead of the analytical expression, as
reaction field-zero does by default, allows the interaction for
these distances to be set to zero.

3.1.2. Solute/Cellulose. Cellulose was chosen as a bench-
mark for the solute since it has a high degree of order and,

Gk(r) ) ∑
rij<r

µbi µbj

|µb|2
(2)

Figure 3. Distance-dependent Kirkwood factor (eq 2) for (a)
PME, (b) RF with ε ) ∞ and group-based cutoff, (c) RF with
ε ) 78.5 and group-based cutoff, and (d) ε ) 78.5 and atom-
based cutoff (where ε is the dielectric constant outside the
cutoff radius). RF 78.5 with group-based cutoff produces
artifacts that are corrected by using an atom based cutoff and
updating the neighbor list at each step.
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therefore, is anticipated to be adequately sampled over the
time scales probed.

3.1.3. Dipole Correlation. In the first comparison, shown
in Figure 4, the Kirkwood factor, Gk(r), of cellulose is
presented. The form of the Kirkwood factor corresponds to
that given by Equation 2,54 where µbi and µbj are now the
electric dipole moments of glucose chains i and j, respec-
tively, and rij then becomes the distance between their centers
of mass. In this way, Gk(r) is a measure for the orientational
ordering of the dipole moments of the cellulose chains in
the fibril. It is clear from Figure 4 that the RF method is in
very good agreement with the PME method, contrasting with
shift in which Gk(r) is much lower. The spread of the shift
profiles arises from differences between the individual
simulations in the set.

3.1.4. Total Dipole Moment. A further useful test for global
changes in dipolar correlation is the total dipole moment for a
given macromolecule. Therefore, this should serve as a further
benchmark for the accuracy of the electrostatic methods. As
seen in Figure 5, the conclusions drawn from this comparison
agree with those from the Kirkwood G factor: RF and PME
show similar features (RF yielding a total dipole moment about
1% lower than PME), whereas the shift method results in a
50% lower magnitude and has slower convergence.

3.1.5. RMSF and RMSD. General dynamical properties
examined include the root-mean-squared fluctuations (RMSF)
and the modes resulting from principal component analysis
(PCA). The RMSF is a measure of the fluctuations of atoms
around their equilibrium structure, and PCA provides infor-
mation on the major collective modes of motion. Both
properties are commonly calculated in biomolecular simula-
tions and were, therefore, checked for reproducibility.

Figure 6 shows the difference between the time-averaged
RMSF of each atom in the cellulose fibril computed with the
RF method minus the RMSF computed with the PME method
(∆(RMSF)RF). Shown also is the RMSF difference between the
shift and PME methods (∆(RMSF)shift). The overall good
agreement between the RF and the PME is observed once more:
the RF enhances fluctuations slightly (with a more pronounced
effect for the atomic indices in the range 35 000-40 000), but

the shift leads to a much stronger deviation from the PME
behavior. In contrast, the rmsd as a function of time, shown in
the Supporting Information (Figure S1), shows little difference
between the electrostatic treatments. Also in the Supporting
Information it is shown that the amplitudes of the eigenvalues
obtained from the PCA of the trajectories using the three
methods are similar.

3.1.6. Dihedral Angles. The final test focuses on important
local structural features of crystalline cellulose. Two sets of
dihedrals are examined, as indicated in Figure 7. The particular
relation of these dihedrals with respect to cellulose structure is
discussed in detail in MD studies of cellulose.55,56 The ω
dihedral (O6-C6-C5-C4) determines the configuration of the
primary alcohol group,55 which affects the hydrogen bonding
between adjacent glucose chains within a cellulose fiber and,
therefore, is a main determinant for the crystalline phase. When
the alcohol lies on the plane of the five-membered glucose ring
(ω ) -60° or ω ) 180°), single monomers preferentially
hydrogen bond to partners within the (010) crystal plane,
whereas when the primary alcohol points perpendicular to the
five-membered ring plane (ω ) 60°) intersheet hydrogen bonds
are formed. The Φ and Ψ angles (O5-C1-O1-C4*/
C1-O1-C4*-O5*, where * marks atoms on the succeeding
monomer) describe the twisting between two consecutive
monomers and probe for the frustration in twisting behavior of
isolated glucose chains induced by the fiber structure. Unlike
the previous properties, these dihedral measures were not
necessarily expected to be especially sensitive to differences in
electrostatic treatment. They do, however, play an important
role in the structure of cellulose. It is, therefore, of interest to
determine weather their PMF are not significantly affected by
variation of the electrostatic treatment.

The PMFs were calculated according to the equation:

where θ is the dihedral angle in question, and P (θ) is the
associated probability distribution. Since the I� crystal phase
of cellulose has two distinct chains per unit cell, a total of
six PMF calculations was performed: for each of the three

Figure 4. Distance-dependent Kirkwood factor (see eq 2).
The two sets performed with PME are shown as indistinguish-
able black/solid lines. The RF set is red/dashed lines, and
the shift set is blue/dotted lines. The profiles of simulations
with PME and RF are almost identical, implying very good
agreement between the two methods.

Figure 5. Total dipole moment of the cellulose fibril plotted.
The two sets performed with PME are indistinguishable black/
solid lines, the RF set in red/dashed lines, and the shift set in
blue/dotted lines. The profiles of simulations with PME and
RF are almost identical.

W(θ) ) -kBT log P(θ), θ ) {ω, Φ, Ψ} (3)
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dihedrals (ω, Φ, and Ψ), the PMF was calculated for the
center and the origin chains. The resulting plots are shown
in Figure 8.

The PMFs for the primary alcohol dihedrals follow the
same trend as the previous benchmarks, i.e., there is good
agreement between the RF and the PME methods but not
with the shift method. We note that comparison of the
profiles is only meaningful at the relatively low-energy
regions that are adequately sampled. In the PMF for the
origin chains in 8a, the RF and the PME profiles are almost
indistinguishable. However, with the shift method the global
minimum moves from 70° to 50°. The difference between
the shift and the PME is even more pronounced in the PMF
for the center chains (8b), for which the shift introduces a
new minimum at -80°, which is only a weak shoulder in
the PME calculations.

It is of interest that in the crystal structure of cellulose all
primary alcohols have ω ) -60°.38 The transition from ω
) -60° to ω ) 180° observed during the MD simulation is
as expected and has been reported in previous MD studies.55

The origin of the transition is that the force field employed33

was parametrized for glucose in water and favors the ω )
180° conformation. Curiously, the shift method appears to
“correct” this shortcoming of the force field, and the ω )
-60° conformation is populated in the center chains.
However, this effect is probably a cancellation of errors. The
present test concerns not the accuracy of the force field with
respect to experiment, but rather a comparison between the
methods for treating long-range electrostatics.

The PMF for the Φ and Ψ dihedrals shows little variation
between the simulations using the three electrostatic treat-
ments and is given in the Supporting Information, Figures
S3 and S4.

In summary, the RF electrostatics method is found to
accurately reproduce simulation results performed with the
widely used PME method. From the set of tests performed,
it can be, therefore, inferred that no obvious artifacts are
introduced by the proposed RF methodology when applied
to the simulation of systems with no net charges.

3.2. Scaling. The parallel efficiency of the RF MD
simulation is now evaluated by considering strong scaling.
In strong scaling, the system size (i.e., here, the number of
atoms in the system) is held constant, while the number of
cores used varies. The strong scaling of the 3.3 million atom
MD simulation of lignocellulose, using the RF on the ORNL
“Jaguar” Cray XT5, is shown in Figure 9. For this system,
GROMACS scales well to the 12 288 cores and achieves
27.5 ns/day, running at 16.9TFlops. This performance is
made possible by the good scaling of the RF, and a fast
particle-particle streaming SIMD (single instruction, mul-
tiple data) extensions (SSE) compute kernel running for the
lignocellulose system at 4GFlops per opteron core. The RF
also improves the parallel efficiency of the MD simulation
of even larger systems. Figure 10 shows the strong scaling
of a 5.4 million atom peptide solution test system. The same
production of 28 ns/day is obtained, this time scaling well
to 30k cores.

The load balancing is most critical for the scaling to several
thousand cores, as the load per volume of each domain
decomposition cell is not equal. The primary cause of load
imbalance is the difference in computational speed between
the solvent and the solute. The higher speed for the solvent
arises from a specially optimized water compute kernel and
fewer van der Waals interactions for water. We implemented
a new way of performing the dynamical load balancing in
GROMACS, detailed in the Supporting Information, improv-
ing the average load imbalance from 200 to 75% and leading
to an overall 44% improvement of the performance. This
improvement resulted in the code obtaining the same
production (in ns/day) using half the cores that were used

Figure 6. ∆(RMSF)RF and ∆(RMSF)shift as defined in Section 3.1.2 for all atoms in the cellulose fibril (atomic index on x-
axis).

Figure 7. Sketch of cellobiose, the repeating unit of cellulose,
indicating the three important dihedrals: the primary alcohol
ω dihedral and the Ψ and Φ dihedrals.
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prior to the improvement. The new implementation of the
load balancing is now part of the GIT version of the
GROMACS and will also be included in GROMACS 4.1.

To highlight the computational benefit of using the RF,
the scaling of a simulation of the 3.3 million lignocellulose
system using the PME method is also shown in Figure 9.
The PME simulation was run using NAMD, since this MD
application is known to have good parallel efficiency.57 To
ensure a “fair” comparison between the two electrostatics
methods, some of the parameters of the PME simulation were
adjusted to improve its performance (standard 2 fs time step
for RF and 6 fs full electrostatics time step and neighbor-
list distance update for PME, see Section 2.1 for details). In
particular, the reason the RF calculation is faster than the
PME at low levels of parallelization is that, on a single
processor, the time per step for GROMACS with RF is

shorter than for NAMD with PME. However, we stress that
the aim of this benchmark is a comparison between the
electrostatic treatments and not between the different MD
applications. Two different applications were used simply
because a direct comparison of simulations using different
electrostatics methods with one application is presently not
possible: NAMD, which is presently the most scalable code
using PME on Cray XT, does not have RF implemented,
and GROMACS does not yet have an efficiently scaling PME
implemented, with the consequence that PME calculations
using GROMACS currently scale up to less than 1 000 cores
for large systems (for more details see the Supporting
Information).

The significant difference in the parallel efficiency of the
PME and the RF electrostatics methods, demonstrated in
Figure 9, can be understood by examining the weak scaling
of the parallel FFT required for PME, shown in Figure 11.
In weak scaling, the ratio of the problem size to the number
of cores used in the simulation is held constant. The FFT is
a new and improved implementation, the technical details
of which are presented in Supporting Information, A.3. The
Inset of Figure 11 shows that the new FFT is faster than the
FFTs from LAMMPS-FFT,58 FFTE 4.0,59 and FFTW 3.2.60

In ideal weak scaling, the time, tf, required to perform one

Figure 8. Potentials of mean force for the primary alcohol dihedral ω ) O6-C6-C5-C4: (a) results from all 36 origin chains
and (b) results from all 36 center chains.

Figure 9. Strong scaling of 3.3 million atom biomass system
on Jaguar Cray XT5 with RF. With 12 288 cores the simulation
produces 27.5 ns/day and runs at 16.9TFlops. As a compari-
son, the performance of PME is shown.

Figure 10. Strong scaling of 5.4 million atom system on
Jaguar Cray XT5. With 30 720 cores, 28 ns/day and 33TFlops
are achieved.

Figure 11. Weak scaling of complex-to-complex FFT on Cray
XT5 with FFT implemented as described in Supporting
Information, A.3. The 3.3 million atom system requires the
588 × 128 × 128 FFT. The time required to compute one
FFT step is represented by tf.
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FFT step, indicated by the height of the bars in Figure 11,
would remain constant as the number of cores used in the
calculation increases from 16 to 38 400. In practice, however,
Figure 11 shows that parallel FFT calculations show poor
weak scaling, with tf increasing dramatically on a large
number of cores. This increase is a result of the large increase
of the required communication time (MPI-1 + MPI-2 in
Figure 11). Since, in weak scaling, the number of cores is
proportional to the size of the simulated system, Figure 11
demonstrates that the PME method becomes computationally
inefficient for large systems.

4. Discussion

This paper presents a strategy for efficient atomistic MD
scaling of biological systems on massively parallel super-
computers. The key element of the strategy is to compute
the long-range electrostatic interactions with the reaction field
(RF) method.

In recent years many simulations have been performed
using the PME method. This popularity can be attributed to
its high accuracy and fast performance. The most efficient
way to perform PME calculations is to balance the work so
that one-third to one-fourth of the total CPU-time is spent
on the PME part.4 Hence, removing the PME part improves
the overall performance of MD calculations by only
∼25-33%. However, since RF requires a longer neighbor
list, as explained in detail previously, the amount of work
required for the direct part increases. Since the number of
interactions within the neighbor-list distance increases with
the volume and, thus, the third power of the radius, the work
increases by 2.0 times (or 3.4 times) when increasing the
distance from 1.0 to 1.2 nm (or 1.5 nm). This assumes all
interactions in the neighbor-list distance are calculated, as
is currently implemented in GROMACS, because selecting
interactions is expensive on modern CPU architectures. Thus,
when comparing PME with a shorter neighbor list to RF
with a longer neighbor list (to ensure accurate results), PME
is faster on a small number of processors. This picture,
however, changes dramatically when MD simulation is run
on a large number of processors, where the PME method
displays inherent scaling problems.

The scaling of MD codes is restricted by global com-
munications, i.e., instances when all computer nodes ex-
change information. Although an improvement in the FFT
part of PME speed is reported in the Supporting Information,
MD simulations using PME still face weak-scaling problems.
While for small systems, containing less than 100k atoms,
simulations achieving over 100 ns/day are currently pos-
sible,4,6,61,62 for larger systems the global communication
for the FFT (MPI_Alltoall) takes longer than the time
available for one time step on a large number of cores. This
problem worsens as the size of the system increases further,
as the MPI_Alltoall global communication does not exhibit
efficient weak scaling.

We stress that Figure 9 compares the parallel efficiency
of the RF and the PME methods and does not compare
different MD applications. As shown in Figures 9 and 10,
the use of the RF method greatly improves the strong scaling
of million-atom systems, to the point where 28 ns/day are

obtained when a 5.4 million atom system is run on 30k cores
with a 2 fs time step. Using RF for the electrostatics
calculation removes the biggest inherent limitation of the
scaling of MD. While all (i.e., irrespective of the method of
treating the electrostatics) MD simulations in the NPT
ensemble require one global communication (a MPI_Allre-
duce for a barostat and a global thermostat), this com-
munication is not necessary at each step. The FFT part of
PME, however, requires two additional global MPI_Alltoall
communications, which take more time than MPI_Allreduce
and do not exhibit good weak scaling, see Figure 11.
Consequently, the performance, in ns/day, for large systems
is inherently limited with PME.

The RF method has been employed in numerous
studies,14,22-30 and there has been some validation of its use
on biological systems, including systems with net
charges.14,23-25,27 However, some of these earlier studies
involved short (∼5 ns) trajectories, and therefore, it cannot
be guaranteed that the RF does not induce a significant bias
when dealing with longer time scale dynamics. Further
benchmarks are needed to examine the applicability of the
RF method for biomolecular systems containing charged
groups. Indeed, both the gains in computational efficiency
and the possible sources of error arise from the implicit
treatment of the Coulomb interaction for atoms separated
more than the cutoff distance.

In the present work, the RF method was employed using
an infinite dielectric constant outside the cutoff sphere, the
benefit of this approach being that the Coulomb force is
continuous (and equal to zero) beyond the cutoff distance.
In the present study of systems that do not contain net
charges, the RF does not appear to compromise the accuracy
of MD simulation of the test system under study. This
conclusion is drawn after a series of tests in which simula-
tions were performed with different methods for treating the
long-range electrostatics interactions. The RF and shift/switch
methods are similar in the sense that they do not consider
explicitly electrostatic interactions between atoms separated
by more than the cutoff distance. Consequently, one might
have expected the RF and shift methods to yield similar
results. However, our findings suggest a different picture:
all benchmarks show very good agreement between RF and
PME, while the shift method exhibits several significant
artifacts. Also the RF and PME simulations are in very good
agreement in tests on bulk water.

In the near future, it is anticipated that the performance
of MD using RF might be improved to over 60 ns/day for
million-atom systems by using threads and asynchronous
communication with neutral territory for improving parallel
efficiency. In further benchmarks using the RF together with
all-bond constraints and virtual sites, which allow removal
of hydrogen atom degrees of freedom enabling integration
time steps up to 5 fs,4 we found that 38 ns/day is obtained
when the 5.4-million atom system is run on 15 360 cores
(data not shown). Since PME simulations are limited by the
time step of the full electrostatics (e.g., 6 fs in the
comparison), a longer time step for the short-range interaction
does not improve the performance of PME as it would for
RF. Thus for large systems, a significant improvement in
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performance by employing longer time steps is more easily
achieved using RF for the electrostatics. However, we stress
that carefully designed benchmarks should first be performed
before 5 fs time step simulations are routinely applied to
biomolecular systems.

This work focuses on supercomputer architectures similar
to the Cray XT5. In the future accelerators (GPU, Cell),
special purpose and multicore clusters and MPP are likely
to become competitive with general purpose supercomputers.
For example, recently the special purpose computer Anton
was able to simulate a 23k atom protein with a speed of
over 10 µs/day63 using Gaussian split Ewald.64 Furthermore,
accelerators have shown very good performance on MD with
small numbers of atoms and processors.65,66 For the chal-
lenging task of using accelerators in highly parallel computers
in ref 66, 2 ns/day were obtained for a one million atom
system.

Other possibilities for improving the parallel performance
of electrostatics are to employ multigrid64,67-69 or multipole
methods.70 These algorithms are faster for very large systems
because the work scales as O(N), compared to O(N log N)
for PME. A larger prefactor, however, can make these
methods slower for small systems. A theoretical estimate has
predicted the real-space Gaussian split Ewald multigrid
method to be faster than the reciprocal FFT method (very
similar to PME) for systems larger than ∼30 000 atoms.64

For the protein ApoA-I (with 92 224 atoms), it has been
shown that the multigrid method implemented in PROTO
MOL is as fast the PME in NAMD 2.5 (tested up to 66
processors).68

Some critical biological phenomena, such as ligand binding
and the folding of small proteins, require the simulation of
relatively small systems (e.g., ∼104 atoms or ∼1-10 nm
length scales) for relatively long time scales (e.g., 103 s).
For this type of application the strategy described here is
not applicable. Rather, the present approach permits efficient
atomistic MD simulation of larger, multimillion-atom bio-
molecular systems that do not contain net charges (i.e., on a
length scale ∼100 nm) for times of ∼30 ns/day. Using the
proposed strategy simulations of these large systems for time
scales approaching the microsecond would now seem to be
within reach on the Cray XT5. We anticipate that a wealth
of structural and dynamical information of biological im-
portance will, thus, be revealed.
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Abstract: We present a molecular mechanical force field for polypeptides and proteins involving
the electronic polarization effect described with the charge response kernel. All of the electrostatic
parameters for 20 amino acids are obtained by ab initio electronic structure calculations and
combined with the AMBER99 force field. The refittings of dihedral angle parameters in the
torsional potentials are performed so as to reproduce the ab initio optimized geometries and
relative energies for the conformers of dipeptides. The present force field is applied to molecular
dynamics simulation calculations of the extended alanine tetra and cyclic pentapeptides in
aqueous solution. The infrared spectra are calculated in order to analyze the charge polarization
effect on the spectral profiles.

1. Introduction

Molecular dynamics (MD) simulation is a powerful means
for studying statistical and dynamic properties of biological
systems. In these studies, the reliability of calculated results
is governed by the quality of employed molecular mechanical
(MM) force fields. The standard MM force fields such as
AMBER,1-3 CHARMM,4-6 GROMOS,7-9 and OPLS10-12

have been developed and widely used for MD simulations
of proteins.

In order to construct more realistic force fields, the charge
polarizable models have been proposed in recent years13-22

and applied to various biological systems.23-27 The charge
polarization induced by intra- or intermolecular interaction
has been represented by the site point dipole,13-15 fluctuating
charge,16-18 and Drude oscillator19-21 methods. Thus, the
AMBER, CHARMM, and OPLS force fields have been
refined with combining the polarizable electrostatic inter-
action.14,15,17,21

In the present work, we develop a charge-polarizable MM
model for peptides and proteins based on the charge response
kernel (CRK) method.28-31 The advantage of the CRK model
is to be able to describe the nonlocal charge polarization
through the off-diagonal elements, which is important for
representing the charge migration through peptide bonds and

aromatic residues. It is also noted that the CRK matrix
elements can be directly determined by ab inito electronic
structure calculations for isolated molecules. We employ the
second-order Møller-Plesset perturbation (MP2) method for
calculating the CRK matrices in this study.31

The CRK model has been applied to water, aprotic
solvents, and organic radicals, and the infrared (IR) and
Raman spectra as well as the diffusion constants in the liquid
phase have been calculated.31-33 Although the applications
of the CRK model have been limited to small molecules so
far, we extend it for use with polypeptides and proteins in
the present study. For this purpose, we devise a method to
construct the CRK matrix of protein using the matrices of
fragment amino acids.

We combine the present CRK model with the AMBER993

potential functions for bond stretching, bending, and torsional
and nonbonding van der Waals interactions. As is known,
the torsional potentials are strongly correlated to the in-
tramolecular electrostatic interaction and play an important
role in determining the conformational stability.34,35 We
therefore readjust the parameters of torsional potentials so
as to reproduce the ab initio geometries and relative energies
for various conformers of dipeptides. Such a procedure was
already employed by Kaminski et al.34 for improving the
OPLS-AA force field, which shows good performance for
20 amino acid dipeptides, and by Wang et al.35 in construct-* Corresponding author e-mail: shigeki@kuchem.kyoto-u.ac.jp.
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ing a polarizable AMBER force field for alanine dipeptide
based on the site point dipole model.

To assess the utility of the present CRK-based MM model,
we carry out MD calculations for the extended alanine
tetrapeptide and cyclic pentapeptide in aqueous solution.
Alanine is the most representative amino acid because of its
simplicity and common characteristics with 20 amino acids.
Actually, alanine polypeptides have been the subject of many
theoretical studies, including the electronic structure and MD
simulation methods.36-41 We calculate the IR spectra of the
extended and cyclic peptides because the charge distribution
induced by the intra- and intermolecular electrostatic potential
is expected to be different between the two forms. The IR
spectra for amide modes have been investigated, and the
effect of hydrogen bonding on the spectral profiles has been
examined.42-48 Bouř and Keidering47 carried out MD
simulations to calculate the IR intensity of the amide I band
for linear alanine pentapeptide in aqueous solution. More
recently, Torii48 calculated the IR and Raman spectra of
tetrapeptide in aqueous solution and analyzed the profile of
the amide I band in detail. Here, we examine the polarization
effects on the calculated spectra by decomposing the spectral
shape into the contributions from the intra- and intermo-
lecular electrostatic interaction.

In the next section, we construct the CRK-based polariz-
able MM model for peptides and proteins combined with
the AMBER force field. The electrostatic parameters are
determined for 20 amino acids and terminal species, referring
to the results of ab initio electronic structure calculations.
We optimize the Fourier coefficients in dihedral angle terms
so as to reproduce the ab initio relative energies and
geometries for the conformers of dipeptides. The results are
presented for alanine di- and tetrapeptide in section 2, and
for the other dipeptides in the Supporting Information. In
section 3, we apply the present force field to MD simulations
of the extended alanine tetrapeptide and cyclic pentapeptide
in aqueous solution. The effect of intra- and intermolecular
hydrogen bonding on the spectral profiles is discussed. The
concluding remarks of the present work are summarized in
section 4.

2. Force Field

2.1. Electrostatic Potential Function. In the present
polarizable force field for polypeptide with the CRK model,
the partial charge QRI at the atomic site R in the Ith amino
acid unit is defined by

where Nu is the number of the amino acid units in the
polypeptide and NJ is the number of the atomic sites in
the unit J. QRI

0 is the reference charge initially assigned on
the atomic site (see Figure 1). The induced charge is given
by the second term of eq 1, where KRI, �J is the CRK matrix
element and V�J

eff is the effective electrostatic potential acting
on the � site in the Jth unit. Note that the CRK matrix is
related to the polarizability as

where Rm, RI is the Cartesian coordinate of the atomic site R
in the unit I with m ) x, y, z.

In the conventional CRK approach, the reference charge
QRI

0 is defined to be the atomic charge of isolated molecule,
and only the intermolecular contribution to the electrostatic
potential is taken into account for calculating V�J

eff. However,
it is impractical to employ such a method to represent the
atomic site charges of the whole polypeptide because the
charges are affected by the intramolecular hydrogen bonding
and thus strongly depend on the conformation of the
polypeptide. In order to avoid such a difficulty, we obtained
the atomic charges for each amino acid unit in the isolated
condition and assigned them to the reference charges. The
charge redistribution due to the interaction between different
amino acid units is thus given by the second term of eq 1.

The CRK matrix of the whole polypeptide was also
constructed from the matrices obtained for the constituent
amino acids. The CRK matrix for glycine tripeptide was used
to represent the matrix elements corresponding to the amide
bond. Since the CRK matrix must have one zero eigenvalue

Figure 1. Illustration of electrostatic interactions. The interactions are classified into two patterns: interactions by the reference
charges in the nearest neighbor units and (ii) interactions, except for case i, by the polarized charges.
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with the eigenvector corresponding to the uniform potential,
we applied the projection operator P ) I - 1/Na1, with Na

being the number of total atomic sites in the polypeptide, as

where K̃ is the CRK matrix constructed from those of the
fragments. Here, I is the unit matrix and 1 is the matrix with
all elements of 1. With this operation, the total charge of
the polypeptide is conserved.

The effective electrostatic potential acting on the � site in
the Jth unit has both the intra- and intermolecular contribu-
tions as mentioned above. The intramolecular part is given
by

where the index L runs over all of the amino acid units except
for J and J ( 1, and f(|R�J - RγL|) is the damping function
introduced to attenuate the electrostatic potential at the short
range. We omitted the electrostatic contributions from the
sites in the nearest neighbor units because the sites in more
distant units become important in characterizing the confor-
mation of polypeptide. The site charges are determined so
as to satisfy eqs 1 and 4 simultaneously.

Using the intramolecular electrostatic potential defined by
eq 4, the electrostatic interaction part of the potential function
for an isolated polypeptide is written as

where the first term represents the interactions between the
reference charges on the nearest neighboring units. The factor
fRI, �J

0 is introduced to follow the interaction scheme in
AMBER; the 1-2 and 1-3 nonbonding interactions are
omitted, and the 1-4 interaction is estimated by multiplying
the factor of 1/1.2. The second term includes all of the
interactions between the amino acid units except for the
nearest neighbors. Note that the charge polarization effect
due to the intramolecular electrostatic interaction is incor-
porated in this term. Finally, the third term corresponds to
the electronic reorganization energy originated from the
charge polarization in the polypeptide.

We employed Thole’s damping function49 for f(R) in eqs
4 and 5,

with

Here, R is the distance between the atomic sites R and �,
and the critical distance S is determined by the factor A and
the atomic polarizability RR. We set the factor A to be 2.8,31,33

which was used for the intermolecular interaction in liquid
water and aprotic solvent systems, and the polarizalibities
as RH ) 0.514, RC ) 1.405, RCA ) 1.671, RCT ) 1.822, RN

) 1.105, RNA ) 1.296, RO ) 0.862, and RS ) 2.540 in
Å3.49,50 Here, the subscripts CA, CT, and NA mean the
carbonyl carbon, sp3 carbon, and amide nitrogen, respectively.

2.2. Electrostatic Parametrization. We carried out ab
initio calculations for 20 neutral and five charged amino acids
at the MP2 level of theory with the 6-31G** basis set. The
C-terminal N-methyl group (NME) and N-terminal acetyl
group (ACE) were also considered. In the calculations, both
the terminals of amino acid were blocked with methyl groups,
as shown in Figure 1 with the asterisk. However, the methyl
groups were replaced with the hydrogen atoms for relatively
large amino acids (i.e., arginine, lysine, phenylalanine,
tyrosine, and tryptophan) in order to reduce the calculation
cost.

We first performed the geometry optimizations for all of
the species at the MP2 level with the 6-31G** basis set. At
these optimized geometries, the electrostatic potential (ESP)
charges on the atomic sites were obtained by31

where EMP2 is the MP2 energy and VR is the electrostatic
potential acting on the site R. We modified the ESP charges
by imposing the following three conditions. First, the site
charges such as on the hydrogens of the methyl group and
the symmetrical carbons and hydrogens in the aromatic ring
were replaced with the averaged values. Second, the charges
in the amide part were taken from the averaged values of
glycine dipeptide at three stable conformers, C7, C5, and
R:51 -0.473 for N, 0.311 for H, 0.580 for C, and -0.500
for O. Finally, the charges of atoms in the side chain were
scaled so that the value of the total charge becomes an
integer, that is, 0 for neutral and (1 for charged amino acids,
under the condition that the charges of N, H, C, and O in
the amide part are fixed. The parameters for the terminal
capping groups, NME and ACE, were also determined by
taking the average of the charges at three conformers of
glycine dipeptide as in the case of the amide part. The
reference charges thus obtained are summarized in Tables
S1-S27 in the Supporting Information.

We also executed ab initio calculations to obtain the CRK
matrices of all of the species defined by31

The CRK matrix has large negative values at the diagonal
elements, and the magnitudes of off-diagonal elements
rapidly decrease with increasing the number of bonds
separating the two sites. Thus, the 1-4 elements become
negligibly smaller compared to the diagonal ones. We
therefore truncated the CRK matrices at the 1-3 elements
to reduce the conformational dependency. It is however noted
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that the elements beyond the 1-3 of the aromatic ring are
not small because of π conjugation and cannot be ignored.
For this reason, we retained all of the elements in the
aromatic ring for phenylalanine and tyrosine, as well as the
elements between the R carbon and aromatic sites for
tryptophan. All of the CRK matrices are listed in Tables
S1-S27 (Supporting Information). Figure 2 shows the
eigenvalues of truncated CRK matrices compared with the
original eigenvalues for a glycine dipeptide, and 19 neutral
and five charged amino acids, where we can see that the
truncated eigenvalues are very close to the original ones.

2.3. Parametrization of Dihedral Potential. The in-
tramolecular potential function for isolated polypeptide is
the same as the AMBER force field except for the electro-
static term UES,

Here, the first two terms represent the harmonic bond
stretching and bending motions, respectively. The third term
is the torsional potential written by the Fourier series. The
last two terms are the nonbonding van der Waals and
electrostatic interactions.

Since the stretching and bending terms are rather inde-
pendent of the electrostatic term, we adopted the same
parameters as those for AMBER99 for these terms. However,
the dihedral terms strongly correlate to the electrostatic term
and are responsible to the conformational stability. We
therefore reparametrized the torsion parameters Vn so as to
reproduce the relative energies and geometries of several
stable dipeptide conformers obtained with the ab inito
electronic structure calculations. In order to determine the
parameters for the backbone dihedral angles (φ, ψ), alanine
dipeptide was selected because the effect of the side chain
on the backbone conformation is small. We generated 1296

reference grid points in total (36 points are taken for each
dihedral angle) and performed ab initio calculations at the
MP2 level with the 6-31G** basis set. The ab initio
calculated quantum mechanical (QM) potential surface is
shown in Figure 3a as a function of the dihedral angles
(φ, ψ). The Fourier coefficients of torsional potential are
obtained by minimizing the function:

where the index i refers a grid point and ωi is the weighting
factor

with

and

Here, Ei
torsion is the torsion energy corresponding to the

backbone dihedral angles φ and ψ, and the subscript C7eq is
the conformer with the angles φ and ψ ) -85.8° and 79.2°,
which is the most stable conformer of dipeptide with the
intramolecular hydrogen bond. The parameter � in the
weighting factor is determined so as to minimize the relative
energy rms deviation from the ab initio reference values for
the five stable conformers: C7eq, C5, C7ax, RL, and R′.

The optimized torsional parameters of the main chain
determined for alanine dipeptide were used for most of the
other dipeptides. However, when either the relative energy
or the optimized geometry extremely differs from the ab
initio reference, the least-squares fittings of dihedral angle
parameters for the side chain were performed. In this fitting,

Figure 2. Correlation of eigenvalues between original and
truncated CRK matrices for glycine dipeptide and 20 amino
acids. Horizontal and vertical axes are for original and
truncated matrices.

U ) ∑
bonds
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Figure 3. Potential energy surfaces as a function of (φ, ψ)
obtained by (a) ab initio calculation and (b) the CRK model.
The most stable conformer C7eq is taken to be 0 kcal/mol.
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ab initio grid points for the side chain are generated in a
crosslike manner for each stable conformer.34

2.4. Evaluation of the Force Field for Isolated Peptide.
The fitted dihedral parameters are summarized in Table S28
in the Supporting Information. To evaluate the present
polarizable MM force field, we compared the relative
energies and key dihedral angles at the stable conformations
of all of the dipeptides with those obtained by ab initio
calculations. For this purpose, we carried out the geometry
optimizations of the stable conformers for 20 neutral and
five charged dipeptides at the HF level with the 6-31G**
basis set, starting from the initial geometries given by
Kaminski et al.34 At the optimized geometries, the MP2
calculations were repeated to estimate the relative energies.
The resultant dihedral angles are summarized in Tables
S29-S46 (Supporting Information).

We next carried out the geometry optimizations of the
conformers for each peptide with the present polarizable MM
model, where the ab initio optimized geometries were used
as the initial guess. The calculations were also performed
with the original AMBER99 force field. Since there are
several stable conformers for dipeptides, the rms deviation
from the ab initio reference energies was calculated by

where NC is the number of conformers and Ei
MM and Ei

QM

correspond to the MM and ab initio energies, respectively.
The rms deviation of the dihedral angles was also given by

where ND is the number of key dihedral angles for a peptide
and Ψij

MM and Ψij
QM are the dihedral angles at the MM and

ab initio optimized geometries, respectively. It is noted that
there were conformers whose stable geometries show very
large deviations from the corresponding ab initio references
for some peptides. For such a case, we excluded the results
of these conformers from the estimations of rms deviations.

Alanine Dipeptide and Tetrapeptide. Figure 3b shows the
potential energy surface as a function of φ and ψ for alanine
dipeptide and its contour map calculated with the present
MM model. We used the same geometries as for the
calculation of the ab initio surface, Figure 3a. Compared with
the ab initio surface, we can see that the low potential energy
regions involving the conformers C7eq, C5, and C7ax are well
reproduced, while the high-energy regions, (-180° e φ e
-140°, -30° e ψ e 40°) and (50° e φ e 180°, -10° e ψ
e 100°), are too high. This is because we employed the
weighting factor, which emphasizes low-energy grid points
in determining the torsional potential parameters. Table 1
shows the rms deviations of relative energies and dihedral
angles for alanine dipeptide. The zero of ab initio relative
energy was that of the most stable conformer C7eq, while
the MM energies were shifted so as to minimize the rms
deviation. The five conformers, C7eq, C5, C7ax, RL, and R′,
are reproduced well, but there is no minimum corresponding

to �2 on the MM potential surface. This is because the �2

minimum exists at the high-energy regions in Figure 3, and
the shallow minimum corresponding to this conformer
disappears on the potential surface with the present force
field. As seen in Table 1, the original AMBER force field
reproduces the four conformers C7eq, C5, C7ax, and �2, but
the conformers RL and R′ are not reproduced. Wang et al.35

optimized the atomic charges and dihedral parameters for
alanine dipeptide taking into account the polarization effect
with the AMBER02 force field. However, the optimized
force field failed to reproduce some of the stable conformers.
Those results indicate that we may need to use a more
elaborate form of the potential function including the
coupling terms between the torsional angles in order to
reproduce all of the conformers.

The transferability of the potential parameters determined
for dipeptides to larger polypeptides is crucial in constructing
a MM force field for proteins. We applied the present
parameters to alanine tetrapeptide. Table 2 shows the relative
energies at the optimized geometries and the rms deviations
of dihedral angles for 10 conformers52 obtained with the
present and AMBER force fields. The numbering of the
conformers was taken from ref 52. Conformer 3 is the most
stable with the ab initio and present force fields because of
the existence of intramolecular hydrogen bonding, while
conformer 6 is more stable than conformer 3 with the
AMBER force field. Conformer 10 with high energy was
not reproduced with the present model. The angles φ1 and
ψ1 at the converged geometry largely deviate from the ab
initio values. On the other hand, the AMBER force field
failed to reproduce the ab initio geometries of conformers 4
and 7.

RE ) � 1
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∑
i

NC

(Ei
MM - Ei

QM)2 (15)

RD ) � 1
NCND

∑
i

NC

∑
j

ND

(Ψij
MM - Ψij

QM)2 (16)

Table 1. Alanine Dipeptide Relative Energies [kcal/mol]
and RMS Deviations of Backbone Dihedral Angles [deg]
from the ab Initio Referencesa

conformer ab initiob (φ, ψ) CRK AMBER

C7eq 0.00 (-85.7, 79.1) -0.03/12.4 0.25/29.5
C5 1.33 (-157.2, 159.8) 1.31/14.1 1.15/5.9
C7ax 2.38 (76.0, -55.4) 2.32/15.4 2.48/20.9
�2 3.00 (-130.9, 22.3) 2.83/1.7
RL 4.42 (67.0, 30.2) 4.51/30.8
R′ 5.98 (-166.0, -39.9) 5.99/22.6
rmsd 0.05/20.2 0.18/18.3

a RMS deviations are in the bottom. b MP2 6-31G**//HF6-31G**.

Table 2. Alanine Tetrapeptide Relative Energies [kcal/mol]
and RMS Deviations of Backbone Dihedral Angles [deg]
from the ab Inito Referencesa

conformer ab initob CRK AMBER

1 5.64 4.67/13.6 4.92/6.3
2 5.28 4.58/15.2 5.16/18.0
3 0.00 1.04/12.4 2.93/18.6
4 6.77 4.45/15.9
5 7.18 4.98/14.7 4.41/8.1
6 2.39 4.63/23.4 2.25/22.3
7 6.45 6.21/9.9
8 4.63 7.01/16.2 7.53/19.6
9 7.91 8.65/17.2 7.71/23.9
10 7.40 5.51/30.1
rmsd 1.63/15.8 1.90/19.8

a RMS deviations are in the bottom. b MP2 6-31G**//HF6-31G**.
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Asparagine and Glutamine Dipeptides. Both of the pep-
tides have an amide group in the side chain which participates
in the formation of intramoleular hydrogen bonds. Actually,
the most stable ab initio conformer of asparagine is stabilized
by the two intramolecular hydrogen bonds between the atoms
in the backbone and side chain with bond distances of 2.34
and 2.14 Å, respectively. For the asparagine dipeptide, the
ab initio stable conformers are reproduced well by the present
model with the relative energy and dihedral rms deviations,
0.43 kcal/mol and 15.8°, respectively. For the glutamic acid,
two of the 11 conformers obtained by the ab initio calcula-
tions are not reproduced with both the present and AMBER
force fields. Note that we used the original AMBER
parameters for the dihedral angles for the side chains for
both the peptides. The results of the two peptides are shown
in Tables S47 and S48 (Supporting Information).

Valine, Isoleucine, and Leucine Dipeptides. The side
chains of these peptides are composed of alkyl groups. For
the valine and isoleuicine dipeptides, all of the ab initio
conformers are well reproduced. The resultant rms deviations
of both the peptides are ∼0.4 kcal/mol for the relative
energies and ∼9.0° for the dihedral angles, as shown in
Tables S49 and S50 (Supporting Information). However,
there are large deviations of dihedral angles of the main chain
from the ab initio values for conformers 3, 6, and 7 of
leucine, as shown in Table S51 (Supporting Information).

Serine and Threonine Dipeptides. A hydroxyl group is
included in the side chains of both the peptides. For the serine
dipeptide, we refitted the dihedral parameters for the side
chain, �1 (N-CT-CT-OH), �′1 (OH-CT-CT-C), and �2

(CT-CT-OH-HO), keeping the main chain torsion pa-
rameters fixed. The rms deviation of 1.55 kcal/mol for the
relative energy and a value of 9.5° for the dihedral angle
are comparable with those of the AMBER force field, 1.72
kcal/mol and 8.1°, respectively, as shown in Table S52
(Supporting Information). Note that, for some conformers
of threonine, the present ab inito optimized dihedral angles
differ from those of the corresponding conformers in ref 34.
For both force fields, the optimization of conformer 2 resulted
in conformer 3, whose dihedral angles are close to those of
conformer 2 except for �2. The resultant rms deviations are
smaller than the AMBER for both the relative energies and
dihedral angles, as shown in Table S53 (Supporting Informa-
tion).

Phenylalanine, Tyrosine, and Tryptophan Dipeptides. The
side chains of these peptides involve an aromatic ring. The
rms deviations of relative energies and dihedral angles are
small for the phenylalanine and tyrosine dipeptides, as seen
in Tables S54 and S55 (Supporting Information). For the
tryptophan dipeptide, we executed the fittings of dihedral
angle parameters for the side chain, �1 (N-CT-CT-C*)
and �′1 (C*-CT-CT-C). Although two of the nine con-
formers with high energies could not be described with the
present force field, the present model gives smaller rms
deviations than the AMBER force field,as shown in Table
S56 (Supporting Information).

Cysteine and Methionine Dipeptides. These three peptides
involve a sulfur atom in the side chains. For the cysteine
dipeptide, the refitting of dihedral parameters for the side

chains, �1 (N-CT-CT-SH), �′1 (SH-CT-CT-C), and �2

(CT-CT-SH-HS), was performed. As shown in Table S57
(Supporting Information), the highest-energy conformer
among the five stable conformers is not reproduced, but the
remaining four conformers are well reproduced with a rms
deviation of 0.60 kcal/mol for the relative energy and 14.6°
for the dihedral angle. For the methionine, the dihedral
refittings for the side chain were not required because the
ordering of the relative energy is consistent with the ab initio
one with relative energy and dihedral angle rms deviations
of 0.82 kcal/mol and 11.0°, respectively. The results are given
in Table S58 (Supporting Information).

Charged Asparatic Acid, Glutamic Acid, Histidine,
Arginine, and Lysine Diepetides. The asparatic and glutamic
acids are negatively charged, while the histidine, arginine,
and lysine are positively charged. For these charged peptides,
since the geometries of stable conformers in solution deviate
from those in the gas phase, we carried out geometry
optimization in solution, as performed by Kaminski et al.34

and used the gas-phase energies at these geometries for the
fitting of parameters of the torsional potentials. For the
arginine, the dihedral fitting for the side chain, �1 (N-CT-
CT-CT) and �′1 (CT-CT-CT-C), was carried out, and
for the other peptides, the dihedral parameters for the side
chain were taken from the AMBER force field. The ordering
of relative energies is reproduced well except for histidine,
and the rms deviations are comparable with those of the
AMBER force field. The results are shown in Tables
S59-S63 (Supporting Information).

3. Application to Alanine Polypeptides

3.1. MD Simulation Method. The potential energy func-
tion of the solvated polypeptide system is expressed as

where Nv is the number of solvent water molecules with Ns

being the number of sites in a solvent molecule. The
functions U and U′ are the intramolecular potential functions
for the peptide, eq 10, and solvent, respectively. QRI includes
the induced charge due to the intra- and intermolecular
interactions. The electrostatic potential in the solvent reor-
ganization energy term is written as

where the first and second terms are the contributions from
the solute and solvent, respectively.

The electrostatic parameters for a water molecule, that is,
the atomic site charges and CRK matrix elements, were

Usol ) U + U' + ∑
i>j

Nv

∑
a,b

Ns [uLJ(|rai - rbj|) + QaiQbj

f(|rai - rbj|)

|rai - rbj| ]
+∑

i

Nv

∑
a

Ns

∑
R∈I

NI

∑
I

Nu [uLJ(|rai - RRI|) + QaiQRI

f(|rai - RRI|)

|rai - RRI| ]
- 1

2 ∑
i

Nv

∑
a,b

Ns

KabVaiVbi

(17)

Vai ) ∑
�∈I

NI

∑
I

Nu

Q�I

f(|R�I - rai|)

|R�I - rai|
+ ∑

j(*i)

Nv

∑
b

Ns

Qbj

f(|rbj - rai|)

|rbj - rai|
(18)
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calculated at the MP2 level with the 6-31G(2d,2p) basis set,
and the results are QO ) -0.680 and QH ) 0.340 for the
site charges and KOO ) -4.760, KHH ) -2.122, KOH )
2.380, and KHH’ ) -0.2580 in atomic units for the CRK
matrix elements, respectively. The Lennard-Jones (LJ)
parameters, ε and σ, were taken from the SPC model,53 and
the standard combination rule is applied for constructing the
site-site interaction. The intramolecular motion of water is
described by the Morse potential for the stretching mode and
the harmonic potential for the bending one

where req ) 0.958 Å and θeq ) 102.9°, the ab initio optimized
values. The other parameters, De, ae, fr, and fθ, are the same
as in the previous study of water with the CRK model.33

For the solvent-solvent LJ terms in eq 17, the long-range
part was cut off with the following function:

where

Here, rc is the cutoff length that is half of the box size and
rij is the distance between the i and jth molecules. The
electrostatic interactions between the solvent-solvent and
solute-solvent are attenuated at a short range with the
damping function given in eq 7, as in the case of the
intramolecular interaction in the polypeptide. The Ewald sum
method was employed to treat the long-range electrostatic
interaction.

MD simulations of solvated alanine polypeptide systems
were performed with one solute and 472 solvents for the
tetrapeptide (471 solvents for the pentapeptide) in a cubic
box with a length of 24.66 Å, and the periodic boundary
condition was employed. The initial structures are conformer
1 in Table 2 for the tetrapeptide and the ab inito optimized
structure for the pentapeptide (see Figure 4). The equations
of motion were integrated using the Verlet algorithm with a
time step of 0.5 fs. The charges on solute and solvent atomic
sites are determined self-consistently at each time step. The
equilibration of the system at 298 K was achieved by MD
trajectory calculations for 30 ps with occasional temperature
scaling, which was followed by a MD run of 100 ps with
no temperature scaling.

The intensity of the IR spectrum was calculated by54

where V is the volume of system, c is the speed of light, ε0

is the vacuum dielectric permittivity, and � ) 1/kBT with kB

and T being the Boltzmann constant and temperature,

respectively. 〈M(t) ·M(0)〉 is the time correlation function
(TCF) of the system dipole moment M. Since we focused
on the effect of charge polarization induced by the intra-
and intermolecular interactions on the IR spectra, the
contributions of the dipole moment of water solvent were
subtracted from the system dipole moment in calculating the
IR spectra.

To analyze the polarization effect on the spectrum, the
dipole moment of the peptide in solution is decomposed into
the gas-phase dipole moment MG

U and the solvent-induced
one MI

U as

where the superscript U means the peptide dipole moment.33

Note that the gas-phase dipole moment includes the effect
of induced charge due to the intramolecular electrostatic
interaction. The TCF is thus written as

where the first and second terms are the contributions from
the gas phase and solvent-induced dipoles, respectively, and
the third one is the cross term between them.

3.2. Results and Discussion. Dihedral Angle Distribu-
tion. Figure 5 shows the normalized distributions for the
backbone dihedral angles (φ, ψ) of tetra- and pentapeptides,
respectively. The dihedral angles for the main chain of
tetrapeptide is numbered from the N terminus, as shown in
Figure 4. For the tetrapeptide, the dihedral angle distributions
show a large difference between the gas and solution phases
despite the initial structures being the same. This is because
the isolated tetrapeptide favors a compact form stabilized
by the intramolecular hydrogen bonds, while the solvated
peptide retains the initial extended form, which is stabilized

U′ ) De[1 - e-ae(r-req)]2 + De[1 - e-ae(r′-r′eq)]2

+ fr(r - req)(r′ - r′eq) +
1
2

fθreq
2 (θ - θeq)

2

(19)

s(x) ) {1 (rij < 0.9rc)

1 - 10x3 + 15x4 - 6x5 (0.9rc < rij < rc)

0 (rc < rij)
(20)

x ) (rij - 0.9rc)/0.1rc

I(ω) ) ω
3pε0Vc

tanh(�pω
2 )∫-∞

∞
dt e-iωt〈M(t) · M(0)〉

(21)

Figure 4. Starting conformations of tetrapeptide (a) and
pentapeptide (b) in MD simulations. For tetrapeptide, the
numbering of the dihedral angles is shown.

MU(t) ) MG
U(t) + MI

U(t) (22)

CU(t) ) 〈MU(t) · MU(0)〉 ) CGG
U (t) + CII

U(t) + CGI
U (t)

(23)
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by the hydrogen bondings with the surrounding water
molecules. For the pentapeptide, there was no drastic
conformational change within the present simulation time,
100 ps. In addition, a significant difference in distribution
of the dihedral angles between the gas and solution is not
observed, indicating that the dihedral angles of cyclic
pentapeptide are rather restricted by taking the cyclic form.

Charge Fluctuation and Dipole Moment. The atomic site
charges in the peptide fluctuate due to the thermal fluctuation
of the electrostatic environment. We calculated the average
site charges and their fluctuations for the four backbone
atomic sites, N, H, C, and O, and the R- and � carbons, CR

and C�. Similar analyses were performed by Liu et al.56 for
crambin with the QM/MM method, and for several small
proteins by Patel and Brooks17 with the fluctuating charge
model. They showed that the polarization of atomic site
charges is characterized by the chemical environments around
the atoms due to the protein sequence. Since the alanine
polypeptides were chosen as the solute in the present
calculations, the effects of intra- and intermolecular hydrogen
bonding on the site charges and their fluctuations can be
discussed because the chemical environments around each
backbone atom are very similar between the units. Here, we
focused on the cyclic pentapeptide because the environment

around all of the alanine units is equivalent by the symmetry.
Figure 6 shows the average charges at the backbone atomic
sites in each unit and their fluctuations obtained from the
100 ps trajectory records, where the left and right panels
are those in the gas phase and in solution, respectively. It is
noted that the site charge in each unit becomes the same if
we take a large number of trajectories adequate to represent
the thermal average. However, since we took one trajectory
starting from the particular initial geometry and there was
no conformational change during the 100 ps trajectory period,
the site charge depends on the electrostatic field around the
atom and has different values for different units, as seen in
Figure 6. The average charge shows weak dependency on
the amino acid unit in the gas phase, indicating that there is
no strong correlation between the atomic charges and
dihedral angle distributions. On the other hand, the difference
in average charge becomes appreciable in the solution. For
example, the site charge on N in unit 4 is larger than that in
unit 1 by 0.5, implying that the solvated condition is different
between the two atoms. As shown in Figure 6b, the charge
fluctuation in solution is larger than that in the gas phase
for all of the sites. It is also noted that the fluctuation at the
� carbon C� is approximately 1/10 of that at the R carbon
CR, because the large diagonal CRK element of C� is
canceled by the three equivalent large C�-H off-diagonal
elements under a nearly uniform electrostatic environment
around the methyl group.

Figure 7 shows the distributions of the dipole moments
of tetra- and pentapeptides in solution. The dipole moments
at the peak position are almost the same, 11.4 D, for both
the peptides. In order to see the role of charge polarization
on the dipole moments, we calculated the dipole moments
in the gas phase using the CRK charges as well as the
reference ones. Note that, for calculating the dipole moments,
we used the same trajectory records generated by the MD
simulations in solution with the present polarizable force
field. As seen in Figure 7, the dipole moment at the peak
position increases by 3.3 D due to the intramolecular
electrostatic interaction for the tetrapeptide. The solvent effect
further enhanced the dipole moment by 1.7 D. For the cyclic
pentapeptide, the increase of the dipole moment by the
intramolecular interaction, 0.6 D, is smaller than that of the
tetrapeptide. On the other hand, the solvent-induced contri-
bution to the dipole moment is larger for pentapeptide, 3.1
D, than that of tetrapeptide. Compared with the pentapeptide,
the distribution of the dipole moment of the tetrapeptide is
broader. This is because the geometry of the tetrapeptide is
flexible even in a solvent, while that of the pentapeptide is
restricted to retain the cyclic form.

We further carried out ab initio electronic structure
calculations for the tetra- and pentapeptides both in the gas
and solution phases, and the resultant dipole moments were
compared with those from the present CRK based model.
For the calculations in solution, we employed the reference
interaction site model self-consistent field (RISM-SCF)
method, where the HF wave function with the 6-31G** basis
set was used to describe the solute electronic structures, and
the RISM integral equation was solved with the standard
model of the water molecule.55 From the MD trajectory

Figure 5. (a) Normalized distributions of backbone dihedral
angles for tetrapeptide. Distributions of dihedral angles φ1, φ2,
and φ3 are written with black, red, and green, respectively.
The right panel is the distributions of dihedral angles, ψ1, ψ2

and ψ3. (b) Normalized distributions of dihedral angles for
cyclic pentapeptide. The dihedral angles φ1-φ5 and ψ1-ψ5

are not distinguished.
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records, we picked up one geometry for each peptide whose
dipole moment is close to that of the peak position in Figure
7. The ab initio dipole moments for the tetrapeptide were
8.6 and 9.2 D in the gas and solution phases, respectively.
The corresponding CRK values are 9.7 and 11.4 D, respec-
tively. For the cyclic pentapeptide, the ab initio dipole
moments were 9.3 and 11.3 D in the gas phase and solution,
respectively, which are close to the CRK values of 8.3 and
11.4 D. These results indicate that the present model provides

a reasonable estimate of charge polarization induced by the
intra- and intermolecular hydrogen bondings. It is noteworthy
that the dipole moments using the original AMBER99 charge
set are 6.4 and 7.7 D for the tetra- and pentapeptides,
respectively.

SolVation Structures. In order to examine the effect of
peptide-water solvent hydrogen bondings on the charge
distribution, we examined the solvation structures. We first
calculated the radial distribution functions (RDFs) between
the N, H, C, and O atoms in peptides and the water O atoms
and then estimated the radius of the sphere determining the
first solvation shell for 24 (tetra) and 30 (penta) atoms. The
radii thus obtained are 4.5, 3.0, 4.0, 5.0, 4.0, and 5.0 Å for
O, H, N, C, H(-CR), and methyl C atoms, respectively. The
corresponding values for pentapeptide are the same as those
for the tetrapeptide. Next, we calculated the number of H2O
molecules by counting the numbers of H2O in the first
solvation spheres by checking a double counting of H2O
which is in more than two solvation spheres. The calculated
number of H2O in the first solvation shell was estimated to
be 49-62 and 48-61 for the tetra- and peptapeptide,
respectively. Since the cyclic pentapeptide has intramolecular
hydrogen bondings, the number of coordinated H2O becomes
almost the same as that of the extended tetrapeptide in spite
of the difference of the number of amino acid units between
the two peptides.

Figure 8 compares the distribution of H2O dipole moments
in the first solvation shell of pentapeptide with that of the
bulk water obtained by H2O molecules far from the peptide
atomic sites with a distance 10-11 Å. As seen in the figure,
the average dipole moment of H2O in the bulk water is 2.4
D, which is larger than the gas phase one, 1.9 D, obtained
from the reference charges (see section 3.1). It is found that
the dipole moment of H2O around the N atoms is largely
enhanced from the bulk one. On the other hand, the
distributions of dipole moment around the other peptide

Figure 6. Average charges (a) and fluctuations (b) for backbone sites, N, H, C, and O, and R and � carbons, CR and C�, for
cyclic pentapeptide in the gas phase (left) and solution (right). The x axis represents the numbering of the amino acid unit.

Figure 7. Normalized distributions of dipole moment for
tetrapeptide (a) and pentapeptide (b) in solution. Black, red,
and green correspond to reference, intramolecular induced,
and intramolecular induced plus intermolecular induced dipole
distributions, respectively.
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atoms are very close to that of the bulk water. It is noted
that the dipole moment distribution around the tetrapeptide
was similar to that of the bulk solvent, though the dipole
moment of the H2O molecule forming a hydrogen bond with
the NH or CO group is largely enhanced.

We further obtained the RDFs between the H (in NH)-O,
O (in CO)-H, and C (in CH3)-O site pairs to see the
hydrogen bondings and hydrophobic interactions between
the peptides and water. The dependence on the amino acid
units was weak for the tetrapeptide because the extended
form is favored in aqueous solution. For the cyclic pen-
tapeptide, we observed a strong unit dependence of the
number of hydrogen bondings, because the formation of the
hydrogen bonding between the carbonyl O and water H
atoms is prevented by the intramolecular hydrogen bonding.
For the RDFs between the H atom in NH bond and water O
atom in Figure 9b, we found two higher peaks in the first
solvation shell. These peaks represent the strong hydrogen
bonding in units 4 and 5, which is correlated to the
enhancement of negative charges on the N atoms in units 4
and 5 in Figure 6. The sharp peaks observed in Figure 9c
indicate the hydrohobic interaction of the methyl group with
the water solvent.

IR Spectrum. Figure 10 shows the IR spectra up to 2000
cm-1 for the tetra- and pentapeptides, where the left and right
panels are those in the gas and solution phases, respectively.
The peak positions are almost the same between the two
peptides in the gas phase. The two split bands at 1670 and
1770 cm-1 are attributable to the amide I mode, which arises
mainly from the CdO stretching vibrations. Such a band
splitting is not observed for the spectrum of N-methylac-
etamide (NMA) in the gas phase43,45 because it is attributed
to the coupling of the CdO stretching motions between the
different units.46,47,57,58 The split band at ∼1550 cm-1 is
attributable to the amide II mode, which is mainly described
by the out-of-phase combination of the N-H in-plane bend
and C-N stretching vibrations. The amide III band emerges
in the region 1200-1400 cm-1 and is rather complex, as
seen in Figure 10. Compared with the amide I band, the
intensities of amide II and III bands are too small. This is
because the dependence of atomic charges on the nuclear
coordinates29 is not included in the present model and thus
the change of dipole moment due to the stretching of the
amide bond is largely underestimated.43 The most prominent
band around 790 cm-1 is the amide V band, which comes

mainly from the out-plane N-H bending motion. The amide
V band of pentapeptide shows splitting, indicating that the
band profile is sensitive to the intra- and intermolecular
environment. The neighbor band at 680 cm-1 is assigned to
the amide IV and VI modes, which are composed of the
out-of-planeCdObendandtheNCOdeformation, respectively.

Compared with the gas phase, the shape of each band in
aqueous solution becomes broader, and the intensity is largely
enhanced. It is notable that the height of the amide V band
of tetrapeptide does not increase by solvation, while that of
pentapeptide becomes about twice that in the gas phase. In
order to clarify the origin of such a difference in the amide
V band shape between the tetra- and pentapeptide due to
solvation, we decomposed the spectra into the three contribu-
tions, that is, the gas phase and solvent-induced self-terms
and their cross term, eq 23. The results are displayed in the
left panels of Figure 11, where we can see that the contribu-
tion of the solvent-induced self-term is small for the
terapeptide, though such a term has the largest contribution
for the pentapeptide. We further analyzed the vibrational
density of state (VDOS) for the N-H bending motion for
both the peptides by representing the correlation function of
the N-H bond vector as the sum of two terms:

Figure 8. Distributions of water dipole moment in the first
solvation shell of carbonyl oxygen (black), amide nitrogen
(red), and carbon in the methyl group (green). The distribution
in bulk water is also shown as a reference (blue).

Figure 9. Radial distribution functions between (a) carbonyl
oxygen and water H, (b) amide hydrogen and water O, and
(c) methyl carbon and water O, respectively. The black, red,
green, blue, and cyan curves correspond to the amide acid
units from 1 to 5, respectively.

〈R(t) · R(0)〉/〈R(0) ·R(0)〉 ) ∑
i

〈ri(t) · ri(0)〉/〈R(0) · R(0)〉

+ ∑
i

∑
j(*i)

〈ri(t) · rj(0)〉/〈R(0) · R(0)〉

(24)
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where ri is the N-H bond vector in the ith amino acid unit
and R () ∑iri) is the sum of N-H bond vectors. Thus, the
VDOS spectrum is decomposed into the diagonal and off-
diagonal contributions. The calculated VDOSs of tetra- and
cyclic pentapeptides in the region 500-1000 cm-1 are shown
in Figures S2 and S3 in the Supporting Information. Although
both the diagonal and off-diagonal terms have positive
intensities for the pentapeptide, the off-diagonal term has a
negative contribution for the tetrapeptide, indicating that the
enhancement of the amide V band for tetrapeptide is
suppressed by the cancellation between the diagonal and off-
diagonal terms.

The amide I band is known to be strongly affected by the
dihedral structure of the backbone, and its frequency shift is
utilized to probe the secondary structures of protein. The
aqueous solvation effect on the band shape has been also
discussed. As shown in Figure 10, the intensity is largely
enhanced due to the solvation both for the tetra- and
pentapeptides, and the increase of band intensity at 1770
cm-1 is notable. The right panels of Figure 11 show the
components of IR spectra in the region 1600-1900 cm-1,
where we can see that the largest contribution to the intensity
enhancement for the tetrapeptide is the cross term between
the gas phase and solvent-induced ones. On the other hand,

Figure 10. IR spectra for (a) tetrapeptide and (b) cyclic pentapeptide. Left and right panels are in the gas phase and in solution,
respectively.

Figure 11. IR spectra of (a) tetra and (b) cyclic pentapeptide in solution in the regions of 500-1000 cm-1 (left) and 1600-1900
cm-1 (right). Decomposed into gas- and solvent-induced self-terms and their cross term.
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the solvent-induced term is dominant, and the cross term is
minor for the pentapeptide. One of the possible reasons for
the small cross term of pentapeptide compared with the other
two terms is that the directions of dipoles coming from the
intramolecular and solvent-induced terms compensate each
other. It is also noted that the band around 1770 cm-1 of
pentapeptide shows a red shift from the gas-phase band due
to the contribution from the solvent-induced self-term.

4. Conclusions
In the present paper, we developed a polarizable MM force
field for polypeptides and proteins employing the CRK
model. The effective charges and CRK matrices of polypep-
tides were constructed from those determined for the
constituent amino acids. The electrostatic interaction potential
thus obtained was combined with the AMBER99 force field.
Furthermore, in order to reproduce the ab initio optimized
geometries and relative energies of several conformers for
20 neutral and five charged dipeptides, we refitted the
parameters of torsional potentials.

To evaluate the present MM force field, we applied it to
MD simulations of the extended alanine tetrapeptide and
cyclic pentapeptide. For the pentapeptide, the average site
charges on the atoms in the main chain and their fluctuations
in aqueous solution were compared with those in the gas
phase in order to see the effect of intra- and intermolecular
hydrogen bonding on the charge polarization. We also
compared the dipole moments of the polypeptides by the
present CRK-based model with those by ab initio calcula-
tions. As a result, the present model was shown to provide
reasonable charge distributions both in the gas phase and in
solution.

Finally, we calculated the IR spectra of alanine tetra- and
pentapeptides in the gas phase and in solution in order to
see the effect of intra- and intermolecular hydrogen bonding
on the IR spectral profiles. For both of the peptides, split
amide I modes were observed, which are attributed to the
coupling of CO stretching modes between the different amino
acid units. We also found that the intensity of the amide V
mode for the tertapeptide does not increase due to the
solvation, though that of pentapeptide is largely enhanced
in solution.

It is noted that the present model should be regarded as
the first step for the development of a polarizable protein
force field employing the CRK method. In order to improve
the model, we need to apply it to many problems such as
solvation structure and free energy calculations and refine
the parametrizations.
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the schematics of structures for amino acids and terminal
species considered in this work. The reference site charges
for 20 neutral and five charged amino acids as well as
terminal species are given in Tables S1-S27. The CRK

matrix elements are also listed in Tables S1-S27. The fitted
parameters for the torsional potentials are summarized in
Table S28. The ab initio optimized values of key dihedral
angles for stable conformers of dipeptides are summarized
in Tables S29-S46. The rms deviations of relative energies
and dihedral angles from the ab initio reference values are
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the VDOS spectra into the contributions from the diagonal
and off-diagonal terms are shown in Figures S2 and S3. This
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Abstract: In the light of the important role played by the carboxylate group in bio- and
coordination chemistry, its consistent and reliable parametrization for molecular simulations is
crucial. The experimental vibrational spectra of three carboxylate anions (formate, acetate, and
benzoate) both in the gas phase and in the condensed phase (as sodium salts) are interpreted
on the basis of high-quality ab initio calculations. The interaction with the counterion (metal
cation) is shown to be of major importance in the interpretation of the spectral features of the
carboxylate group both in the solid state and in aqueous solution. Previous attempts to
parametrize the carboxylate group within the molecular mechanics approach is critically reviewed,
and a new set of the consistent valence force field parameters based on first principles
calculations is proposed, which is able to reproduce accurately both the structure and the
dynamics of the carboxylate moiety both free and coordinated with metal cations.

1. Introduction

Despite the fact that the carboxylate group is an important
functionality abundant in biological systems, being one of
the major intracellular anions, its parametrization within the
molecular mechanics (MM) approach has been rarely done
consistently. If both the structure and dynamics of the
carboxylate group, either free (isolated) or chelated with
metal ions, are required, then a systematic derivation of the
force field (FF) parameters is needed. In the course of the
development of a FF for the relatively new class of
nanoporous metal-organic frameworks (MOFs),1 we have
faced the problem of accurate parametrization of the
metal-carboxylate interactions, which are crucial for un-
derstanding the structural, thermal, and elastic properties of
these materials. Unfortunately, the parameters available in
the literature are not able to deliver reliable dynamic
quantities (e.g., vibrational frequencies). Hence, there is a
need for a systematic strategy for the parametrization of this
important organic group.

Interestingly, the most simple carboxylate anion, formate,
was used in the late 1980s as an example to demonstrate
the usefulness of using first principles calculations for the
derivation of FF parameters either alone2 or in combination
with experimental data.3 Since then, a number of attempts

have been aimed at the development of the parameters for
the carboxylate group using various functional forms. Utiliz-
ing a “building block” approach, where any large system is
broken down structurally into key functional components,
which were parametrized separately, Kirschner et al.4 have
studied the conformational flexibility of amino acid zwitte-
rions on the basis of their parameters for the carboxylate
group derived within the MM3 force field. To develop force
constants, they used Møller-Plesset second-order (MP2)
perturbation calculations on small carboxylates. Whereas
structural data were well reproduced, their inability to match
vibrational frequencies of the carboxylate group (mainly
symmetric and asymmetric stretchings), as will be shown
below, was due to the absence of some important interactions
(cross-terms) between internal coordinates in the MM3
energy expression, such as the stretch-stretch term. We
should note, however, that the importance of these cross-
terms has been recognized, and they were implemented in
the MM4 force field5 for the conjugated systems like benzene
and butadiene. Moreover, Lii6 in his study based on the MM4
force field has shown that including the C-O/C-O
stretch-stretch cross-term improves significantly the agree-
ment with the high-level ab initio calculated frequencies
(B3LYP/6-31G(d, p)) for carboxylic acids. Below, we will
show that this particular cross-term plays a crucial role in* Corresponding author e-mail: rochus.schmid@rub.de.
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correctly reproducing the C-O stretchings in the carboxylate
group as well.

Making use of first principles calculations as the basis for
the FF development, one has to be sure that a chosen level
of theory is reliable; that is, the results produced are in
agreement with high-quality experimental data within speci-
fied uncertainties. Recently, thanks to experimental advances,
accurate experimental vibrational frequencies for the free
carboxylate anions became available. Forney et al.7 inves-
tigated by IR spectroscopy some important fundamental
vibrations of the formate anion and its deuterated analog
trapped in a solid neon matrix at 5 K, whereas Oomens and
Steill, using infrared multiple photon dissociation action
spectroscopy, observed, for the first time, the stretching
modes of the free benzoate8 and acetate9 anions in the gas
phase.

The carboxylate moiety is known to have a very diagnostic
infrared fingerprint: the symmetric and asymmetric C-O
stretch modes are extremely sensitive to the environment.10

These modes, and in particular their separation, have
therefore been widely used in condensed-phase spectroscopic
studies to determine the coordination mode in carboxylate
salts and solutions.10-12 Since some parametrizations were
based on the experimental data (structure and frequencies)
measured for the condensed phase, the bias due to the
environment should be accounted for (counterions or sol-
vent).

In this work, to derive the needed FF parameters, we use
the results of first principles calculations, the reliability of
which is judged from a comparison with experimental data
and other high-level calculations where available.

2. Force Field Derivation

Our model systems include three anions, formate, acetate,
and benzoate, and their chelated complexes with alkali (Li
and Na) and transition metal (Cu and Zn) cations. Their
geometries were fully optimized by a number of methods
ranging from density functional theory (DFT), Møller-Plesset
second-order (MP2) perturbation theory,13 and coupled-
cluster (CCSD14 and CCSD(T)15) theory. As DFT, we use
the hybrid functional, B3LYP.16-18 Only valence electrons
were correlated in the coupled-cluster calculations. The
augmented correlation consistent basis sets, aug-cc-pVXZ
(X ) D, T, Q),19 were employed for all atoms if not stated
otherwise. For the Zn and Cu atoms, energy-consistent
pseudopotentials denoted as (aug-)cc-pVXZ-PP (X ) D,
T),20-22 obtained from the William R. Wiley Environmental
Molecular Sciences Laboratory Basis Set Exchange,23,24 were
employed. In addition to the calculations in a vacuum, the
conductor polarizable continuum model (CPCM) was used
to take the effects of a dielectric medium (water) into
account, with the cavity represented by the United Atom
Topological Model applied on radii optimized for the PBE0/
6-31G(d) level of theory (RADII ) UAKS). All calculations
were carried out with the Gaussian program package.25 The
optimized structures were confirmed to be true minima by
vibrational frequency calculations. Anharmonic frequencies
were calculated by numerical differentiation along normal
modes as implemented in the Gaussian program package.26

At the optimized geometries, the Hessian matrices in
Cartesian coordinates were calculated using analytical second
derivatives and then projected into a redundant set of internal
coordinates by means of the Moore-Penrose generalized
inverse technique and further used in the derivation of the
FF parameters. By transforming the Hessian matrix from
Cartesian to internal coordinates, rows of the B matrix that
correspond to translations and rotations (Eckart coordinates)
are formed, and the Hessian matrix is orthogonalized with
respect to these coordinates such that both translational and
rotational degrees of freedom are completely projected out.

The functional form of the MM3(2000) force field of Allinger
et al.27 was used as implemented in the TINKER program
package.28 We have modified the original MM3 stretch-bend
cross-term by introducing two different force constants, ksb

a and
ksb

b , for two bonds that comprise the same bond angle as
suggested by Mapple et al.29 and implemented a new
stretch-stretch cross-term in the form used previously.5,6,29

Their functional forms are given below, where rref and Rref are
the reference values for the bond length and bond angle,
respectively:

For stretch-stretch cross-terms:

and for stretch-bend cross-terms:

We concentrate on the FF parameters pertaining to the
carboxylate group, namely, C-O stretchings, O-C-O in-
plane and out-of-plane bendings, and (for the benzoate anion)
twisting around the Ccarb-Cph bond. Our strategy is to project
both structural and curvature (Hessian matrix) data into the
redundant internal coordinate system. From a practical point
of view, the use of redundant coordinates is advantageous,
since the point group symmetry of the carboxylate moiety
and corresponding force field is preserved; that is, all
symmetrically equivalent bonds or angles in the group have
the same force constants. We avoid any symmetrization
(producing a nonredundant set of internal coordinates) or
“localization”30 steps (resulting in maximally diagonal force
constants in dependent angle-bending coordinates), which
is completely in line with the general MM philosophy where
redundant coordinates are used. The problem with the angular
redundancies does not occur31 because all geometry opti-
mizations and Hessian calculations are carried out in Car-
tesian coordinates, and we use exactly the same (complete)
set of internal coordinates in the transformation of the
Hessian. In addition, due to the redundancy relationship
among the three valence angles around the trigonal-planar
Ccarb atom, the values for some cross-terms (see Figure 1)
are reproduced automatically and there is no need to
parametrize them explicitly. These are all bend-bend and
CO/RCO (and CR/OCO) stretch-bend interactions (R ) H,
C).

3. Results and Discussion

First, we present and discuss the structural data for the
simplest carboxylate, the formate anion, which was the

Ess ) kss(r
a - rref

a )(rb - rref
b ) (1)

Esb ) ksb
a (ra - rref

a )(R - Rref) + ksb
b (rb - rref

b )(R - Rref)
(2)
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subject of numerous theoretical investigations. The most
recent contributions are by Magalhaes et al.,32 Dixon et al.33

and Krekeler et al.34 The most important structural param-
eters calculated at different levels of theory are compared
in Table 1.

Using the results from the highest level of theory
(CCSD(T)/aug-cc-pV6Z+aug-cc-pV5Z, all electrons cor-
related) used in the work of Krekeler et al.34 as the
benchmark, we note that their values (r(C-O) ) 1.2501 Å
and ∠O-C-O ) 130.14°) can be well reproduced using a
much cheaper B3LYP/aug-cc-pVTZ level of theory. Aug-
mentation of the basis set with the diffuse functions has been
known for quite a long time to be important for reliable
predictions of the properties of anions.35 If we compare the
results from our two DFT calculations (see Table 1) with
(B3LYP/aug-cc-pVDZ) and without (B3LYP/cc-pVDZ) dif-
fuse functions, the only visible deviation is found for the
O-C-O angle (∼1°). More drastic changes, however, will
be seen below when comparing vibrational frequencies (see
also ref 32). The influence of the substituent on the structural
parameters of the carboxylate group can be seen from the
data presented in Table 2.

One clear trend is evident from the calculated results,
namely, the C-O bond distance becomes shorter by ∼0.007
Å on going to a larger basis set. At the same time, one can
see no pronounced influence of the substituent on the C-O
bond distance. We also note that the stretching of the C-O
distances results in the closing of the O-C-O angle.

The calculated vibrational frequencies for the three car-
boxylate anions are compared with the available experimental
data in Table 3. We focus here on three normal modes: the
symmetric and asymmetric CO stretching and the OCO
bending.

By comparing our calculated vibrational frequencies for
the formate anion with those of Krekeler et al.,34 we see

that the B3LYP/aug-cc-pVTZ level of theory is quite
adequate for describing dynamics within the carboxylate
moiety. Importantly, the harmonic frequencies should be
corrected for anharmonicity effects in order to be in
agreement with experimental results. This correction is,
however, different for various modes. In our case, both
symmetric and asymmetric CO stretching modes are ap-
preciably affected by anharmonicity (∼30 cm-1), whereas
the OCO bending is almost not affected. Overall, very good
agreement between our corrected values and the experimental
data for the free formate anion gives us confidence in the
chosen level of theory (B3LYP/aug-cc-pVTZ). We can
reproduce both the absolute values for the CO stretching
frequencies and their difference as well (see last column in
Table 3). We should note that, whereas the absolute values
for the CO stretching frequencies are dependent on the level
of theory used, their difference (∆νas-s, see last column in
Table 3) is much less prone to systematic errors, such as
basis set truncation, anharmonic correction, and so forth. The
calculated frequency separation between the CO asymmetric
and symmetric stretchings is, therefore, a reliable diagnostic
of the chemical environment of a carboxylate group. This
separation has been widely used in spectroscopy to elucidate
the type of metal ion coordination to the COO moiety.10

Assuming similar values for the anharmonic correction for
carboxylate stretchings, we can see that the agreement
between our calculated values and the experimental ones for
the acetate and benzoate anions is fairly good. Even a smaller
basis set (B3LYP/aug-cc-pVDZ) can deliver reliable results,
as shown recently by Oomens and Steill.8 In their work, they
stressed the critical role played by diffuse functions in
reproducing stretching modes. In the followup study,9 all

Figure 1. Some important cross-terms in the carboxylate group.

Table 1. Selected Structural Data for the Formate Anion

method r(C-O), Å ∠O-C-O, deg

B3LYP/cc-pVDZ 1.2519 131.28
B3LYP/aug-cc-pVDZ 1.2578 130.26
B3LYP/aug-cc-pVTZ 1.2512 130.39
B3LYP/aug-cc-pVQZ 1.2495 130.39
MP2/aug-cc-pVDZ 1.2694 130.15
MP2(full)/aug-cc-pVDZ 1.2685 130.15
MP2/aug-cc-pVTZ 1.2583 130.20
MP2/aug-cc-pVQZ 1.2551 130.15
CCSD/aug-cc-pVDZ 1.2626 130.25
CCSD(T)/aug-cc-pVDZ 1.2689 130.28
MP4/6-311++G(d, p)a 1.264 130.48
CCSD(T)/aug-cc-pVTZb 1.258 130.2
CCSD(T)/aug-cc-pVQZc 1.2535 130.18

a Reference 32. b Reference 33. c Reference 34.

Table 2. Selected Structural Data for the Three
Carboxylate Anions

method r(C-O), Å ∠O-C-O, deg

Formate
B3LYP/aug-cc-pVDZ 1.2578 130.26
B3LYP/aug-cc-pVTZ 1.2512 130.39
MP2/aug-cc-pVDZ 1.2694 130.15
MP2/aug-cc-pVTZ 1.2583 130.20
CCSD(T)/aug-cc-pVDZ 1.2689 130.28

Acetate
B3LYP/aug-cc-pVDZ 1.2618 128.55
B3LYP/aug-cc-pVTZ 1.2548 128.75
MP2/aug-cc-pVDZ 1.2720 128.64
MP2/aug-cc-pVTZ 1.2609 128.76
CCSD(T)/aug-cc-pVDZ 1.2715 128.73

Benzoate
B3LYP/aug-cc-pVDZ 1.2591 129.14
B3LYP/aug-cc-pVTZ 1.2524 129.23
MP2/aug-cc-pVDZ 1.2688 129.48
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calculated harmonic frequencies were scaled by a factor of
0.98, thus correcting for anharmonicity effects. Blue-shifting
of the OCO bending mode for both acetate and benzoate
anions as compared to the formate anion, as seen from the
data presented in Table 3, is mainly due to the strong
coupling with the Ccarb-C(R) stretching mode.

Having established a reliable computational framework,
it is of importance to go beyond the free anions and to try
to simulate the carboxylate moiety in its complexes with
metals or in condensed phases where the anion is surrounded
by counterions or solvent molecules. Interestingly, various
previous attempts to interpret the IR and Raman spectra,
measured both in the solid state and in solutions, in terms
of the carboxylate fingerprints failed for one or another
reason. We argue that taking the counterion (alkali metal
cation) into account can explain the main features of the
spectra pointing to the minor role played by the solvent. To
this end, we have fully optimized the geometry of the
carboxylate anions chelated in a simple bidentate fashion
by the sodium cation (see Figure 2). The structural data and
vibrational frequencies are given in Table 4.

Such a “direct binding”36 is frequently found in the crystal
structures of anhydrous alkali metal salts of formate and
acetate (see, for example refs 37-39) or of more complex
carboxylates.40 Recently, Aziz et al.41 have probed directly
the contact ion pair interaction using oxygen K-edge X-ray
absorption spectroscopy and molecular dynamics simulations
and were able to show that this symmetric bidentate
coordination prevails in the aqueous solution of sodium
acetate. We note, however, that local environments around
a metal cation and a carboxylate group in the crystal structure
of sodium acetate trihydrate42,43 are different from those
found in its three anhydrous polymorphs.37,44 Similar spectral
features observed in the solid state of sodium acetate
trihydrate and in its aqueous solution can be seen as an

indirect indication of a similar local environment around an
acetate moiety in the condensed phase.

Comparing the structural parameters of the free carboxy-
lates (see Table 1) with those in their sodium complexes,
we note that the geometry around the Ccarb atom is perturbed
quite significantly by the presence of the counterion. The
calculated C-O bond distances are longer than those found
in the solid state most probably due to the fact that the
Na · · ·O distances in the crystal structures are appreciably
larger (2.4-2.7 Å)37,38 than the calculated ones (2.2 Å),
which in turn is a direct consequence of the six-coordinated
metal site found in the solid state. In the coordination sphere
of the Na cation, two of the six oxygens belong to the same
carboxylate (formate or acetate) ion, while the other four
oxygens belong to four different ions. Interestingly, the
closure of the OCO angle on complexation is well-
reproduced by our calculations. From the data presented in
Table 4, we confirm the conclusion reached by Keresztury
et al.53 on the importance of taking the counterion into
account in order to be able to interpret the vibrational spectra
of sodium acetate (see also ref 54). We should also note
that the asymmetric stretching mode shows up in the solid
state spectra with some scatter (see Table 4). This could be
due to the fact that anhydrous sodium acetate is known to
exist in three different modifications,37,44 where a particular
atomic arrangement around the acetate anion affects this
mode to a larger extent. Taking the solvent (water) implicitly
into account within the conductor polarizable continuum
model makes the agreement with the experimental frequen-
cies slightly worse. Upon solvation, the most noticeable
geometrical change was the lengthening of the Na · · ·O
distances (∼0.2 Å), which is, of course, due to the large
dielectric constant of water (see also ref 55). These enlarged
Na · · ·O separations are still in the range for a “direct
binding” (2.3-2.6 Å).36,40 It is remarkable that this very
simple model for the sodium acetate (also used before) can
account for the most salient spectral bands. Since sodium
acetate has been the subject of numerous spectroscopic
investigations, it is informative to compare more closely the
calculated harmonic frequencies with their experimental
counterparts available in the literature.49,50

In solution, in contrast to the crystal structures of
anhydrous carboxylate salts, the influence of solvent mol-
ecules should be taken into account as well. In aqueous
solution, for example, hydration by water molecules com-

Table 3. Selected Vibrational Frequencies (in cm-1) for the Three Carboxylate Anions

method δ(OCO) νas(C-O) νs(C-O) ∆νas-s

Formate
B3LYP/aug-cc-pVTZ 744 (739)a 1649 (1621) 1338 (1312) 311 (309)
CCSD(T)/aug-cc-pVQZ34 745 (738) 1653 (1619) 1342 (1316) 311 (303)
MP4/6-311++G(d, p)32 726 1626 1294 332
exptl7 744 1629 1323 306

Acetate
B3LYP/aug-cc-pVTZ 863 (838)b 1638 (1605) 1347 (1306)b 291 (299)
exptl9 835 1590 1305 285

Benzoate
B3LYP/aug-cc-pVTZ 813b 1662 1335b 327
exptl8 804 1626 1311 315

a Anharmonic frequencies are given in parentheses. b With the significant contribution from the Ccarb-C stretching.

Figure 2. Bidentate complex of metal carboxylate.
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petes with cation-anion ion pairing. Therefore, it is quite
informative to compare the influence of explicit water
molecules with that of a counterion in regard to the structural
parameters and vibrational frequencies of the carboxylate
moiety. To this end, ab initio calculations (B3LYP/aug-cc-
pVDZ) on isolated complexes of the acetate anion with one,
two, three, four, five, or six water molecules have been
carried out. The exploration of the potential energy hyper-
surface of these clusters was not exhaustive and served
mainly to reveal some trends (if any), and only some stable
local minima were identified, shown in Figure 3. Recent ab
initio calculations and molecular dynamics simulations

indicate that the average number of water molecules in the
proximity of the carboxylate groups in formate and acetate
(first coordination shell) is in the range of four to six (see,
for example, refs 56-58 and references cited therein). Recent
time-of-flight neutron diffraction measurements carried out
on aqueous sodium acetate solutions indicated that the first
hydration shell of an acetate ion comprises four water
molecules.59 Interestingly, our results suggest that an acetate
anion can accommodate as many as five water molecules
but with a tendency to form hydrogen bonds between water
molecules if their number increases further (compare clusters
with five and six water molecules in Figure 3). This is

Table 4. Selected Structural Data and Vibrational Frequencies (in cm-1) for Sodium Carboxylates

method r(C-O), Å ∠O-C-O, deg δ(OCO) νas(C-O) νs(C-O) ∆νas-s

Na-formate
B3LYP/aug-cc-pVTZ 1.260 125.6 795 (788)a 1593 (1560) 1366 (1344) 227 (216)
B3LYP/aug-cc-pVTZ (CPCM) 1.260 125.0 763 1547 1338 209
exptl (solid state)45 1.2560(3)b 125.50(3)b 773 1595 1359 236
exptl (aq. solution)46 769c 1580 1351 229

Na-acetate
B3LYP/aug-cc-pVTZ 1.267 123.6 679 1569 1426 143
B3LYP/aug-cc-pVTZ (CPCM) 1.265 123.4 659 1538 1416 122
exptl (solid state)47 1.245, 1.255d 123.6d 650 1580 1424 160
exptl (solid state)48 1.253, 1.257e 123.7e 658 1562 1424 138
exptl (solid state)49 1.250, 1.253f 124.3f 650 1568 1426 142
exptl (aq. solution)46 1550 1416 134
exptl (aq. solution)49 653 1556 1420 136
exptl (aq. solution)50 654 1551 1416 135

Na-benzoate
B3LYP/aug-cc-pVTZg 1.268 123.4 860 1556 1409 147
exptl (solid state)51 845 1552 1413 139
exptl (aq. solution)51 845 1545 1391 154

a Anharmonic frequencies are given in parentheses. b Reference 39. c Reference 52. d Anhydrous sodium acetate.37 e Sodium acetate
trihydrate.42 f Sodium acetate trihydrate.43 g Basis set without diffuse functions (cc-pVTZ) were used for all H atoms.

Figure 3. Optimized clusters of acetate anions with the sodium cation and water molecules (B3LYP/aug-cc-pVDZ). Hydrogen
bonds are indicated by dash lines.
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qualitatively in agreement with a recent first-principles (DFT/
BLYP) molecular dynamics study of formate anion hydration
by Leung and Rempe,58 where a hydration number of 2.45
per formate oxygen was predicted. Our findings are also in
accord with a recent study of da Silva et al.,60 where explicit
solvent molecules were used in the continuum model
calculations with the conclusion that five water molecules
are enough to represent strong solute-solvent interactions
exemplified, among others, by the hydration of ionic solutes
such as formate and acetate anions. Table 6 lists the most
relevant structural parameters and frequencies for the opti-
mized acetate-water clusters.

Some conclusions can be readily drawn from the data on
acetate-water clusters. In terms of both structural parameters
and vibrational frequencies, adding water molecules produces
a noticeable departure from the values for the isolated anion,
which is a direct consequence of the hydrogen bonds being
formed between acetate and water molecules. The most
evident structural changes are the shortening of the C-C
bond distance (and the corresponding blue-shift of the C-C
stretching frequency) and the decrease of the O-C-O bond
angle, which are in agreement with previous ab initio
calculations of Markham et al.56 The nonequivalence of the
two CO bond distances in the clusters with more than one
water molecule, due to asymmetric hydrogen bonds, has been
pointed out in a recent study by Gojlo et al.61 (see also refs
12 and 53). The complexation of acetate with one water
molecule, the dimer being both experimentally and theoreti-
cally well studied (see, for example, refs 62 and 63), does
not explain the vibrational features in the carboxylate region
observed in an aqueous solution of sodium acetate. We note,
however, that, with more water molecules added, an ap-
preciable increase/decrease of the symmetric/asymmetric
C-O stretching frequencies becomes evident as compared
with the values for the isolated anion. Furthermore, adding
one sodium atom to the acetate-water clusters results in the
redistribution of the electron charge density within the ac-
etate ion, which manifests itself in a further lowering of the
asymmetric C-O stretching frequency and decreasing the
frequency separation between the asymmetric and symmetric
C-O stretching modes (compare with Table 5). To separate
the influence of the cation from that of water molecules to
some extent, appropriate crown ethers or cryptands can be
used to trap a counterion, thus preventing ion pairing.64 A
direct structural and spectroscopic study of the microsolvation

of the carboxylate anion can be of great help here (see, for
example, ref 65). The optimized sodium-acetate-water
complexes with one, two, and four water molecules exhibit
an asymmetrical arrangement of the sodium atom with
respect to the two carboxylate oxygens with the Na · · ·O(carb)
distances in the ranges of 2.1-2.3 Å (short contacts) and
3.0-3.6 Å (long contacts). The close contacts between
sodium and water molecules in the clusters studied
(2.2-2.4 Å) lead to an enhancement of the hydrogen bonding
with the carboxylate oxygen atoms thus indirectly influencing
the geometry and dynamics of the acetate. This is particularly
so in the complex with sodium and three water molecules
(see Figure 3), approximately mimicking the local environ-
ment around an acetate in the crystal structure of sodium
acetate trihydrate,42,43 where the two calculated Na · · ·O(carb)
distances are 3.6 Å and the shortest H-O-H · · ·O(carb)
contact is 1.45 Å, whereas in pure acetate-water clusters,
ourcalculations(B3LYP/aug-cc-pVDZ)giveH-O-H · · ·O(carb)
hydrogen bond distances in the range of 1.6-1.8 Å. This
means, that reliable interpretation of the spectra of acetate
even in aqueous solution is possible only if the counterion
is taken into account. Recently, Park and Woon66 have
studied by DFT (B3LYP/6-31+G(d, p)) the formate anions
embedded in water clusters of varying sizes and found that
the influence of a counterion (ammonium) should be taken into
account to better match the frequencies and intensities of CO
stretching modes of the experimental spectra.

Molecular dynamics simulations based on ab initio po-
tentials, which include both the counterions and water
molecules explicitly, would be of great help to reliably
interpret the structure and dynamics of metal carboxylates
in aqueous solution. At present, however, long time simula-
tions utilizing nonempirical potentials are very time-consum-
ing, and therefore, reliable force field parametrizations are
of great relevance.

On the basis of the very good overall agreement between
our calculated and experimental frequencies, one can con-
clude that the cation-anion interaction plays an important
role both in aqueous solution and in the solid state. We stress,
however, that the “free” carboxylate model is incapable of
explaining the spectral features observed for metal carboxy-
lates studied here. We note that the inclusion of the effects
of solvent implicitly (via CPCM self-consistent field with
water as a dielectric medium) perturbed the geometry of the
isolated acetate anion quite appreciably; it is, however, not
able to reproduce the experimental spectral features (see
Table 6). Despite the fact that both structural and vibrational
data can be dependent on the particular solvent reaction field
model used and other calculational details (see also ref 53),
our results point to the necessity to consider (at least) the
first hydration shell around acetate explicitly. This can
explain a mismatch between the calculated C-O stretching
frequencies and those observed in the condensed phase of
sodium carboxylates in a recent study by Oomens and Steill,9

whereas their calculated values agreed with the experimental
frequencies for the isolated carboxylates in the gas phase.
In their work, the calculated frequencies have been scaled
to account for anharmonic effects and other systematic
deficiencies originated from the chosen level of calculation

Table 5. Selected Vibrational Frequencies (in cm-1) for
Sodium Acetate

modea calcdb
exptl (Raman,
solid state)49

exptl (Raman,
aq. solution)49

exptl (IR,
solid state)47c

νas(C-O) 1569 (1634) 1568 1556 1580
νs(C-O)d 1426 (1347) 1426 1420 1424
ν(C-C) 929 (863) 935 930 923
δ(OCO)d 679 (630) 650 653 650
π(OCO) 622 (599) 617 621 625
F(OCO) 465 (436) 478 480 468

a The notations ν, δ, F, and π are used for the stretching,
in-plane bending, rocking, and out-of-plane bending modes,
respectively. b Harmonic frequencies calculated at the B3LYP/
aug-cc-pVTZ level. Values for the free acetate anion are given in
parentheses. c Anhydrous sodium acetate at 80 K. d With a
significant contribution from the C-C stretching.
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(see also ref 8). Oomens and Steill,9 however, have pointed
to the counterion binding as a possible reason for such a
discrepancy. As can be seen from our results, upon bidentate
metal coordination, the symmetric carboxylate mode is
affected much stronger than the asymmetric one. As far as
the formate anion is concerned, the large discrepancy
between the calculated (free)32 and experimental (aqueous
solution) vibrational frequencies can be explained by the
influence of the counterion (sodium) present in the condensed
phase. The most striking mismatch was observed for the
C-H stretching band, where the calculated values of 2657
cm-1 (CCSD(T)/aug-cc-pVQZ),34 2597 cm-1 (MP4/6-
311++G(d, p)),32 and 2573 cm-1 (B3LYP/aug-cc-pVTZ,
this work) for the free formate significantly underestimated
the values of 2821 cm-1 observed in an aqueous solution of
its sodium salt52 and 2830 cm-1 measured for polycrystalline
sodium formate.45 After correcting the calculated value for
anharmonicity (ca. 200 cm-1), Krekeler et al.34 obtained a
very good agreement between their frequency (2441 cm-1)
and the experimental gas-phase value (2456 cm-1).7 Our
calculated value (2926 cm-1) for sodium formate (see Figure
2), being corrected for anharmonicity (2748 cm-1), is much
closer to the experimental value in aqueous solution men-
tioned above. This blue-shift of the C-H stretching band is

solely due to the significant shortening of the C-H bond
distance upon coordination to a metal cation (1.105 Å) as
compared with the value in the free formate anion
(1.135 Å). This value is in perfect agreement with the low-
temperature (120 K) neutron diffraction study on sodium
formate of Fuess et al. (1.1004(7) Å).39 Contrary to the
statement of Dixon et al.,33 poor agreement is observed
between the experimental solid-state frequencies45 and their
calculated values (CCSD(T)/aug-cc-pVDZ) for the C-H
stretching, C-O symmetric stretching, and OCO bending
modes since the influence of the counterion (sodium) was
ignored.

In Figure 4, we compare the calculated IR and Raman
spectra for the free acetate anion and its sodium bidentate
complex at different levels of theory. A reduced splitting
between the carboxylate asymmetric and symmetric stretch-
ing bands is clearly seen for the sodium acetate in the
calculated IR spectrum, which reproduces nicely the experi-
mental IR pattern.46,50

It has been shown by Raman spectroscopy49,50,68 that the
C-C stretching mode in acetate, being the most intense band,
is a very sensitive probe of the local chemical environment
around the C-C bond. Our calculations (B3LYP/aug-cc-
pVDZ) give for this mode a value of 928 cm-1 (sodium

Table 6. Selected Structural Parameters and Frequencies (in cm-1) for the Optimized Acetate-Water Clusters (B3LYP/
aug-cc-pVDZ)

na r(C-O), Å ∠O-C-O, deg r(C-C), Å νas(C-O) νs(C-O)b ν(C-C) δ(OCO)b

0c 1.262 128.6 1.560 1634 1348 865 624
0 (CPCM)d 1.269 124.7 1.531 1503 1392 897 639
1 1.265 127.5 1.547 1615 1373 888 638
2 1.258, 1.270 127.6 1.542 1621 1390 888 640
3 1.259, 1.273 126.6 1.536 1608 1397 921 640
4 1.260, 1.272 125.0 1.530 1612 1418 943 659
5 1.262, 1.274 124.5 1.526 1599 1420 931 660
6 1.259, 1.278 124.5 1.524 1598 1420 925 665
1 (Na)e 1.268, 1.273 125.1 1.522 1573 1422 923 679
2 (Na)e 1.260, 1.277 124.2 1.521 1581 1430 934 678
3 (Na)e 1.262, 1.273 126.3 1.523 1568 1427 923 659
4 (Na)e 1.260, 1.278 124.0 1.520 1589 1434 920 664

a Number of water molecules in the cluster (see Figure 3). b With the significant contribution from the C-C stretching and other modes.
c Isolated acetate anion in a vacuum. d Isolated acetate anion in a dielectric medium (water). e Complex with the sodium cation and water
molecules (see Figure 3).

Figure 4. Left: Calculated harmonic IR spectra for the free acetate anion and its sodium bidentate complex. Experimental
spectrum for the aqueous solution of sodium acetate is taken from ref 46. Right: Simulated Raman spectra for the acetate anion
and its sodium bidentate complex (B3LYP/aug-cc-pVDZ). The wavelength of the diode laser (785 nm), as used in the experiment,
is assumed, and line shapes are modeled with the Lorentz function with a resolution of 10 cm-1 at room temperature. The
experimental Raman spectrum of solid sodium acetate is taken from ref 67.
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acetate), which deviates appreciably from that found for the
free acetate anion (865 cm-1). This is in accord with a much
shorter C-C bond distance in the bidentate complex with a
sodium cation (1.521 Å) as compared to the value in the
isolated acetate (1.560 Å). The simulated Raman spectra for
the acetate anion and its sodium bidentate complex, shown
in Figure 4, are clearly distinguishable, with the latter being
in qualitative agreement with the available experimental
data.48,67,69

The interpretation of the Raman bands observed recently
from a single supersaturated droplet of sodium acetate by
Wang et al.70 should probably be reinterpreted. Their band
assignment (see Table 1) is in perfect agreement with our
results for the sodium bidentate complex if one assumes that,
both in dilute solution and in a supersaturated droplet, the
acetate group is appreciably perturbed by a counterion.

Having demonstrated the reliability of the chosen com-
putational scheme, we are now in a position to develop the
force field parameters, which can be used in molecular
simulations where the main focus is on obtaining both
accurate geometries and dynamics (vibrational frequencies)
of the carboxylate moiety. The derivation of the FF param-
eters for the formate anion is particularly simple, since, in
accord with the MM3 methodology, no van der Waals or
electrostatic terms need to be considered (no 1-4 interac-
tions). This is in contrast with the statement of Kirschner et
al.,4 where difficulties have been encountered when develop-
ing parameters for this particular anion. As already mentioned
above, this is solely due to the absence of some important
cross-terms (stretch-stretch) in the original MM3 functional
form.

The calculated Hessian matrix in Cartesian coordinates
(B3LYP/aug-cc-pVTZ) was projected into the redundant set
of internal coordinates at the trigonal-planar Ccarb center (three
bond stretchings, three in-plane and three out-of-plane angle
bendings) both for the free carboxylate ion and for its sodium
bidentate complex. The number of parameters to be refined
was nine (diagonal terms) and 14 (diagonal and off-diagonal
terms).

Besides the influence of the substituent group (R ) H,
Me, or Ph) clearly seen from the data presented in Table 7,
the perturbation of the force constants caused by sodium
chelation is also evident. On going from the free carboxylate
ion to its complex with the sodium cation, the C-O bond

stretch force constants decrease by ∼3% (formate), ∼5%
(acetate), and ∼7% (benzoate), whereas the O-C-O angle
in-plane bending force constants increase by ∼20%. On the
basis of a detailed analysis of the normal modes, the influ-
ence of the sodium cation can be described as follows. Since
the mode, commonly referred to as “asymmetric” (or
sometimes also as “antisymmetric”) stretching, is solely due
to the out-of-phase stretching of the two C-O bonds, its
frequency should decrease on complexation with the cation
simply because the C-O stretch force constant decreases
(see Table 7). At the same time, the second mode, commonly
referred to as “symmetric” stretching, is actually a mixture
of the in-phase stretching of the two C-O bonds and the
C-C stretching (in acetate and benzoate) with a small
contribution from the O-C-O angle bending. Since both
the C-C stretch and the O-C-O angle bend force constants
increase on complexation (see Table 7) and, in addition, the
contribution from the C-C stretch to this mode increases
(from 16% in acetate and benzoate to 26% in sodium acetate
and benzoate, on the basis of the potential energy distribu-
tion), their overall effect overwhelms the decrease of the
C-O stretch force constant, resulting in a higher frequency
as compared to that of the free carboxylate anion (compare
the data in Tables 3 and 4).

We also found that the rotation around the Ccarb-C bond
in the acetate is essentially free, which is in agreement with
previous theoretical4,53 and experimental (spectroscopic)49

studies. The torsional force constant given by Kakihana et
al.47 is probably too large, which is due to the overestimation
of the barrier to methyl group rotation (2.3 kcal/mol)71 and
that of the corresponding torsional frequency derived there-
from used in the fit. A recent neutron scattering study of
Moreno et al.72 gave a value of 0.95 kcal/mol for the
rotational barrier in anhydrous sodium acetate. This latter
value is comparable with that found earlier by Montjoie and
Müller-Warmuth73 (0.77 kcal/mol) from their analysis of the
correlation between NMR spin-lattice relaxation and neutron-
scattering data on anhydrous sodium acetate. The rotational
barrier in the benzoate, on the other hand, is appreciable (vide
supra).

Introducing two new atomic types, Ccarb and Ocarb, and
taking minor modifications into account (see eqs 1 and 2),
the force field parameters presented in Table 8 are suitable
for use within the MM3(2000) force field. As in our previous

Table 7. Projected Force Constants for the Carboxylate Moiety

free carboxylate sodium carboxylate

parametera formate acetate benzoate formate acetate benzoate

C-O str, mdyn/Å 9.83 9.62 9.77 9.51 9.11 9.04
C-R str, mdyn/Å 3.74 3.27 3.48 4.75 4.14 4.44
O-C-O bend, mdyn Å/rad2 0.80 0.86 0.90 1.01 1.08 1.11
O-C-R bend, mdyn Å/rad2 0.54 0.72 0.83 0.57 0.74 0.85
O-C-O wag, mdyn Å/rad2 0.06 0.07 0.07 0.06 0.07 0.07
C-O/C-O str-str, mdyn/Å 1.47 1.52 1.47 1.58 1.59 1.52
C-O/C-R str-str, mdyn/Å 0.63 0.71 0.78 0.40 0.55 0.65
C-O/O-C-O str-bend, mdyn/rad 0.19 0.20 0.21 0.31 0.32 0.34
C-O/O-C-R str-bend, mdyn/rad 0.16 0.20 0.20 0.09 0.13 0.12
C-R/O-C-R str-bend, mdyn/rad 0.12 0.18 0.24 0.08 0.15 0.20
(O, O)C-R tors, mdyn Å/rad2 0.007 0.06 0.008 0.08

a Abbreviations used: “str” for stretch; “bend” for in-plane angle bend; “wag” for out-of-plane angle bend; “str-str” and “str-bend” for
stretch-stretch and stretch-bend interactions, respectively; and “tors” for COO twisting.
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work,1 we decided to use effective atomic point charges to
describe electrostatic interactions instead of bond dipoles
normally used within the MM3 formalism. This is done in
order to facilitate the applicability of derived FF parameters
within other MM implementations. It turned out, however,
that the electrostatic interactions can be ignored since, as
we found in our preliminary tests, they had no influence
on the parameters we are interested in except for the
H-C-Ccarb-Ocarb and Cph-Cph-Ccarb-Ocarb torsional pa-
rameters for acetate and benzoate, respectively. Since the
values for the torsional parameters are dependent (especially
for benzoate) on the particular electrostatic model used (point
charges, bond dipoles, etc.), they are not included in Table
8. The standard MM3(2000) van der Waals parameters were
employed without further refinement, since we focus here
on intramolecular interactions, and the force field parameters
were adjusted with a genetic algorithm used in our previous
work.1

When the atomic point charges fitted to reproduce the
electrostatic potential (+0.8 and -0.8 for Ccarb and Ocarb,
respectively, 0.0 for the Cph(-Ccarb), and average values of
-0.12 and +0.12 for Cph(-H) and H, respectively) were
used, and assuming a single 2-fold Fourier term
(1/2V2(1 - cos2φ)) for the Cph-Cph-Ccarb-Ocarb twist angle
(φ), the parameters V2 for the isolated benzoate anion and
its complex with the sodium cation were refined to be 1.4
and 1.7 kcal/mol, respectively. With these parameters at hand,
we reproduce the calculated (B3LYP/aug-cc-pVTZ) lowest
(torsional) mode of the isolated benzoate anion (55 cm-1)
and its complex with the sodium cation (67 cm-1) within

4 cm-1. If the electrostatic interactions are ignored com-
pletely, we arrived at the values of 2.0 and 2.3 kcal/mol,
respectively, for the V2 parameter.

Using the derived FF parameters, the calculated vibrational
frequencies for all three carboxylates, characteristic for the
carboxylate moiety (symmetric and asymmetric C-O stretch-
ings and O-C-O in-plane bending), are very close to the
reference values (B3LYP/aug-cc-pVTZ) with a root-mean-
squared deviation of less than 14 cm-1. This is particularly
astonishing since, in addition to the diagonal FF parameters,
only a few cross-terms (stretch-stretch and stretch-bend)
listed in Table 8 were explicitly optimized. Interestingly, due
to the redundancy relationship among the three valence
angles around the trigonal-planar Ccarb atom, the values for
other cross-terms (see Figure 1) are reproduced automatically.
We should note that the importance of the CO/CO
stretch-stretch cross-term to reproduce the stretching fre-
quencies of the carboxylate moiety was established by
spectroscopists quite a long time ago. Probably, one of
the first estimates was due to Jones and McLaren74 from
the analysis of IR spectra of solid anhydrous sodium acetate
(1.7 mdyn/Å), where the structural parameters for the
carboxylate group (C-O bond distances and O-C-O bond
angle) were taken from the crystal structure of sodium
formate.75 The values given by Spinner76 (1.6 mdyn/Å) and
Kidd and Mantsch45 (1.6 mdyn/Å) for formate, by Beckmann
et al.77 (1.3 mdyn/Å) and Kakihana et al.47 for acetate
(2.0 mdyn/Å), and by Ernstbrunner et al.78 for 4-nitroben-
zoate (1.5 mdyn/Å) are significant and are very close to the
value derived in the present work. We should also mention
the large value for this particular stretch-stretch cross-term
obtained by Lii6 for formic acid (1.3 mdyn/Å). Further, our
value for the CO/OCO stretch-bend interaction (in mdyn/rad)
is also very similar to those available in the literature (0.345

for formate, 0.477 for acetate, and 0.678 for 4-nitrobenzoate).
Relevant to our compilation (see Table 8) are the parameters
used to describe the carboxylate group in another widely used
MMFF94 force field.79 There, the values of 9.756 mdyn/Å,
1.181 mdyn Å/rad2, and 0.652 mdyn/rad for the CO bond
stretch, OCO angle bend, and CO/OCO stretch-bend
interaction, respectively, are used. These values are strikingly
similar to those derived in our study. However, no
stretch-stretch cross-term is used for this moiety in the
MMFF94 force field.

We should mention that, among numerous previous
attempts to reproduce the vibrational spectra of carboxylates
by refining the corresponding force constants, a particular
success of Kakihana et al.47 in their study of the acetate anion
can be attributed mainly to the use of many important cross-
terms in the valence force field (actually, due to the
redundancy relationship around the trigonal-planar Ccarb

center, even less cross-terms are needed to parametrize
explicitly). Their effective force constants, refined against
82 observed frequencies of six isotopomers of sodium
acetate, have implicitly incorporated the influence of the
metal cation on vibrational spectra. In another earlier work,
Dasgupta and Goddard3 combined the Hessian from ab initio
calculations with the structural and spectroscopic data from
experimental data to generate the force field parameters for

Table 8. Additional MM3(2000) Force Field Parameters for
the Carboxylate Moiety

Bond Stretches

atom types
reference

distance, Å
force

parameter, mdyn/Å

Ccarb-Ocarb 1.252 (1.264)a 9.8 (9.3)
Ccarb-H 1.13 (1.11) 3.7 (4.6)
Ccarb-C(sp3) 1.542 (1.514) 3.6 (4.2)
Ccarb-Cph 1.531 (1.481) 3.8 (5.1)

In-Plane Angle Bending

reference
angle, deg

force parameter,
mdynÅ/rad2

Ocarb -Ccarb-Ocarb 130.0 (124.0) 1.4 (1.9)
Ocarb-Ccarb-H 114.8 (114.8) 0.7 (0.7)
Ocarb-Ccarb-C(sp3) 117.3 (117.8) 0.9 (0.9)
Ocarb-Ccarb-Cph 115.4 (121.0) 1.0 (0.8)

Out-of-Plane Angle Bending
(R-)Ccarb-Ocarb

b 0.0 1.7 (1.7)

Stretch-Stretch (mdyn/Å)c

Ccarb-Ocarb/Ccarb-Ccarb 1.5 (1.6)
Ccarb-Ocarb/Ccarb-R 0.7 (0.5)

Stretch-Bend (mdyn/rad)
Ccarb-Ocarb/Ocarb-Ccarb-Ocarb 0.6 (0.8)
Ccarb-Ocarb/Ocarb-Ccarb-R 0.6 (0.5)
Ccarb-R/Ocarb-Ccarb-R 0.5 (0.4)

a Values for a carboxylate moiety perturbed by bidentate
coordination of sodium are given in parentheses. b All three Wilson
angles at a trigonal center are assigned the same force constant.
c Due to the error in the implementation of eq 1, the values cited
in Table 9 of ref 1 should be exactly 2 times smaller.
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the formate anion. On the basis of their recommended
parameters (see Table 2, column labeled as “HTX” in ref
3), we were able to reproduce their large deviation
(∼90 cm-1) for the lowest-frequency OCO bend (see Table
10, column labeled as “HTX” in ref 3). The reason for this
discrepancy could be their smaller values for the OCO
bending and CO/OCO stretch-bend interaction force con-
stants as compared to our results.

Our motivation in this work was primarily to develop
reliable FF parameters for the carboxylate group directly from
the quantum chemical calculations, which can be used in
molecular simulations of MOF materials, where this par-
ticular functionality is used to link various metal-oxide
clusters together, resulting in a 3D porous framework.1

Among the variety of linkers used so far, one ubiquitous
type consists of the carboxylate functionality conjugated with
the phenyl moiety,80 for which benzoate can serve as a model
system. In modeling the frameworks we are interested in,
one important parameter is the barrier to internal rotation of
the carboxylate group with respect to the phenyl ring. In
contrast to the bidentate coordination of an alkali metal (see
Figure 2), metal-oxide clusters usually bind in a bridging
fashion exemplified in Figure 5 by two representative motifs
encountered in MOFs based on basic metal carboxylate and
dinuclear metal tetracarboxylate (“paddle-wheel” motif)
building units.

In our calculations, the use of the benzoate moiety instead
of a more realistic linker encountered in various MOFs, such
as benzene-1,4-dicarboxylate (terephthalate) in MOF-581 or
benzene-1,3,5-tricarboxylate (trimesate) in CuBTC,82 needs
to be justified. Moreover, replacing the bridging metal-oxide
cluster (as shown in Figure 5) with the bidentate coordination
of an alkali metal can in principle modify the barrier to
rotation as well. To this end, the geometry of an “orthogonal”
conformer was optimized, constrained to have the carboxy-
late group rotated by 90° with respect to the phenyl ring.
The torsional barrier was calculated as the energy difference
between the global minimum (all atoms are in one plane)
and the orthogonal conformer at the B3LYP level of theory
using the correlation consistent basis sets of improved quality
(from double- to triple-�).

The results presented in Table 9 allow some important
conclusions to be drawn. First, the augmentation of basis
sets with diffuse functions (marked with the prefix “aug”)
has a large effect on the barrier, especially for the free
benzoate anion. Second, going to a larger basis set lowers

the barrier. Third, a triple-� basis set (aug-cc-pVTZ) gives
similar results as a much more economical double-� basis
set (aug-cc-pVDZ). Therefore, the latter basis set can be
recommended. We also note that the barriers calculated at
the MP2 level of theory using the aug-cc-pVDZ basis set
are close to the values obtained at the DFT/B3LYP level.
Interestingly, the rotational barriers calculated for bidentate
lithium and sodium benzoates are similar to those of bridging
zinc and copper benzoates (see Figure 5), respectively. It is
also evident that coordination with metals (or metal-oxides)
makes the rotational barrier higher in comparison with that
in the free carboxylate. To the best of our knowledge, there
is no systematic study on the barrier to rotation of the
carboxylate group conjugated with aromatic rings and its
dependence on the mode of coordination to metal cations.
Rakitin and Pack83 have calculated a barrier of 3.4 kcal/mol
for the free benzoate anion (MP2/STO-3G), whereas Woo
et al.84 gave a value of ∼4.5 kcal/mol for the p-methylben-
zoate anion (B3LYP/6-31+G(d, p)).

To get some more insight into the rotational flexibility of
the carboxylate group conjugated with the benzene ring, we
have calculated (B3LYP/aug-cc-pVDZ) the most important
stationary points on potential energy hypersurfaces of tereph-
thalate and trimesate, both as free anions and as chelated
(bidentate) complexes with alkali metals (lithium and
sodium). The results for rotational isomers (conformers) are
presented in Table 10, where the plane of one or two
(terephthalate) and one, two, or three (trimesate) COO groups
can be orthogonal to the plane of the benzene ring. The
energies are given with respect to the global minimum
structure, which corresponds to a planar arrangement of all
atoms.

The most evident trend seen from these data is that the
energy penalty for two (terephthalate) and for two and three
(trimesate) orthogonal COO groups is not quite additive; that

Figure 5. Two motifs encountered in MOFs based on a basic
metal carboxylate, Zn4O(O2CH)5-benzoate (left), and a bi-
nuclear metal (“paddle-wheel”) carboxylate, Cu2(O2CH)3-
benzoate (right), building units.

Table 9. Calculated Barriers to Rotation of the Carboxylate
Group (kcal/mol) for Model Systems

cc-pVDZ
aug-cc-
pVDZ cc-pVTZ

aug-cc-
pVTZa

benzoate anion 8.2 (8.6)b 4.0 (4.5) 5.2 (6.0) 3.8 (4.6)
Li-benzoate 8.1 (7.7) 6.8 (6.3) 7.1 (6.9) 6.8
Na-benzoate 7.9 (7.5) 6.2 (5.9) 6.4 (6.4) 6.0
Zn4O(O2CH)5-benzoate 8.4 6.9 7.0
Cu2(O2CH)3-benzoatec 7.5 6.3 6.4

a A basis set without diffuse functions (cc-pVTZ) was used for
all H atoms. b Values calculated at the MP2(frozen core) level of
theory are given in parentheses. c Triplet electronic state.

Table 10. Calculated Barriers to Rotation of the
Carboxylate Group (kcal/mol) for Terephthalate and
Trimesate Anions and Their Saltsa

1 2 3

terephthalate anion 4.2 9.2
Li2-terephthalate 6.4 13.5
Na2-terephthalate 5.8 12.5
trimesate anion 2.0 4.9 8.4
Li3-trimesate 6.1 12.8 19.9
Na3-trimesate 5.4 11.4 17.9

a Numbers (1, 2, or 3) indicate the number of COO groups
orthogonal to the benzene plane.
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is, the energy cost increases with more carboxylate groups
rotated out of the benzene plane. Comparing the calculated
barriers (B3LYP/aug-cc-pVDZ) in dilithium (13.5 kcal/mol)
and disodium (12.5 kcal/mol) terephthalate (in this case, an
“orthogonal” conformer corresponds to the geometry where
both COO groups are rotated by 90° with respect to the
phenylene ring) with the doubled value calculated for lithium
(2 × 6.8 ) 13.6 kcal/mol) and sodium (2 × 6.2 )
12.4 kcal/mol) benzoates (see Table 9), one can conclude that
the energy penalty arising from the rotation of the carboxylate
group out of the benzene plane is additive to a large degree.
This observation justifies the use of benzoate as a model system
for more complicated benzene polycarboxylates such as tereph-
thalate or trimesate. We also note that the calculated torsional
barrier is much closer to a recently determined experimental
value of 11 ( 2.0 kcal/mol85 as compared to our previous
estimation (∼16 kcal/mol; B3LYP/cc-pVDZ),1 which is due
to a larger basis set used in this work (augmented with diffuse
basis functions). For some recent estimations of the rotational
barriers, see also ref 86.

4. Conclusions

In summary, we have clarified the role played by a counterion
in the interpretation of the vibrational spectra of the car-
boxylate group in the condensed phase (aqueous solution
and solid state) using formate, acetate, and benzoate and their
sodium bidentate complexes as examples. We have shown
that, with the help of such simplified models, it is possible
to explain the most salient features observed in spectral
regions characteristic of the carboxylate vibrations. In light
of new experimental data corroborated by the calculations,
the notion of a “free” (isolated) carboxylate needs to be
revised. Even in dilute (aqueous) solutions, a carboxylate
group can be perturbed by a counterion quite appreciably.
We argue that the direct or indirect influence of a counterion
was largely underestimated in the past and cannot be ignored.
On the basis of the results of ab initio calculations, the
changes in the force field of the carboxylate moiety upon
metal ion coordination are analyzed in detail. With the use
of density functional theory along with a large basis set
augmented with diffuse basis functions, the molecular-
mechanical force field parameters are developed, aimed at
molecular simulations of large biomolecules, such as amino
acids, as well as that of a broad class of metal-organic
coordination polymers where polydentate carboxylates are
used as organic linkers.1 The use of a complete (redundant)
set of internal coordinates is not only a straightforward and
natural approach to developing the FF parameters but, in
addition, can reduce the number of cross-terms necessary to
reliably predict the vibrational frequencies within the MM
approach, thus avoiding complications arising from utilizing
some additional terms, like the Urey-Bradley term.54 In
addition to the CO/OCO stretch-bend cross-term, the
importance of the CO/CO stretch-stretch interaction in the
carboxylate moiety is emphasized. A similar approach can
be applied for molecular-mechanical force field derivation
for other important anions like phosphate, nitrate, sulfate,
carbonate, and so forth. We can anticipate that the presented
analysis and derived parameters will be useful in the

modeling of solid metal carboxylates per se,87 where not only
the structure but, in addition, accurate dynamics are of
interest. Simulations of transition metal carboxylates within
the MM approach88 can also benefit from our findings. With
the use of the results of this study, the influence of a
particular mode of metal coordination to a carboxylate group,
as manifests itself in the fingerprint region of vibrational
spectra, can be modeled reliably and accurately, helping to
interpret IR spectra of various MOFs. Last but not least,
molecular simulations of amino acids in solution (e.g., as
zwitterions in water) can be performed by taking full internal
flexibility of the carboxylate moiety in the force field into
account.
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Abstract: We present electronic structure calculations of the ultraviolet/visible (UV-vis) spectra
of highly active push-pull chromophores containing the tricyanofuran (TCF) acceptor group. In
particular, we have applied the recently developed long-range corrected Baer-Neuhauser-Livshits
(BNL) exchange-correlation functional. The performance of this functional compares favorably
with other density functional theory (DFT) approaches, including the CAM-B3LYP functional.
The accuracy of UV-vis results for these molecules is best at low values of attenuation
parameters (γ) for both BNL and CAM-B3LYP functionals. The optimal value of γ is different for
the charge-transfer (CT) and π-π* excitations. The BNL and PBE0 exchange correlation
functionals capture the CT states particularly well, while the π-π* excitations are less accurate
and system dependent. Chromophore conformations, which considerably affect the molecular
hyperpolarizability, do not significantly influence the UV-vis spectra on average. As expected,
the color of chromophores is a sensitive function of modifications to its conjugated framework
and is not significantly affected by increasing aliphatic chain length linking a chromophore to a
polymer. For selected push-pull aryl-chromophores, we find a significant dependence of
absorption spectra on the strength of diphenylaminophenyl donors.

I. Introduction

Organic chromophores possessing a high degree of π-con-
jugation are ideal materials for advanced electronic and
photonic applications including optical information process-
ing, photovoltaic cells, photodynamic therapy agents, and
many other applications.1 These properties are due to the
stable, macrocyclic, conjugated network of π-electrons,
which lead to high electrical polarizabilities and rapid
nonlinear optical responses (NLO) of the charge density to
the applied intense electromagnetic fields. The optical spectra
and NLO properties of chromophores may be conveniently

modified Via a change of molecular architecture, substituent
groups, and substitution patterns.2-7

The need to understand the relationship between chemical
structure and NLO properties at the molecular level has led
to the exploration of various electron-donor and electron-
acceptor end-groups linked through π-bridges of various
natures and lengths. One of the most successful NLO systems
combines the 2-dicyanomethyl-3-cyano-4,5,5-trimethyl-2,5-
dihydrofuran acceptor end-group, often referred to as “tri-
cyanofuran” (TCF), with substituted amine donor end-groups.
The π-linkage may include thienylvinylene (FTC)3 and
tetraene (CLD)4 type bridges.

These push-pull chromophores exhibit superior NLO
properties, characterized by a large hyperpolarizability (�)
values and good thermal and chemical stabilities. Devising
efficient electro-optical (EO) materials that also have good
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optical transparency represents a considerable development
dilemma. For instance, the transparent chromophores in a
visible yellow spectral range are typically small molecules
with a low EO response, while molecules possessing large
�-values are frequently opaque or, at best, have small
windows of visibility. The visibility window in these NLO
frameworks is generally bracketed by two kinds of electronic
transitions.2-7 The blue-shifted transition is a local excitation
of π-π* character, while the red-shifted transition is
characterized by a significant intramolecular charge-transfer
(CT). The CT peak is typically the maximum absorption peak
(λmax), while the π-π* transition has a much lower oscillator
strength and could be denoted as λmax-1. An increase in the
�-value due to a change in end-groups is usually ac-
companied by a red-shift of the λmax peak. The optimal
chromophores, which are transparent in the visible spectrum,
would have a red-shifted λmax-peak, while the λmax-1-peak
should be blue-shifted to open a large visibility window. In
this work, we assess the accuracy of computational methods
in predicting both the λmax- and λmax-1-peaks of optical
absorption spectra. A reliable computational method, if
available, would allow the prediction of both the position
and intensity of either peak with a small, consistent error.
This would facilitate the formulation of a relationship
between molecular structure and the UV-vis absorption
spectra of chromophores and contribute to the design of
chromophores which are transparent in the visible.

Due to the almost limitless optimization space of chro-
mophore structures, computational tools are increasingly
being used to assist experimental efforts in designing optimal
chromophores. By far the most often used computational
approaches are semiempirical and DFT methods. The
semiempirical computational methods, such as INDO/CIS,
are fast and accurate for chromophores similar to systems
for which the method was parametrized.8

DFT offers the best compromise between accuracy and
computational performance for typical chromophores of
about 100 atoms. The electronic spectra are often calculated
using time-dependent density-functional theory (TD-DFT)9,10

and numerous successes of this technique have been recently
reviewed.11

Recent papers on visible absorption spectra of numerous
organic dyes12 found that the DFT method at the PBE0 level
delivers overall the best estimates of λmax values. In the case
of push-pull π-conjugated chromophores, it is well-known
that the conventional exchange-correlation potentials of DFT
fail to predict accurately optical properties.13 Unacceptably
large errors were reported for chromophores with increasing
chain lengths of the conjugated framework.14,15 The failure
of TD-DFT calculations has been associated with the
incorrect asymptotic behavior of typical exchange-correlation
(XC) potentials. These approximate XC potentials do not
correctly treat self-repulsion, which leads to the so-called
self-interaction error (SIE).11 As a result, the excited states
of dyes, in particular the charge-transfer (CT) of chro-
mophores, are poorly described.13,16,17 Recently, a new class
of DFT functionals has been proposed, which includes a
growing fraction of “exact” exchange as the distance
increases.18-24 These long-range corrected (LC) functionals

have been found to provide improved correlation between
calculated and experimental optical properties of several
dyes.12,24 The recently proposed BNL functional,21,23 which
falls into this LC-class, is of particular interest for studying
push-pull dyes because it has been shown to reproduce
exactly the CT excitation for intermolecular complexes.23

The full long-range cancelation of self-repulsion in BNL
restores the long-range effective potential 1/r and also allows
an improved CT excitation description for intermolecular
complexes. In this paper, we report the implementation of
the BNL method in the parallel NWChem program pack-
age.25 The performance of the BNL method will be compared
with other DFT approaches, in particular with the CAM-
B3LYP functional.12,22

The focus of this research is push-pull chromophores with
large �-values for which accurate experimental UV-vis
spectra are available. We present representative results for
four types of molecules: 2-dicyanomethylen-3-cyano-4-{2-
[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-
thien-5]-E-vinyl}-5,5-dimethyl-2,5-dihydrofuran3,5 (denoted
FTC), CLD,4,5 recently synthesized, highly efficient chro-
mophores6 based on the (4-diaryloamino) phenyl electron
donors and 2-dicyanomeththylen-3-cyano-4-methyl-5-phenyl-
5-trifluoro-methyl-2,5-dihydrofuran (CF3-TCF) electron ac-
ceptors, and the TCV chromophore with a strong acceptor
(tricyanovinyl) and donor (dimethylamine).26 This selection
allows us to evaluate and validate the theoretical methods
for calculating absorption spectra of this important class of
molecules.

Several studies have been published critically comparing
the performance of various computational methods for
chromophores with TCF acceptors. The most comprehensive
comparison of Hartree-Fock (HF), INDO, and DFT methods
in calculations of dipole moments, polarizabilities, and
�-values was published by Isborn et al.27 They found that
the relative merits of molecules are consistently predictable
with every method. However, no optical absorption spectra
were evaluated in this work. The effect of conformation and
isomerization on NLO properties of the FTC chromophore
have been reported by Kinnibrugh et al.28 The �-values
change significantly even for nearly degenerate conformers.
However, the effect of isomerization on the absorption
spectra of FTC was not investigated. The INDO method was
recently used to compare properties of several chromophores
with strong nitrile-based acceptor end-groups and various
modifications of the π-bridge.29,30 The trends in �- and λmax-
values have been correlated with modifications of the
chemical structure. The errors in absolute values of λmax as
calculated with the INDO approximation can reach 150 nm
or more, which is almost as large as the entire visibility
window of interest. Moreover, no λmax-1-peak was calculated,
thus making it difficult to evaluate the applicability of the
INDO method in predicting the transparency window of such
chromophores.

This paper is organized as follows. First, we will describe
the implementation of the BNL method in the NWChem
program and verify the sensitivity of the method to the choice
of technical parameters, such as basis set or model of
solvation. We will then verify the performance of standard
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DFT functionals for chromophores with the TCF motif and
study the dependence of absorption spectra on the choice of
low lying conformers of FTC and CLD. This will allow us
to select the most stable conformer for a detailed study of
comparing the performance of the DFT-LC method for
several chromophores with TCF-type acceptors. We will
judge the applicability of DFT-LC functionals in predicting
the visibility window by comparing positions of both the
λmax- and λmax-1-absorption peaks and their corresponding
oscillator strengths to experimental data. Finally, the BNL
method will be applied to study the effect of varying
substituents in models of CF3-TCF-type chromophores on
the respective optical spectra. The optimized structures are
provided as Supporting Information.

II. Computational Methodology

The structures of all molecular systems were calculated using
the Gaussian03 program.31 The B3LYP exchange-correlation
functional and the 6-31(d,p) basis set were used in the gas
phase calculations.31-34 The geometry optimization in a
solvent was done using the PCM model as implemented in
Gaussian03.35 The vertical excitation energies were calcu-
lated using the time-dependent DFT (TDDFT)10,36 module
implemented in the NWChem computational chemistry
package25 developed at the Pacific Northwest National
Laboratory. This program allows us to compare the perfor-
mance of several long-range corrected (LC) DFT ap-
proaches21-23 as well as other typical DFT exchange-
correlation functionals, which is one of the main goals of
this paper. To simulate the effect of the solvent on the
excitation energies, we have used the COSMO solvation
model37 implemented in NWChem.

Three classes of DFT functionals are investigated here.
The first class consists of the fundamental local density
(LDA) and generalized-gradient (GGA) approximations38

represented by SVWN and PBE,39 respectively. LDA and
GGA depend on the electron density and its gradient,
respectively.38 The second class is comprised of three hybrid
methods, B3LYP,32-34 PBE0,40 and BH&H.41 In all these
hybrids, the percentage of Hartree-Fock exchange is con-
stant at each point in space, and it amounts to 20, 25, and
50% of HF exchange for B3LYP, PBE0, and BH&H,
respectively. The hybrid functionals yield quite accurate
transition energies for many organic dyes; however, they
poorly describe charge-transfer states that dominate the λmax-
transitions of the molecules studied in this paper. The most
successful strategy used to solve this problem involves the
use of the LC DFT functionals.18-24 These functionals
include a growing fraction of Hartree-Fock exchange when
the interelectronic distance increases, thus effectively limiting
the dominant self-interaction error at large distances. This
procedure, originally suggested by Savin,18 has been further
extended resulting in several implementations of LC-DFT
functionals. The essence of these functionals lies in partition-
ing the Coulomb operator into long- and short-range
components22,24 in an Ewald-like fashion as

where γ is the attenuation or range-separation parameter,
while R and � define the contributions of the Hartree-Fock
exchange. With this, the exchange energy, Ex, can be
partitioned into short- and long-range components, respectively

The short-range part of the exchange is treated with
traditional DFT, while the long-range component is treated
with “exact” exchange. A crucial issue in the construction
of these functionals is the choice of parameters R, �, and γ.
The parameters R and � satisfy the relations 0 e R e 1, 0
e � e 1, and 0 e R + � e 1.20-24 In this work, we have
used the CAM-B3LYP functional of Handy and co-workers,
which applies the Coulomb attenuation method to B3LYP.22

We have used two parametrizations of CAM-B3LYP, the
original one with R ) 0.19, � ) 0.46 and a modified one
with R ) 0.19 and � ) 0.81.22 The first parametrization
yields R + � ) 0.65, so no exact asymptote of the exchange
potential is reached. The second parametrization yields R +
� ) 1 indicating that the Ex(long) term, asymptotically (at
rf∞) is equal to Hartree-Fock exchange.

In the BNL LC approach21,23 the electron repulsion is also
separated into long- and short-range parts according to eq
1; however, the parameters are set to R ) 0 and � ) 1.
Therefore, the short-range part is treated with traditional
DFT, while the long-range component, unlike the CAM-
B3LYP functional described above, attains the “exact”
exchange value only in the asymptotic limit. In the BNL
functional, the exchange-correlation energy per particle is
separated into γ-dependent exchange and correlation parts
respectively as follows

where n represents the density. The exchange energy per
particle is presented in Savin’s form,18 where q ) (γ)/(kf)
and kf is the local Fermi vector at the given density n. The
exchange and correlation energies are represented as

where the major part of the correlation energy has been
represented with the GGA functional LYP.32 It has been
found that subtracting a small piece of the Savin exchange
(eq 4) with a small mixing factor w improves the overall
performance of the functional.23 It can be shown that the
theory becomes more HF-like for large γ and behaves more
local DFT-like for small γ. A crucial issue in the construction
of LC functionals is the choice of γ. It has been shown23

that this parameter can be optimized using an extensive
molecular training set, but recent calculations42 have revealed
that this parameter is in fact system-dependent. The value γ
) 0.5 was used in the original paper, while γ as small as
∼0.1 has been recommended for some metallic systems.42

In this study, we performed further validation of this
parameter on the molecular systems considered in this paper.

1
r
) 1

r
{1 - [R + �erf(γr)]} + 1

r
[R + �erf(γr)]

(1)

Ex ) Ex(short) + Ex(long) (2)

εxc
γ (n) ) εx

γ(n) + εc
γ(n) (3)

εc
γ(n, |∇n|) ) εc

LYP(n, |∇n|) - wεx
γ(n) (4)
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To estimate the vertical excitation energies, we have used
the TD-DFT approach.9,10 TD-DFT is an extension of DFT
in which electronic excitations are calculated as the poles
of the electron density response.9,10 We also tested the
Tamm-Dancoff approximation,43 as it is computationally
more efficient than solving the complete TD-DFT equations.
We found a systematic blue-shift of spectra and decided not
to use this approximation. We have frozen the atom-like core
orbitals in TD-DFT calculations.

Since the long-range part of LC-functionals has to be
calculated explicitly, the 2-electron integrals have to be
considered with care. In particular, the exchange interactions
have to be treated separately from the pure Coulomb
interactions because the attenuation just affects the exchange.
We have implemented two approaches to deal with this. The
first approach utilizes the well-known Dunlap44 charge fitting
method for the pure Coulomb interactions, whereas the
exchange contribution (including the attenuation) is treated
in the conventional manner. The second approach involves
calculating directly all the exchange integrals. Our charge
fitting approach is implemented along the lines of the von
Arnim and Ahlrichs implementation.45 The Coulomb con-
tribution with this approach is evaluated with 3-center
integrals. The in-core strategy in NWChem for storing all
the 3-center, 2-electron integrals in memory also allows for
a much faster evaluation of the Coulomb contribution
compared with disk-based or direct approaches. We have
used the DFT DGauss Coulomb fitting basis46 for the charge
fitting on all the atoms.

The effect of basis set expansion on UV-vis spectra was
studied for the TCV molecule presented in Figure 1. Table
1 shows λmax- and λmax-1-transitions and corresponding

oscillator strengths obtained for basis sets of increasing size.
Both hybrid and Coulomb attenuation functionals were
tested. In order to compare the BNL and CAM-B3LYP
functionals, common parameters, γ ) 0.33 and R + � ) 1,
were used for both functionals. For the CAM-B3LYP
calculations we have used R ) 0.19, � ) 0.81 and for the
LC-BNL calculations we have used R ) 0, � ) 1,
respectively The extension of basis sets leads to red-shifted
spectra by less than 20 nm in the case of the λmax-peak and
less than 10 nm for the λmax-1-peak. The oscillator strengths
are more sensitive to the basis set choice, particularly for
the λmax-1-peak of the CAM-B3LYP method. We also tested
the accuracy of fitting functions by comparing results with
those obtained using a direct method that does not employ
fitting functions. No significant deterioration of results was
observed due to the fitting. In the case of very large
chromophores, we have used the smaller 6-31G* basis set
as it represents the best compromise between computational
efficiency and accuracy.

Predicting the effect of a solvent on absorption spectra is
a difficult task as, in principle, it requires consideration of
both a fast, electronic and a slow, orientational relaxation
response of a solvent.47,48 Solvents of interest have typically
very low dielectric constants, and we assume that excitation
energies are not too sensitive to the choice of the solvation
model. In this work, we have considered the “conductor-
like screening model” COSMO as implemented in the
NWChem program. In this model, the solute interacts with
the solvent represented by a dielectric continuum model.37,48

The solute molecule is embedded into a cavity surrounded
by a dielectric continuum of permittivity ε. The dielectric
screening energies for a given geometry scale as (ε - 1)/(ε
+ x) with the dielectric permittivity ε of the screening
medium, where x is in the range of 0-2. The scaling x() 0)
was used,49 and it was confirmed that x() 1/2) shifts λmax

by less than 5 nm, even for the chloroform solvent with a
very low dielectric. We have tested several techniques of
building the COSMO cavity considering different sets of
radii48,49 and tesselation of the unit sphere as well as
octahedral and icosahedral representations of the cavity
surface.25 The absorption spectra of the TCV, FTC, and CLD
molecules appear to be little affected, and, therefore, the
NWChem default COSMO parameters were used throughout
this study. Finally, we have tested the effect of structural
changes due to the presence of solvent on the absorption
spectra and found a small red shift of less than 5 nm for
both peaks. In summary, we expect that the red-shift of
absorption spectra due to the choice of basis set or solvent
model does not exceed 20 nm. We further assume that the
possible discrepancy with respect to experimental values
larger than 30 nm is caused by the inaccuracy of the
particular DFT functional.

The accuracy of the absorption spectra calculations could
be improved by using highly correlated ab initio approaches
such as CCSD or CAS-PT2 methods. The CAS-PT2 method
could account for the multiconfigurational nature of the
chromophore’s wave function. It is known that CAS-PT2
underestimates slightly excitation energies and needs an
empirical correction.50 Furthermore, the application of CAS-

Figure 1. The B3LYP/6-31G** optimized structures of TCV,
FTC, FTC-OH, and CLD chromophores.
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PT2 becomes prohibitively expensive with sufficiently large
active spaces.12,50 Therefore as a compromise of computa-
tional expense and accuracy, we have not performed CAS-
PT2 calculations for the TCF-chromophores considered in
this paper.

III. Results and Discussion

A. Validation of DFT Methodology. The structures of
chromophores with the TCF motif used to validate the
performance of DFT functionals are presented in Figure 1.
These are the lowest energy structures as calculated at the
B3LYP/6-31G(d,p) level of theory in the gas phase. The
experimental UV-vis spectra for these molecules in a solvent
environment are available and, therefore, the 1,2-dichloro-
ethane solvent was considered for TCV, while cyclohexanone
and tetrahydrofuran solvents were used in FTC and CLD
chromophore calculations, respectively, for comparison with
experiment. The values of the dielectric constants used in
the continuous electrostatic models were 10.3, 18.2, and 7.6,
respectively. The spectra for FTC and CLD chromophores
were measured with a hydroxyl-diethylamine donor instead
of the simplified dimethylamine shown in Figure 1.5 We have
performed calculations with the diethyl donor and its
hydroxyl derivative (FTC-OH chromophore displayed in
Figure 1) finding that the main features of the spectra, such
as absorption peak (λmax), were shifted by less than 10 nm
with the increased size of a donor group.

Table 2 includes TD-DFT results of vertical excitation
spectra including λmax, λmax-1, and corresponding oscillator
strengths at various levels of DFT theory. The Hartree-Fock,
hybrid DFT functionals (BHLYP, PBE0, B3LYP), gradient
corrected DFT (PBE), and the simplest, density-dependent,
SVWN functionals were used. The experimental oscillator
strengths were obtained by fitting two Gaussians to the two
major peaks in the experimental spectrum. The ratio of the
area under each Gaussian was used to estimate the respective
relative oscillator strengths.51 This is a crude approximation
of the transition strength; nevertheless, it can shed light on
the relative importance of transitions and width of the
visibility window.

As expected, the accuracy of results in matching the
experimental data depends strongly on the method used. The
PBE and SVWN methods reproduce within 30 nm major
absorption peaks but quite poorly the relative oscillator
strengths of the TCV chromophore. However, this level of
theory fails completely for the larger FTC and CLD systems.

The hybrid functionals, which yield erroneously blue-shifted
absorption peaks in the case of TCV, perform much better
for the FTC and CLD chromophores. The accuracy improves
with decreasing amount of Hartree-Fock exchange in the
hybrid functional. The B3LYP method shows improved
values for λmax, while the values for λmax-1 are significantly
red-shifted. The PBE0 method could be recommended for
FTC and CLD systems as the best compromise. It both
underestimates the λmax peak and overestimates λmax-1 by
about 40 nm. The relative values of the oscillator strengths
are predicted to be too high particularly for the CLD
chromophore. The use of PBE0 was recently recommended
for calculations of the π-π* transitions for numerous organic
dyes.12b

We now turn to evaluate the performance of Coulomb
attenuation functionals, CAM-B3LYP and BNL. Tables 3
and 4 display absorption spectra and oscillator strengths of
TCV, FTC, and CLD as a function of the attenuation
parameter, γ. Regardless of the type of LC-DFT functional,

Table 1. UV-vis Spectra and Oscillator Strength (f) of TCV Calculated at the BNL, B3LYP, and CAM-B3LYP Levels for
Various Basis Setsb

BNL B3LYP CAM-B3LYP

basis set λmax (f) λmax-1 (f) λmax (f) λmax-1 (f) λmax (f) λmax-1 (f)

6-31G* 396(0.81) 237(0.21) 451(0.66) 289(0.13) 412(0.78) 255(0.10)
6-31G** 396(0.81) 238(0.21) 452(0.65) 290(0.13) 412(0.77) 255(0.09)
6-311G* 402(0.80) 240(0.19) 456(0.65) 292(0.12) 417(0.77) 257(0.06)
6-311G*a 402(0.80) 240(0.20) 456(0.65) 292(0.12) 417(0.77) 258(0.06)
6-31+G* 411(0.83) 243(0.21) 462(0.67) 295(0.12) 423(0.79) 253(0.15)
6-311+G* 412(0.81) 243(0.20) 464(0.66) 295(0.12) 424(0.77) 255(0.16)
6-311++G** 412(0.81) 245(0.15) 464(0.66) 295(0.12) 425(0.77) 256(0.17)

a Direct calculations without density fitting functions. b The λmax, λmax-1 (in nm), and oscillator strengths (f) values are provided.
Calculations were done using the COSMO solvation model, assuming the 1,4-dichloroethane solvent.

Table 2. Absorption Spectra (λmax and λmax-1 in nm) and
Oscillator Strengths (f) of TCV, FTC, and CLD for Various
DFT Functionalsa

functional λmax fmax λmax-1 fmax-1 rel. fb

TCV
PBE 504 0.55 328 0.14 0.25
PBE0 451 0.70 285 0.12 0.17
BHLYP 411 0.82 254 0.12 0.14
B3LYP 462 0.67 294 0.12 0.18
SVWN 509 0.55 330 0.14 0.25
HF 355 0.96 222 0.16 0.17
expt 518 292 0.08

FTC
PBE 766 1.07 541 0.83 0.78
PBE0 637 1.54 439 0.49 0.32
BHLYP 514 2.40 350 0.23 0.10
B3LYP 663 1.43 458 0.57 0.40
SVWN 785 1.01 544 0.86 0.85
HF 458 1.90 295 0.14 0.07
expt 650 400 0.26

CLD
PBE 728 1.45 555 0.91 0.63
PBE0 621 2.18 450 0.39 0.18
BHLYP 548 2.55 372 0.05 0.02
B3LYP 639 2.07 468 0.47 0.23
SVWN 735 1.44 559 0.92 0.64
HF 462 2.75 238 0.20 0.07
expt 660 420 0.04

a COSMO/6-31+G*//B3LYP/6-31G**. b The relative value of
oscillator strengths fλmax/fλmax-1.
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we observe a red-shift of the spectra with decreasing γ. This
is consistent with the results obtained using standard DFT
functionals, as reported in Table 2. Decrease in γ diminishes
the role of Hartree-Fock exchange, which accounts for a
significant red-shift of spectra for DFT functionals such as
PBE. For the same value of γ, the spectra are more red-
shifted for BNL compared to the CAM-B3LYP functional.
For BNL, one can identify the common value of γ ap-
proximately equal to 0.1, that results in a λmax close, within
20 nm, to the experimental values for all test molecules. In
the case of the FTC molecule, both CAM-B3LYP and BNL
perform reasonably well, if γ close to 0.05 and 0.1 is used,
respectively. The positions of the λmax-peaks, and the relative
strengths of peaks are well reproduced; however, the λmax-1-
peak is red-shifted by ca. 40 nm. The sensitivity to γ-values
of absorption spectra for various systems was already
reported in the literature.42,52-55 The results of Table 3 and
4 suggest also a strategy of using different values of γ to
calculate various excitations. In the case of BNL, the optimal
position of the λmax-peak can be obtained using γ ) 0.1,
while the larger value of γ ) 0.15 may be needed to improve
the prediction for the λmax-1-peak. This would however
worsen the description of the relative strength of both peaks
for the FTC molecule while improving it for the CLD
chromophore.

Recently the performance of DFT functionals was ana-
lyzed, and a diagnostic test was proposed to predict the

accuracy of excitation energies.56 This test was based on the
spatial overlap of occupied and virtual orbitals, Λ. One of
the molecules studied in that paper, DMABN, is similar to
the TCV molecule studied by us, the difference being a cyano
acceptor vs the TCF acceptor, respectively. In the case of
the PBE functional, the DMABN molecule exhibits a large
value of Λ and also quite an accurate description of the CT
excited state.56 We did not implement the diagnostic test in
this paper; however, following conclusions by Peach et al.56

we can predict that less accurate results of excitation energies
for FTC and CLD molecules indicate a small Λ value, while
excellent results for TCV molecule are likely related to a
large Λ (see Table 2).

The absorption spectra results could perhaps be further
improved by considering statistical corrections that were
recently applied for the LC-functionals in calculations of
π-π*12b and n-π* excitations.57

To analyze the nature of the discussed λmax and λmax-1

states, the transition orbitals are frequently displayed, and
their contributions to the excitation energies as found from
the TD-DFT calculations are discussed.13,14,28 As expected,
the excitation at λmax has a charge-transfer character as it is
dominated by transitions from HOMO to LUMO orbitals of
the chromophore. The HOMO orbital is predominantly
localized on a donor site of the chromophore, while the
LUMOorbitaloccupies theacceptorsite.TheHOMOfLUMO
transition gives rise to a well-known intramolecular charge-

Table 3. UV-vis Spectra and Oscillator Strength (f) of TCV, FTC, and CLD Chromophores (Figure 1) Calculated at the
CAM-B3LYP Level with Various Attenuation Parameters, γa

TCV FTC CLD

method (γ) λmax (f) λmax-1 (f) λmax (f) λmax-1 (f) λmax (f) λmax-1 (f)

experimentb 518(1.00) 292(0.08) 650(1.00) 400(0.26) 660(1.00) 420(0.04)
γc

0.01 464(0.67) 295(0.12) 657(1.61) 456(0.81) 642(2.04) 472(0.49)
0.05 462(0.67) 293(0.12) 632(1.79) 437(0.63) 627(2.20) 452(0.32)
0.10 453(0.70) 283(0.13) 583(2.08) 392(0.29) 597(2.36) 410(0.10)
0.15 438(0.74) 267(0.16) 547(2.21) 333(0.19) 572(2.46) 317(0.14)
0.20 424(0.78) 256(0.20) 522(2.25) 313(0.21) 553(2.45) 300(0.15)
0.33 399(0.85) 235(0.24) 485(2.29) 280(0.20) 519(2.48) 274(0.14)
γd

0.01 464(0.67) 295(0.12) 657(1.61) 456(0.81) 642(2.04) 472(0.49)
0.05 462(0.67) 293(0.12) 642(1.71) 445(0.70) 627(2.19) 452(0.32)
0.10 457(0.68) 288(0.11) 609(1.92) 418(0.49) 614(2.26) 434(0.23)
0.15 449(0.71) 280(0.09) 584(2.04) 395(0.33) 596(2.35) 413(0.13)
0.20 440(0.74) 266(0.10) 565(2.11) 378(0.23) 582(2.41) 327(0.13)
0.33 423(0.79) 253(0.14) 528(2.21) 320(0.19)

a λmax and λmax-1 (nm) with significant values of oscillator strength are reported. The most stable conformer was used within the COSMO
environment. The 6-31+G* basis set was used. b Relative values of oscillator strengths are reported. c CAM-B3LYP parametrization R/� with
R ) 0.19, � ) 0.81 is used. d CAM-B3LYP parametrization R/� with R ) 0.19, � ) 0.46 is used.

Table 4. UV-vis Spectra and Oscillator Strength of TCV, FTC, and CLD Chromophores (Figure 1) Calculated at the BNL
Level with Various Attenuation Parameters, γa

TCV FTC CLD

method (γ) λmax (f) λmax-1 (f) λmax (f) λmax-1 (f) λmax (f) λmax-1 (f)

experimentb 518(1.00) 292(0.08) 650(1.00) 400(0.26) 660(1.00) 420(0.04)
0.01 510(0.54) 330(0.13) 781(0.97) 536(1.04) 732(1.47) 561(0.83)
0.05 507(0.55) 326(0.12) 722(1.25) 511(0.84) 700(1.79) 528(0.58)
0.10 492(0.59) 309(0.13) 641(1.68) 444(0.48) 649(2.20) 462(0.21)
0.15 469(0.65) 291(0.14) 584(1.89) 396(0.26) 608(2.35) 416(0.06)
0.20 448(0.71) 272(0.14) 546(1.98) 365(0.22) 579(2.39) 386(0.01)
0.33 411(0.83) 243(0.21) 490(2.25) 293(0.24) 531(2.41) 345(0.04)

a Structure, basis set, and solvation model are the same as in Table 3. b Relative values of oscillator strengths are reported.

2840 J. Chem. Theory Comput., Vol. 5, No. 10, 2009 Andzelm et al.



transfer state.11,13,14 The excitation at λmax-1 can be recognized
as a π-π* transition, as it involves orbitals below the HOMO
and above the LUMO that span the entire framework of the
chromophore. We have analyzed orbital contributions to the
electronic transitions for the FTC chromophore calculated
using the BNL approach for various attenuation parameters,
γ. The absolute values of weights and the character of major
orbital transitions are presented in Table 5. This confirms
that the λmax-peak can be interpreted as a charge-transfer peak
because the major contribution comes from the HOMO to
LUMO excitation. Similarly the λmax-1-peak involves π-elec-
tron excitations, and it is dominated by the HOMO-1 to
LUMO excitation. It is interesting to note that the λmax-peak
has increased charge-transfer character around γ ) 0.1, as
the contribution of the HOMO-1fLUMO transition shows
a minimum at this value. Similarly the λmax-1-peak has the
strongest π-π* character about γ ) 0.15. This strengthening
of the charge-transfer and π-π* characters coincides with
an improved performance of the BNL functional in predicting
λmax- and λmax-1-peaks, respectively. As is evident from Table
4, the excitation energies are consistently red-shifted with
decrease of the attenuation parameter. This corresponds to
closing the HOMO-LUMO gap as shown in Table 5.

In summary, assuming a target accuracy of 30 nm in the
prediction of the most important λmax-transition, we can
recommend the BNL method with attenuation parameter γ
) 0.1 for systems studied in this work. For the FTC and
CLD chromophores, the hybrid functionals B3LYP and
PBE0 as well as CAM-B3LYP with γ ) 0.05 would also
yield the λmax-transition within our target accuracy.

B. Absorption Spectra of FTC and CLD Conformers.
Extended molecules such as FTC and CLD have several
rotatable single bonds, which lead to the existence of
conformers with low relative energies. The manifold of
rotational isomers of the FTC chromophore was recently
studied by Kinnibrugh et al.29 The authors found relatively
low barriers for rotations along the single bonds, indicating
that the lifetime of a given rotamer is on the order of 2.5
ms, thus making it quite plausible that several rotamers
coexist in the gas phase as well as in a low-viscosity solution.

The eight low-energy conformers of each molecule were
optimized, and a significant dependence of NLO properties
on the conformer’s structure was observed.29 The values of
the hyperpolarizability projected on the axis of the dipole
moment can vary by a factor of 2 between close-lying

conformers. The effect of the conformational space on the
UV-vis spectra has not been considered until now.

We have optimized the structures of the eight conformers
that can be created by rotations around the single bonds as
presented in Figure 2. The structures of the conformers were
optimized at the B3LYP/6-31G** level of theory in the gas
phase (G), and the absorption spectra were calculated in the
presence of solvent (S) modeled at the COSMO level of
theory. Tables 6 and 7 present results of absorption spectra
for FTC and CLD conformers, respectively. The energy
differences between conformers, in kcal/mol, are presented
in the gas phase (G) as well as in the solvent, S. Both the G
and S calculations utilize the gas-phase-optimized structure.
The effect of solvent can change the ordering of conformers
separated by less than 2 kcal/mol for both the FTC and CLD
chromophores. The structures of the gas-phase chromophores
are close in energy, within 3 and 8 kcal/mol for FTC and
CLD systems, respectively. The presence of solvent changes
these values by 1 kcal/mol at most. Since the solvent field
is much stronger in the case of FTC than CLD, we have
optimized the structures of FTC at the B3LYP/6-31G** level
with the PCM solvation model. The inclusion of the PCM
solvation model in the geometry optimization changes the
order of the conformers and overall spreads the distribution
of the eight FTC isomers to 5.7 kcal/mol. This solvent-
optimized geometry however has only a minor effect on the
absorption spectra, and while the statistical average of λmax-1

appears to be red-shifted by about 11 kcal/mol, the average
λmax value is virtually unchanged at 652 nm. We can hence
adopt a computationally much simpler strategy of using the
gas-phase-optimized geometry to calculate the absorption
spectra in the solvent environment of the COSMO model.

Results in Tables 6 and 7 indicate that the Boltzmann-
weighted root-mean-square deviation over all conformers was
less than 10 nm for λmax and less than 5 nm for λmax-1. While
the addition of solvation effects shifts the spectra ap-
propriately, this does not change the influence of the
conformation, neither at the gas phase nor at the solvated
geometry. It is therefore acceptable to use the lowest-energy
geometry in the gas phase with solvation effects for the
computation of spectra. The results obtained for the lowest-
energy conformer are within 12 nm or better of the statistical
average of all conformers. Equally important is the analysis
of the relative strength of the transitions as measured by the

Table 5. Analysis of the Electronic Excitations (CT and
π-π* Transitions) for the FTC Chromophore Calculated at
the BNL Level with Various Attenuation Parameters, γa

CT γ-γ*

method (γ) HfL H-1fL H-1fL HfL+1 H-Lb

0.01 0.96 0.24 0.77 0.54 1.33
0.05 0.99 0.13 0.82 0.53 2.36
0.10 0.99 0.10 0.89 0.37 3.26
0.15 0.95 0.25 0.91 0.08 3.96
0.20 0.90 0.34 0.86 0.25 4.45
0.33 0.84 0.44 0.68 0.57 5.34

a The absolute values of weights for two major orbital transitions
of each excitation are shown. Computational parameters are the
same as in Table 4. b The HOMO(H) - LUMO(L) gap in eV. Figure 2. Definition of dihedral angles used to study confor-

mations of FTC and CLD chromophores.

Optical Spectra of TCF-Chromophores J. Chem. Theory Comput., Vol. 5, No. 10, 2009 2841



ratio of oscillator strengths. In the case of the lowest-energy
conformers this ratio is within 10% and 15% of the statistical
average for the FTC and CLD chromophores, respectively.

Overall, the B3LYP functional performs very well in
reproducing the position of the charge-transfer λmax-peak,
while yielding the λmax-1-peak significantly red-shifted by
about 50 nm, that is outside of our error expectation of about
30 nm. The utility of the B3LYP functional is further
diminished considering that the intensity of the π-π* peak
appears to be erroneously much stronger than needed. Thus
the visibility window, as predicted by the B3LYP method,
is much narrower than observed in experiment. The conclu-
sion of this section is transferable to other DFT calculations
including the BNL functional. Kinnibrugh et al.29 recently
have found that the distribution of values of hyperpolariz-
ability tensors for FTC conformers is fairly similar regardless
of the B3LYP or PBE method used. Therefore, we expect
that the optical properties of the lowest energy conformer
are representative of the entire ensemble of chromophore
conformers, unless external fields, such as an electric field,
are imposed.

C. Absorption Spectra of Diarylaminophenyl-Contain-
ing Chromophores. The highly efficient and thermally stable
NLO chromophores based on (4-diaryloamino) phenyl

donors have been recently synthesized and the absorption
spectra have been published,6 thus providing an opportunity
to validate further the BNL technique. These chromophores
contain a very strong electron-withdrawing acceptor, 2-di-
cyanomethylen-3-cyano-4-methyl-5-phenyl-5-trifluoro-me-
htyl-2,5-dihydrofuran (CF3-TCF), linked to the donor Via a
π-conjugated bridge containing thiophene or isophore rings.
In this work, we evaluate the performance of DFT in
predicting spectra of thiophene-based chromophores (A1-
A4) as presented in Figure 3 using the protocol derived in
the previous sections. The geometry was optimized in the
gas phase at the B3LYP/6-31G** level of theory and was
subsequently used in TD-DFT calculations at the BNL/
COSMO/6-31G* level of theory. A solvent with a dielectric
constant of 4.9 ε0 corresponding to chloroform was used in
the COSMO simulations. Following the recommendation of
section A, the three best DFT functionals (BNL, B3LYP,
and PBE0) for the FTC-type chromophores were used. The
calculated vertical excitation energies are presented in Table
8. The BNL functional was applied with the attenuation
parameter set to 0.1. Inspection of Table 8 confirms that both

Table 6. Optimized Gas-Phase Geometries and Optical
Spectra for FTCa,b,c,d

a λmax, λmax-1, and corresponding oscillator strengths (f) from
B3LYP/COSMO/6-31+G*//B3LYP/6-31G**. b Energy differences
from B3LYP/6-31G**//B3LYP/6-31G**. c Energy differences from
B3LYP/COSMO/6-31G**//B3LYP/6-31G**. d Dihedral angles are
defined in Figure 2.

Table 7. Optimized Gas-Phase Geometries and Optical
Spectra for CLDa,b,c,d

a λmax, λmax-1, and corresponding oscillator strengths (f) from
B3LYP/COSMO/6-31+G*//B3LYP/6-31G**. b Energy differences
from B3LYP/6-31G**//B3LYP/6-31G**. c Energy differences from
B3LYP/COSMO/6-31G**//B3LYP/6-31G**. d Dihedral angles are
defined in Figure 2.
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PBE0 and BNL predict the positions of excitation levels,
exceptionally well. Unlike the parent FTC molecule, the
λmax-1-excitations are also very well reproduced. Analysis of
the relative intensity of the two main excitations reveals that
BNL is superior. This has important consequences in the
selection of an appropriate method to predict reliably the
visibility window of chromophores.

The λmax- and λmax-1-transitions can be identified as a
charge-transfer- and a π-π*-transition, since the major
contributions are from HOMOfLUMO and HOMO-
1fLUMO excitations, respectively. A systematic red-shift
of transitions can be seen in Table 8 that correlates well with

increasing donor strength. With two additional methoxy
groups on the donor, λmax of A4 is shifted by about 50 nm
compared to the A1 structure, which exhibits λmax at 685
nm. This shift as calculated at the BNL level matches very
well experimental observation. The increased charge transfer
to the π-conjugated bridge of the chromophore can also be
correlated with the increased dipole moment from 25.3 to
30.7 D for the A1 and A4 chromophores, respectively. We
have optimized further the donating strength of aminophenyl
donors and replaced the methoxy groups by methyloamino
groups resulting in structures AA1-AA4 as shown in Figure
3. The UV-vis spectra for the three highest excitations with

Figure 3. The B3LYP/6-31G** optimized structure of A1-A4 and AA1-AA4 chromophores.
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significant oscillator strengths are presented in Table 9. We
observe a significant red-shift of the charge-transfer peak
that correlates fairly well with the increased dipole moment
of the chromophore. The λmax-peak arises from HOMOf
LUMO transitions and therefore can be interpreted as a
charge-transfer transition. In the case of AA4, this is no
longer the strongest excitation; nevertheless, we maintain the
notation for consistency. λmax-1 is due to a π-π*-transition,
as it arises from HOMO-1fLUMO excitations for AA1 and
HOMO-2fLUMO for other chromophores. λmax-2 for AA3
and AA4 arises from orbitals below the HOMO level and
also involves higher virtual orbitals. The π-π*-excitation
is the strongest peak for the AA4 chromophore.

In conclusion, by adjusting the donor strength, we suc-
ceeded in pushing the charge-transfer peak to the far-red.
However, excitations of π-π*-character are strengthened and
even further red-shifted. Therefore, it is unlikely that the
modifications of the CF3-FTC chromophore architecture by
increasing the donor strength will increase the transparency
window in the visible. Further study involving modifications
of acceptor and substitutions in the conjugated bridge are
being carried out and will be reported in the future.

IV. Conclusions

We have assessed the efficiency of several DFT functionals
for reproducing the experimental UV-vis charge-transfer and
πfπ* absorption wavelengths of a set of push-pull chro-
mophores containing the “tricyanofuran” (TCF) motif in the
acceptor. These chromophores are thermally stable and
exhibit excellent nonlinear optical properties.

Since our focus is to investigate optical transparency in the
visible, the positions of major absorption peaks and their relative
strengths are discussed in this work. We find that the PBE or
SVWN give very poor estimates of absorption peaks, while
hybrid functionals such as B3LYP and particularly PBE0
provide more consistent results for the molecules studied here.
The performance of PBE0 is even more impressive considering
its lack of empirical parametrization.

The long-range DFT Coulomb attenuation functionals offer
a possibility to improve the accuracy of computed spectra
by adjusting the attenuation parameter, γ. We have imple-
mented the recently developed long-range-corrected Baer-
Neuhauser-Livshits (BNL) exchange-correlation functional
in the NWChem program and compared its performance with
the popular CAM-B3LYP functional. The accuracy of
UV-vis results is best at low values of attenuation param-
eters (γ) for both the BNL and CAM-B3LYP functionals.
We observed that the optimal value of γ is different for the
charge-transfer- and π- π*-excitations. We recommend the
BNL (with γ ) 0.1) and PBE0 methods as they capture the
charge-transfer states particularly well, although the π-π*-
excitations are computed less accurately depending on the
specific system. This recommendation of the BNL method
is valid for TCF chromophores and may not be applicable
to other types of push-pull chromophores. In fact, transfer-
ability of both CAM-B3LYP and BNL methods is somewhat
limited as their performance depends strongly on the value
of attenuation parameter. “A priori” prediction of optimal
value of γ for the BNL method remains an outstanding
problem that only recently has been addressed, e.g. in
calculations of intermolecular charge transfer complexes.42

The value of γ optimized for the excitation energies is
typically a bad choice when used for ground-state proper-
ties.23,53,54 Recently Rohrdanz et al.55 proposed a unified LC-
DFT-type functional that shows promising accuracy in both
ground and excited state calculations. Performance of this
functional in calculations for the TCF chromophores is as
yet unknown.

One of the goals of this work is to validate a practical,
computational approach to predict spectra of chromophores
in a realistic polymer environment. Chromophores may have
side-chains linking a molecule to a polymer and exhibit
numerous conformational states close in energy. Overall, a
dielectric environment with a low dielectric constant may
be expected. We confirm that the color of chromophores is
not significantly affected by increasing aliphatic chain length
linking a chromophore to a polymer. Unlike the strong
dependence of the molecular hyperpolarizability on various
conformers, we find that the optical absorption spectra are
much less sensitive. The Boltzman statistical average of
absorption peaks for various conformers is within ∼10 nm
of the spectra of the most stable conformer. This allows us

Table 8. UV-vis Spectra and Oscillator Strength of A1-A4
and Chromophores (Figure 3) Calculated at the B3LYP,
PBE0, and BNL Levels and Compared with Experimental
Results from Ref 6

λmax (fmax) λmax-1 (fmax-1) fmax-1/fmax

A1
B3LYP 729(1.22) 500(0.88) 0.72
PBE0 687(1.39) 479(0.76) 0.55
BNL 685(1.53) 475(0.50) 0.32
expt 694 485 0.06

A2
B3LYP 750(1.21) 514(0.92) 0.76
PBE0 708(1.34) 492(0.82) 0.61
BNL 706(1.51) 486(0.57) 0.38
expt 717 500 0.20

A3
B3LYP 762(1.20) 519(1.02) 0.85
PBE0 716(1.35) 497(0.91) 0.67
BNL 708(1.59) 489(0.61) 0.38
expt 721 500 0.20

A4
B3LYP 782(1.19) 525(0.98) 0.82
PBE0 737(1.32) 504(0.89) 0.67
BNL 735(1.49) 497(0.64) 0.42
expt 745 500 0.35

Table 9. UV-vis Spectra, Oscillator Strength, and Dipole
Moments (µ) of AA1-AA4, Chromophores (Figure 3) and
Analysis of Electronic Excitations As Calculated at the BNL
Level

chromophore
λmax

(fmax)a
λmax-1

(fmax-1)
λmax-2

(fmax-2) µ̀

AA1 763(1.22) 545(0.70)b 460(0.23)c 29.3
AA2 842(1.24) 547(0.79)c 544(0.12)b 33.9
AA3 776(1.29) 544(0.80)c 453(0.22)d 27.4
AA4 957(0.88) 640(1.15)c 498(0.32)d 36.2

a Major contribution from the HOMO(H)fLUMO(L) transition.
b H-1fL. c H-2fL. d H-3fL, HfL+1.
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to formulate an approximate, yet fairly accurate and practical
approach. The lowest-energy-conformer is identified and its
geometry optimized utilizing B3LYP in the gas phase, and
the spectra are subsequently calculated using TD-DFT with
an appropriate solvation model. The procedure outlined in
this paper based on the BNL (γ ) 0.1) functional in the
COSMO solvent environment yields consistently good results
with the largest error found to be ∼40 nm in the case of
π-π*-excitations.

We have studied the effect of increased donor strength
on absorption spectra for the CF3-FTC chromophore archi-
tecture with amino-phenyl donors. Substituting methoxy
groups with methylamino groups, we succeeded in pushing
the charge-transfer peak to the far-red. However, excitations
of π-π*-character are strengthened and even further red-
shifted. Therefore, it is unlikely that the modifications of the
CF3-FTC chromophore architecture by increasing the donor
strength alone will increase the transparency window in the
visible.
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Abstract: For the enhanced conformational sampling in molecular dynamics (MD) simulations,
we present “simulated solute tempering” (SST) which is an easy to implement variant of simulated
tempering. SST extends conventional simulated tempering (CST) by key concepts of “replica
exchange with solute tempering” (REST, Liu et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
13749). We have applied SST, CST, and REST to molecular dynamics (MD) simulations of an
alanine octapeptide in explicit water. The weight parameters required for CST and SST are
determined by two different formulas whose performance is compared. For SST only one of
them yields a uniform sampling of the temperature space. Compared to CST and REST, SST
provides the highest exchange probabilities between neighboring rungs in the temperature ladder.
Concomitantly, SST leads to the fastest diffusion of the simulation system through the
temperature space, in particular, if the “even-odd” exchange scheme is employed in SST. As a
result, SST exhibits the highest sampling speed of the investigated tempering methods.

Introduction

The generation of equilibrium ensembles for macromolecules
by all-atom Monte Carlo (MC) or molecular dynamics (MD)
simulations is a challenging task due to the huge computa-
tional effort which is generally necessary to guarantee ergodic
sampling of relevant observables. The required simulation
time depends on the number and on the depths of the local
minima in the free energy landscape because here the
simulation may get trapped for extended periods of time. If
the barriers between the minima are mainly of enthalpic
nature, generalized ensemble tempering techniques enable
faster barrier crossings and, therefore, alleviate the sampling
problem.1,2

Two important generalized ensemble tempering algorithms
are simulated tempering (ST) and replica exchange (RE).2

The RE method in its original form3-5 employs several
copies (replicas) of the investigated system at different
temperatures T0 < T1 < · · · < TN-1. Within this temperature
ladder, temperature exchanges between the replicas are

periodically attempted. The corresponding probability for an
exchange is given by a Metropolis criterion.6 On the other
hand, in simulated tempering,7,8 only one “replica” diffuses
along the temperature ladder, where temperature changes are
determined by a Metropolis criterion slightly modified with
respect to RE. Although both methods are closely related,9

RE has attracted much more attention than ST, which is
indicated by the large number of RE variants that have been
suggested.10-17 Furthermore, the RE efficiency has been the
subject of many studies,18-23 and numerous RE applications
to macromolecules have been presented.24-33 The main
reason for the apparent neglect of ST is that this approach
requires estimates for certain a priori unknown parameters,
the so-called weights, to ensure a uniform sampling of the
ensembles at all temperatures. In contrast, RE automatically
guarantees a uniform sampling of all temperatures and is,
therefore, much simpler to control.

Without prior knowledge on the properties of the simulated
system an unbiased tempering algorithm should uniformly
cover the chosen temperature space to generate an enhanced
statistics at the temperature of interest, which usually is the
lowest temperature T0. Therefore, the average time to shuttle
a replica between T0 and the maximal temperature TN-1 should
be by orders of magnitude shorter than the simulation time.
Addressing this issue, Abraham and Gready recently exam-
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ined more than forty published RE simulations for their
ability to take full advantage of the tempering.34 In most
cases, they found that the simulation times were too short
for a sufficiently frequent shuttling of the replicas along the
temperature ladder. The reason for large shuttling times is
known: This time usually scales with the square of the
number of temperatures,35 which in turn grows with the
square root of the number of degrees of freedom3 (DOF) in
the simulation system. Thus, very long round trip times are
expected for simulation systems with many DOF. Typical
examples for such systems are macromolecules in explicit
solvent. Note that such systems may additionally undergo
slow phase transitions, like folding and unfolding, which may
drastically increase round trip times.

Various strategies aiming at increasing the shuttling
frequency were suggested for RE,14-16,35-38 which should
all be transferable to ST. A first class of strategies targets
the optimization of the parameters that characterize the setup
of an RE simulation. For example, Sindhikara et al.38 recently
recommended that the times between exchange trials should
be as small as possible, which, however, has been disputed.34

Additionally, rules for optimizing the temperature ladders
were suggested.35,39 A second class of strategies tries to
reduce the number of DOF that are relevant for the exchange
criterion, for example some strategies switch from an explicit
to an implicit solvent description for the exchange trials16

or by tempering only the areas of interest.15 With such a
reduced number of DOF, the temperature steps within the
ladder can be chosen larger and, thus, a given temperature
range can be covered by less rungs. As a result, the round
trip times are drastically shortened. However, the quoted
methods of the second class are not rigorous in terms of
statistical physics because here the ensemble is modified in
a somewhat arbitrary fashion. Recently, Liu et al.14 have
presented a rigorous strategy called “replica exchange with
solute tempering” (REST), which largely eliminates the
influence of the solvent DOF on the exchange probabilities
by a temperature dependent scaling of the Hamiltonian. In
this approach only the Hamiltonian at the target temperature
remains unscaled and renders the desired physically mean-
ingful ensemble. This restriction is, however, of minor
importance for many applications.

An additional strategy to achieve increased shuttling
frequencies is the optimal choice of the tempering method
itself. For example, with accurately known weight param-
eters, ST is more efficient than RE because it provides larger
acceptance probabilities on the same temperature ladder.40-42

At given conditions one may equivalently state that ST
requires less rungs in the temperature ladder than RE if both
techniques are tuned to the same average acceptance
probabilities.

The weights necessary for ST can be estimated by short
preparatory simulations bearing the risk, however, that these
weights are of insufficient accuracy. Addressing this issue,
a recent study by Park and Pande9 suggests that controlling
an ST simulation may be less difficult than previously
assumed by Mitsutake and Okamoto.43 In contrast to the
latter authors Park and Pande9 did not stick to the rough
estimates for the weights derived from a set of short

preparatory simulations but instead updated the weights
during the subsequent ST production run.

Here, inspired by the works of Park and Pande9 and of Liu
et al.,14 we suggest a variant of ST called simulated solute
tempering (SST), which shares key concepts with REST and
its sequential variant SREST.13 As we will demonstrate, SST
has the advantages of a most simple implementation and of
reducing the required number of rungs within the temperature
ladder. Note, that SST should be easily transferrable to hybrid
methods which combine different tempering techniques43 or
tempering with other enhanced sampling methods.44

We start in “Theory and Methods” with an introduction
to replica exchange and its variant REST, which employs a
temperature dependent scaling of the Hamiltonian. Then, we
present SST along with two procedures for calculating the
weights and corresponding update schemes. Subsequently,
these techniques are applied to an alanine octapeptide
(8ALA) solvated in water. The enthalpic barriers of 8ALA
are small, and, hence, the benefit of tempering techniques is
limited.22 However, the small barriers provide fast confor-
mational sampling which makes 8ALA ideally suited to
compare different tempering strategies among each other with
high statistical accuracy. In particular, we investigate the
sampling efficiency and convergence of conventional ST
(CST), SST, and REST. In addition, we test two temperature
exchange schemes for SST to improve the method further.
After the presentation and discussion of the results, we
conclude the paper summarizing the key messages.

Theory and Methods

We begin by sketching the replica exchange method and the
concept of solute tempering, which will lead us, when
combined with simulated tempering, to the SST method.

Replica Exchange. Within both conventional temperature
RE5 (CRE) and REST,14 N copies (replicas) of the system
are simulated at temperatures T0 < T1 < · · · < TN-1 and sample
the associated canonical ensembles. The set of replicas
constitutes a so-called generalized ensemble. After predefined
time intervals a temperature exchange between pairs of
replicas is tried. A Metropolis criterion6 determines the
exchange probability

between replicas at Ti and Tj with

to preserve the canonical ensembles. Here, Ek(xl) is the value
of the potential energy function associated with the temper-
ature Tk, which is evaluated at a configuration xl resulting
from the sampling at Tl; �k ) 1/kBTk is the inverse
temperature where kB is the Boltzmann constant. For CRE
the potential energy is independent of the temperature, and
∆ij reduces to

In the case of REST, in contrast, the potential energy
becomes temperature dependent and has the form

Pij ) min[1, exp(∆ij)] (1)

∆ij ) �i[Ei(xj) - Ei(xi)] + �j[Ej(xi) - Ej(xj)] (2)

∆ij ) (�i - �j) · [E(xi) - E(xj)] (3)
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where Epp, Eps, and Ess are the solute-solute, solute-solvent,
and solvent-solvent parts of the potential energy function
at the target temperature T0 of the sampling; λk,h are
parameters depending on the temperature Tk. We choose

where λk,1 is the geometric mean of λk,0 and λk,2 instead of
the arithmetic mean (�0 + �k)/2�k originally proposed by
Liu et al.14 With this choice, the required scaling of the
electrostatic energy and of the corresponding forces at Tk

can be achieved by simply scaling the partial charges of the
solvent by a factor (�0/�k)1/2. Similar considerations hold for
the Lennard-Jones interactions. Thus, this choice of the λk,i

is conveniently implemented.
The advantage of the REST approach becomes apparent

after a few algebraic operations. Inserting eqs 4 and 5 into
eq 2 one finds

Thus, the difference ∆ij, which determines the acceptance
probabilityeq1, isexclusivelycalculatedfromthesolute-solute
and solute-solvent energies, whereas the potential energy
Ess of the solvent cancels.

One can quantify the benefit of REST compared with CRE
by estimating the number of rungs eliminated from the
temperature ladder. Assuming that the solvent DOF do not
contribute to the exchange probability at all, the ratio NREST/
NCRE of the required rungs is estimated by the lower limit
(np/(ns + np))1/2, where ns and np count the DOF of the solvent
and solute, respectively. In the following we discuss how
simulated tempering can further reduce the required number
of rungs.

Simulated Tempering. In simulated tempering7,8 (ST), a
single system is simulated at a temperature Ti, which belongs
to a given temperature ladder T0 < · · · < TN-1. After given
time intervals it is checked whether the system temperature
Ti can be changed to Tj, where j is usually i ( 1. For i ∈
{0,N - 1} the transition to j ) -1 or j ) N is rejected. For
other transitions i f j, the acceptance probability41

with

represents a Metropolis criterion similar to that of RE.
The weights wk introduced in eq 8 are commonly set to the
configurational parts �kF̃k ) -ln ∫exp [-�kE(x)]dx of the
dimensionless free energies �kFk of the simulation system
at the temperatures Tk.

7,8 This choice leads to a uniform
sampling of all rungs within a given temperature ladder
because, in the ergodic limit, the expected ratio Fk ≡ tk/t of
the time tk spent by the simulation at temperature Tk to the
total sampling time t is given by the Boltzmann factor of
the generalized ensemble

leading to lim
tf∞

Fk ) 1/N for wj ) �jF̃j. Since the wk are a
priori unknown, one usually tries to estimate these weights
from short preparatory simulations. Note that the wj can be
chosen differently, if a nonuniform sampling is desired.42

In conventional simulated tempering (CST), the potential
energy function Ek(x) is independent of the temperature Tk,
and eq 8 reduces to

For the new SST method introduced here, we transfer the
solute tempering concept of REST to ST and use the energy
function given by eqs 4 and 5. Inserting these equations into
eq 8 yields

Thus, for SST the difference ∆ij is only calculated from the
solute-solute and solute-solvent energies, while the po-
tential energy Ess of the solvent cancels. As we will show
below the solvent-solvent contributions cancel as well in
the computation of the weight differences wi - wj.

At first glance, ST (CST/SST) seems less attractive than
RE (CRE/REST) because ST requires the a priori unknown
weights wi. However, ST provides larger average acceptance
probabilities than RE40-42 for a given temperature ladder
because RE requires a simultaneous exchange of two replicas,
whereas only one replica has to be considered for ST. As a
result, ST needs only 1/�2j times the number of rungs in
the temperature ladder than RE to cover a given temperature
range with the same acceptance probabilities.39 Now, we turn
to different approaches to determine the required weights
wi.

Determination of the Weights wk. As we have seen
above, a uniform sampling of the various temperatures Tk

requires that the weights wk in eq 8 are the configurational
parts �kF̃k of the dimensionless free energies, which can be
estimated from preparatory simulations. For CST, Park and
Pande have presented a formula which yields surprisingly
good estimates of the wk at a negligible computational effort
(e.g., by executing a single 10 ps MD simulation at each
Tk).

9 These authors replaced the potential energy E(x) in eq
10 by the average potential energy 〈E〉i at Ti to get a “typical”
∆ij

typ and demanded that ∆ij
typ ) ∆ji

typ, which leads to the
estimate

and which has been further substantiated by Park.41 In the
Appendix we show an alternative derivation of the “trapezoid
rule” eq 12 that is based on the assumption of a constant
heat capacity CV and that ln[1 + (Tj - Ti)/Ti] can be
approximated by (Tj - Ti)/Ti.

Ek(x) ) λk,0E
pp(x) + λk,1E

ps(x) + λk,2E
ss(x) (4)

λk,0 ) 1, λk,1 ) √�0/�k, λk,2 ) �0/�k (5)

∆ij ) (�i - �j)[E
pp(xi) - Epp(xj)]

+ (√�0�i - √�0�j)[E
sp(xi) - Esp(xj)]

(6)

Pij ) min[1, exp(∆ij)] (7)

∆ij ) [�iEi(x) - wi] - [�jEj(x) - wj] (8)

lim
tf∞

Fk )
exp[-(�kF̃k - wk)]

∑
j

exp[-(�jF̃j - wj)]
(9)

∆ij ) (�i - �j)E(x) - (wi - wj) (10)

∆ij ) (�i - �j)E
pp(x) + (√�0�j - √�0�i)E

ps(x) -
(wi - wj) (11)

wj - wi ≈ (�j - �i)
〈E〉i + 〈E〉j

2
(12)
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Replacing the temperature dependent potential energies
Ei(x) and Ej(x) in eq 8 by averages 〈Ei〉i and 〈Ej〉i transfers
the trapezoid rule of CST to SST. Here, 〈Ej〉i is the energy
function Ej evaluated for and averaged over the configura-
tions sampled at Ti. Analogous to CST, also these SST
averages yield “typical” differences ∆ij

typ. Equation 5 and ∆ij
typ

) ∆ji
typ lead to

As mentioned in the section “Simulated Tempering”, wj -
wi does not depend on the solvent-solvent interactions Ess.
Note that one can choose w0 ) 0 because only differences
wj - wi matter in eq 8.

Whereas the computations of the weights wi in CST and
SST by the trapezoid rules eqs 12 and 13, repectively, are
approximate, the relation

presented earlier by Kumar et al.45 for the “weighted
histogram analysis method” (WHAM) is “exact” for the
already sampled ensemble and provides an unbiased estima-
tor for the true dimensionless free energies.46 Here, N is again
the number of temperatures Tk, nk is the number of
configurations xk(1),...,xk(nk) sampled at Tk, and L counts
potential energy terms contributing to the Hamiltonian. For
CST there is only one such term and one has L ) 1, E0(xk)
≡ E(xk), and λi,0 ) 1. The Hamiltonian of SST eq 4
distinguishes L ) 3 energy contributions E0(xk) ≡ Epp(xk),
E1(xk) ≡ Eps(xk), and E2(xk) ≡ Ess(xk). With the λi,j chosen
as given by eq 5 one finds that Ess cancels in eq 14 like it
did in the trapezoid rule eq 13. Equation 14 has to be solved
self-consistently and yields successively more and more
accurate weights as the statistics is improved by an ongoing
sampling. Note that Mitsutake and Okamoto40,43 previously
suggested to compute the free energies required for ST
through WHAM equations, which are based on energy
histograms. In contrast, eq 14 computes the free energies
directly from the sampled energies and, therefore, avoids the
errors introduced by the histogram discretization.45-47

The WHAM formula eq 14 can be used to identify the
errors ∆wi of the trapezoid rules eq 12 for CST and eq 13
for SST. In the limit of ergodic sampling, the errors ∆wi )
wi - wi

exact yield through eq 9 the ratios lim
tf∞

Fi ) exp(∆wi)/
∑j exp(∆wj). These ratios will deviate from 1/N and, there-
fore, measure deviations from the desired uniformity of the
sampling along the ladder of temperatures Ti. To measure
this deviation in our simulations, we introduce the quantities

A uniform sampling corresponds to �i ) 1.0 at all Ti. Thus,
the �i enable easy comparisons of the sampling uniformity
achieved with differently sized temperature ladders. If the
errors ∆wi are known, the long time limit of �i is

For finite simulations, the �i exhibit statistical fluctuations
which depend on the number of rungs N in the temperature
ladder, on the average exchange probabilities Pj ij, and on the
total number of exchange trials. For each set of these
parameters, one can model an actual ST simulation by a
computationally inexpensive MC simulation of a random
walk along the N rungs of the temperature ladder. We will
use large numbers of such MC simulations to estimate the
standard deviations σi of the �i for the respective simulations.
These values show to what extent one may expect conver-
gence of sampling uniformity.

Update Schemes for the Weights wi. Initial guesses for
the weights required in ST can be obtained from short
preparatory simulations using the formulas presented in the
previous paragraph. The correspondingly limited statistical
accuracy of the initial weights may entail a strongly
nonuniform sampling along the temperature ladder in
subsequent ST production runs. However, one may improve
the initial guesses by utilizing the information accumulated
in the course of the production run. For this purpose different
adaptation schemes were suggested.48-51

We used a procedure based on the following consider-
ations: Up to the first update the sampling along the
temperature ladder is expected to be far off from uniformity.
Consequently, a poor statistics of the potential energy
distribution is obtained at some temperature rungs. To avoid
an impact of this bad statistics on the estimated weights, we
determine the first update by wi

new ) wi
old + ln(t0/ti) where

we set the ti for rungs that have not been visited at all to a
full exchange period. Thus, badly sampled rungs will be
preferentially sampled until the next update step. By con-
struction this strategy leads to a uniform sampling but may
suffer from slow convergence. Therefore, we subsequently
switch to a periodical recomputation of the weights either
by the trapezoid rule (eqs 12 and 13) or by the WHAM
formula (eq 14). In these recomputations, which are executed
after each nanosecond of simulation, we exclusively consider
the data from the production run and discarded those of the
preparatory simulation.

Exchange Scheme. Having established the determination
of the weights steering the exchange probabilities, we now
sketch the exchange algorithms employed for ST. A straight-
forward exchange procedure is to choose randomly between
an upward or downward exchange trial with probabilities of
50%. We call this exchange procedure “stochastic even/odd”
(SEO) scheme because the corresponding exchange scheme
for replica exchange is a stochastic instead of a deterministic
choice between two groups of replica pairs.52 The first group
contains all “even” pairs (T2n,T2n+1) and the second one all
“odd” pairs (T2n-1,T2n).

wj - wi ≈
(�j - �i)(〈E

pp〉i + 〈Epp〉j)

2

+
(√�0�j - √�0�i)(〈E

ps〉i + 〈Eps〉j)

2

(13)

exp(-wi) ) ∑
k)0

N-1

∑
t)1

nk
exp{-�i ∑

j)0

L-1

λi,jE
j[xk(t)]}

∑
m)0

N-1

nmexp{wm - �m ∑
j)0

L-1

λm,jE
j[xk(t)]}

(14)

�i ≡ N
ti

t
(15)

�̂i ) N
exp(∆wi)

∑
j)0

N-1

exp(∆wj)

(16)
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However, the standard exchange scheme used in replica
exchange simulations is characterized by alternate exchange
trials between these two groups of replica pairs,3,34,52,53

which we have called the “deterministic even/odd” (DEO)
scheme.52 Formally, one can express the DEO exchange
scheme by a relation which combines the involved temper-
ature indices i and i′ at the exchange attempt step s by i′ )
i + (-1)i+s. In the framework of simulated tempering DEO
alternately tries to shift the single replica at Ti to Ti+1

(upward) or Ti-1 (downward). In the case of a successful
exchange, however, the previous exchange direction (upward
or downward) is maintained for the next exchange trial and
so forth until a temperature exchange fails.

We apply both exchange schemes to investigate their
influence on the diffusion of the system through the tem-
perature space. This diffusion can be measured in terms of
the average round trip time τ required to travel from T0 to
TN-1 and back to T0. For the SEO scheme applied to a
temperature ladder with uniform average acceptance prob-
abilities Pj ij ) Pj , τ in units of the time between exchange
trials is related to the average acceptance probability Pj
by35,52,54,55

For DEO, τ is given by

in the limit of large N.52 Assuming this limit, DEO always
provides shorter round trip times than SEO or, equivalently,
higher round trip rates τ-1. Thus, the question is to what
extent this expectation is confirmed for finite ladder sizes
N.

Simulation System and Force Field. We have used MD
simulations of a poly alanine octapeptide (8ALA), saturated
with an acetyl group at the N-terminus and an N-methyl
group at the C-terminus, to investigate the benefits of the
various algorithms introduced above. The peptide was
described by the CHARMM22 force field56 and solvated in
a periodic orthorhombic dodecahedron of 18 Å inscription
radius containing 1112 water molecules. For the water
molecules we employed the transferable three-point inter-
molecular potential (TIP3P),57 modified as suggested by
MacKerell et al.56 for usage with CHARMM22. The initial
8ALA structure was generated using the Molden software58

by setting the backbone dihedral angles to the values φ )
-58° and ψ ) -47° to form an ideal R-helix.

MD Simulation Techniques. The software package EGO-
MMVI59 was used for all MD simulations. The electrostatic
interactions were treated combining structure-adapted mul-
tipole expansions60 with a moving-boundary reaction-field
approach.59 Here, the cutoff radius for the explicit evaluation
of the electrostatic interactions was 18 Å. Beyond this radius,
a dielectric continuum was assumed with a static dielectric
constant εs ) 80. The explicit van der Waals interactions
were calculated up to a distance of 10 Å and at larger
distances a mean-field approach was applied.61 A multiple-
time-step integration scheme62 with a fastest time step of 2
fs was used. For bonds that include hydrogen atoms, the
corresponding bond lengths were constrained using the
M-SHAKE algorithm63 with relative tolerance of 10-6.

System Preparation. Our simulation system was equili-
brated for 100 ps with two Berendsen thermostats64 (coupling
times 0.1 ps) separately keeping the solute and the solvent
at 300 K. Additionally, a Berendsen barostat64 (coupling time
1 ps) steered the system to ambient pressure (1 bar). For the
subsequent tempering runs we switched from an NPT to an
NVT ensemble.

Simulation Runs. As listed in Table 1 we carried out three
short replica exchange simulations [CRE and REST/(A,B)]
serving to estimate the initial weights for the extended
simulated tempering simulations CST and SST/A-D. For
CRE and CST we used the temperature ladder 300 K, 308
K, 317 K, 326 K, 336 K, 346 K, 356 K, 367 K, 378 K, 390
K, 402 K, 415 K, 428 K, 442 K, 456 K, 470 K, 485 K, and
500 K. We found average acceptance probabilities Pj i,i+1

between 5% and 14% for CRE and between 21% and 31%
for CST. For REST/(A,C) and SST/A-C we used the ladder
300 K, 350 K, 415 K, and 500 K. The corresponding Pj i,i+1

range from 5% to 12% (REST) and from 19% to 28% (SST).
For REST/B and SST/D, the five temperatures 300 K, 340
K, 387 K, 440 K, and 500 K were used yielding Pj i,i+1

between 15% and 19% (REST) and between 38% and 41%
(SST). Exchanges were tried every 0.5 ps in all simulations.
Tables S1 and S2 in the Supporting Information provide
details about the average exchange probabilities along the
various ladders. These values were used for setting up the
MC simulations mentioned further above.

The extended simulations REST/C, CST, and SST/(A,B)
serve us for comparisons of methods and address, in
particular, the applicability of different adaptation schemes

Table 1. Overview of Simulations Conducteda

label trajectory time span/ns temperature range/K no. of rungs solvent scaling determination of weights exchange scheme

CRE 18 × 0.1 300-500 18 no - DEO
CST 27 300-500 18 no trapezoid SEO
REST/A 4 × 0.1 300-500 4 yes - DEO
REST/B 5 × 0.1 300-500 5 yes - DEO
REST/C 4 × 12 300-500 4 yes - DEO
SST/A 27 300-500 4 yes trapezoid SEO
SST/B 27 300-500 4 yes WHAM SEO
SST/C 12 300-500 4 yes WHAM DEO
SST/D 12 300-500 5 yes WHAM DEO

a The weights for the ST simulations have been determined either by the trapezoid rule, eq 12 for CST and eq 13 for SST, respectively,
or by the WHAM formula eq 14.

τSEO ) 2N(N - 1)/Pj (17)

τDEO ) τSEO(1 - Pj) (18)
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to SST. Furthermore, using the simulations SST/C and
SST/D we will study the effects of the chosen exchange
scheme (SEO vs DEO) and of the (overall) average exchange
probability Pj ) 〈Pj ij〉 on the round trip rates τ-1 and the
sampling speeds.

Sampling Speed. The main objective of tempering
methods is to enhance the sampling speed of the simulation.
A corresponding measure for the sampling speed is given
by an algorithm recently suggested by Lyman and Zucker-
man,65 which we will denote as LZA. LZA integrates the
“volume” in configurational space sampled by a trajectory.
The average volume sampled during a given simulation time
span provides a measure for the sampling speed.

For 8ALA we define the conformational space by the eight
dihedral angles ψi spanned by the backbone units Ni -
Ci - CR

i - Ni. From a trajectory of the eight-dimensional
tuples (ψ1,...,ψ8), LZA randomly chooses one tuple and
removes it from the trajectory together with all other tuples
lying within the sphere of predefined radius r around the
chosen tuple. This procedure is repeated until all tuples of
the initial trajectory have been removed. The number of steps
required is a dimensionless measure for the configurational
volume Vc sampled by the trajectory. Because this algorithm
is nondeterministic, it is repeated m times, and the corre-
sponding average number nlza of required steps is calculated.
For our analyses we choose r ) 25°�8j and m ) 50. For a
fair comparison between ST and RE, we compute the
sampling speed per replica, i.e. one for ST and N for RE.

Results and Discussion

At the start of an ST simulation, initial estimates for the
weight parameters wi are needed. We determined these
estimates from preparatory simulations using both the
approximate trapezoid rule eq 12 and the asymptotically
unbiased WHAM formula eq 14. Now, a first issue is the
reliability of the trapezoid rule, which we check using the
100 ps CST simulation.

Reliability of the Trapezoid Rule for CST. Table 2
compares the initial CST weights wi determined by the
trapezoid rule eq 12 from the preparatory CRE simulation
with the asymptotically unbiased values calculated by the
WHAM formula eq 14. For all Ti the wi obtained by the two
formulas agree quite well. The errors ∆wi of eq 12 never
exceed 12% of kBTi, and, correspondingly, the uniformity
measures �̂i are all close to 1.0. Hence, one expects a nearly
uniform sampling even if the weights are determined by eq
12. Thus, adaptation schemes, which are based on the
trapezoid rule and on the WHAM formula, respectively,
should be nearly equivalent for the given system. In the CST
simulation we, therefore, applied the trapezoid rule for the
periodical recomputation of the wi.

Representative for the eighteen weights, Figure 1(a) shows
the deviation of the weights w8 and w17 from their initial
values as a function of the simulation time. The exceptional
first update wk

new ) wk
old + ln(t0/tk), which can be seen as a

special case of the update scheme proposed by Zhang and
Ma,51 sizably reduces both weights and reflects the nonuni-
form sampling within the preceding first nanosecond of the

CST simulation. Here, the temperatures T8 ) 378 K and T17

) 500 K apparently have been visited more frequently than
T0 ) 300 K. The following updates, which rely on eq 12,
lead to considerable changes of the weights, which, however,
become smaller toward the end of the simulation. After
27 ns the weights seem to be converged within roughly (
0.1. This is approximately the same magnitude of error as
the one introduced by the trapezoid rule.

Figure 1(b) shows the measured (circles) and expected
(squares) uniformity measures �i and �̂i extracted from the
last 25 ns of the CST simulation as functions of the
temperature. In contrast, the uniformity data shown in Table

Table 2. Weights Determined from the CRE Simulationa

i Ti wi (trapezoid) wi (WHAM) ∆wi �̂i

0 300 K 0.0 0.0 -0.00 1.06
1 308 K 482.58 482.59 -0.01 1.05
2 317 K 991.97 991.99 -0.02 1.04
3 326 K 1468.66 1468.69 -0.03 1.03
4 336 K 1963.47 1963.49 -0.02 1.04
5 346 K 2425.14 2425.17 -0.03 1.03
6 356 K 2856.65 2856.68 -0.03 1.03
7 367 K 3299.53 3299.56 -0.03 1.03
8 378 K 3712.36 3712.41 -0.05 1.00
9 390 K 4131.64 4131.73 -0.09 0.97
10 402 K 4521.49 4521.56 -0.07 0.99
11 415 K 4913.99 4914.07 -0.08 0.98
12 428 K 5278.33 5278.44 -0.11 0.95
13 442 K 5642.42 5642.50 -0.08 0.98
14 456 K 5980.14 5980.21 -0.07 0.99
15 470 K 6294.02 6294.09 -0.07 0.99
16 485 K 6606.46 6606.55 -0.09 0.97
17 500 K 6896.68 6896.80 -0.12 0.94

a The weights wi determined by the trapezoid rule eq 12 and by
the WHAM formula eq 14 together with the deviations ∆wi and the
correspondingly predicted (cf. eq 16) uniformity measures �̂i. The
WHAM weights were employed as starting values for the CST
simulation.

Figure 1. Uniformity of the temperature sampling in the CST
simulation. (a) Time evolution of the weights w8 and w17 with
respect to their initial values. (b) Uniformity measures ob-
served (�i, eq 15, circles) and predicted (�̂i, eq 16, squares)
after 27 ns at the temperatures Ti. The standard deviations
were estimated from MC trial simulations (see text for further
details). The dotted lines serve as a guide for the eye.
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2 had been extracted from the much shorter preparatory CRE
simulation. According to eq 16 the observables �̂i reflect the
average deviations ∆wi between the trapezoid weights used
during the CST simulation and WHAM weights calculated
a posteriori from that simulation. As one sees in the figure,
the expectation values �̂i are close to one demonstrating that
the trapezoid rule induces only small errors into the weights.
These data confirm the claim9 that the trapezoid rule is
appropriate for choosing the weights in conventional ST
simulations.

Despite the expected nearly uniform sampling of the
sampling along the temperature ladder the values �i measured
for the CST simulation deviate substantially from one,
yielding a root-mean-square deviation (RMSD) from uni-
formity of 16%. Because the weights are calculated with a
reasonable accuracy, this nonuniformity of the sampling must
be due to a too short CST simulation time. We checked this
issue by the simple MC model for the CST simulation
described in Theory and Methods, because here the expected
deviations from a uniform sampling can be reliably determined.

The gray bars in Figure 1(b) measure the standard
deviations σi of the �i resulting from 1000 MC model
simulations covering the same number of exchange trials as
our CST simulation. One would now expect that erf(σ) )
68% of the �i are found at smaller deviations than σi. In
fact, 12 of the 18 �i are within the corridor marked by the
σi, which nicely reproduces the expected statistics. Quite
clearly the standard deviations σi can be reduced by extending
the simulation time, which will then also lead to a CST
sampling close to uniformity. Now the question is whether
one can estimate the simulation time required for a reason-
ably uniform sampling. This issue can be addressed by
considering the round trip rate τ-1 given by eq 17.

CST Round Trip Rates. From the MC model simulations
we calculated an average round trip rate τ-1 of 0.83 ns-1

with a standard deviation of 0.1 ns-1. Equation 17 gives an
exact expression for τ applying to the SEO exchange scheme
used in the CST simulation. This expression rests on the
assumption of identical acceptance probabilities Pj for
exchanges along the ladder. The Pj determined from the CST
simulation is about 26%, and the resulting value τ-1 ) 0.85
ns-1 is very close to the MC result.

However, the round trip rate observed in the CST
simulation is sizably smaller measuring 0.64 ns-1. This
deviation suggests that the time interval of 0.5 ps between
subsequent exchange trials is too short to yield statistically
independent configurations, i.e. that the autocorrelation time
of the energy exceeds 0.5 ps. Thus, the system still has some
memory of the previous exchange trial, which, however, is
tolerable for most practical purposes. Furthermore, a round
trip rate of 0.64 ns-1 means that only 16 round trips were
counted during the CST simulation which is the main cause
for the observed 16% RMSD from uniform sampling. To
half this RMSD, a 4-fold number of round trips and, thus, a
4-fold simulation time would be necessary. Accordingly, one
can estimate the number of round trips needed to achieve a
desired level of uniform sampling. In turn, one can a priori
estimate the required simulation time by multiplying this
number by the predicted round trip time given in eq 17.

Next, we will study the sampling behavior of SST for
which we will additionally examine the adaptation scheme
based on the WHAM formula.

Reliability of the Trapezoid Rule for SST. Table 3
shows initial weights wi determined from the short REST/A
simulation. Because the solvent-solvent interactions do not
contribute to the partition function of SST, these weights
are tiny compared to those given in Table 2. Furthermore,
the deviations ∆wi between the trapezoid rule eq 13 and the
WHAM formula eq 14 are much larger than those listed in
Table 2. The associated uniformity measures �̂i predict that
errors of this size will lead to a considerable nonuniformity
of the SST sampling if the wi are calculated by the trapezoid
rule. Recall here that this rule can be derived based on two
assumptions: (i) the heat capacity at consecutive temperatures
Ti and Ti+1 is constant and (ii) the logarithm ln(1 + ∆Ti+1,i/
Ti) is well approximated by its first order Taylor expansion.
These conditions are harder to fulfill for SST than for CST
because here the temperature steps ∆Ti+1,i are larger.

Figure 2 compares the effects of applying the trapezoid
and WHAM rules, respectively, for updating the wi during
SST simulations. Figure 2(a) shows the deviation of the
weight w3 belonging to T3 ) 500 K during the SST/A (gray
line, trapezoid) and SST/B (black line, WHAM) simulations
from the initial value. The first update drastically changes
w3 in both simulations indicating that w3 has been poorly
estimated by the preparatory simulation. The subsequent
updates reduce the large initial change to a final deviation
of about 1.4 in both cases.

At first glance, the small difference of the resulting w3

values suggests that the errors of the trapezoid rule are much
smaller than predicted by the preparatory REST/A simula-
tion. To check this issue, we have recalculated the weights
wi of the SST/A simulation a posteriori by the WHAM
formula. The resulting time evolution of w3 is depicted in
Figure 2(a) by the gray dotted line. The difference of
0.22 ( 0.02 between the dotted gray and the solid gray lines
is nearly constant during the simulation. Obviously, the
trapezoid rule systematically underestimates w3. A similar
underestimate appears already in the initial guess for ∆w3

given in Table 2. Because of this systematic error of the
trapezoid rule, the uniformity of the temperature sampling
is expected to be suboptimal in SST/A.

Figure 2(b) shows the measured (circles) and predicted
(squares) uniformity measures �i and �̂i of the SST/A
simulation. As indicated by the squares, the average devia-
tions ∆wi between the trapezoid and the WHAM rules predict
deviations of up to 13% from uniformity. The measured �i

Table 3. Weights Determined from the REST/A
Simulationa

i Ti wi (trapezoid) wi (WHAM) ∆wi �̂i

0 300K 0.0 0.0 0.00 1.12
1 350K -16.91 -16.89 -0.02 1.09
2 415K -35.64 -35.52 -0.12 0.99
3 500K -56.16 -55.83 -0.33 0.80

a The weights wi were determined from the initial 100 ps of the
REST/A simulation by the trapezoid rule eq 13 and the WHAM
formula eq 14 together with the deviations ∆wi and the
corresponding uniformity measures �̂i. The WHAM weights serve
as starting values for the SST/A and SST/B simulation.
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(circles) essentially follow these expectations but show even
larger deviations from uniformity, yielding an RMSD of
14%. For instance, �3 happens to deviate by about two
standard deviations from the respective expectation value �̂3.
Like for CST, the standard deviations shown as gray bars in
the figure were determined from additional MC simulations.

Figure 2(c) compares the uniformity measures of the
SST/B simulation. Because the WHAM formula is the
reference, the errors ∆wi vanish and eq 16 predicts a uniform
sampling �̂i ) 1.0 at all temperatures. In fact, the measured
�i are close to 1.0 and show an RSMD of only 3%. Thus,
SST/B exhibits an almost perfectly uniform sampling imply-
ing that the WHAM formula should be used in SST
simulations for updating the wi. The remaining deviations
from uniformity are consistent with the narrow range of the
statistical fluctuations estimated by our separate MC simula-
tions. Compared with CST, the much smaller deviations of
the �i from the predictions �̂i indicate that many more round
trips must have occurred during the SST simulations.

SST Round Trip Rates. Equation 17 predicts a round
trip rate of 20 ns-1 for the simulations SST/(A,B), if the
measured average acceptance probability Pj ) 24% is used.
Our MC models of SST/(A,B) have reproduced this rate.
For the MD simulations SST/A and SST/B, however, we
found round trip rates of only 15.8 ns-1 and 16.5 ns-1,
respectively. Thus, the SST simulations apparently display

the same memory effect which was already observed in the
CST simulation and which reduces the round trip rates by
20%. Nevertheless, the SST round trip rates are by a factor
of 26 larger than the CST rates. Correspondingly, the �i are
much better converged in SST than in CST.

The large round trip rates and the nearly uniform sampling
achieved in simulation SST/B lead to the expectation that
this simulation setting leads for a peptide in solution to an
improved statistics. We now will address this issue for our
sample peptide 8ALA in TIP3P water.

Sampling Speed of CST, SST, and REST. The purpose
of any tempering algorithm is to increase the sampling speed
within the conformational space of the studied system. For
our various simulation settings we determined the sampling
speed using the LZA algorithm described in the Theory and
Methods section. This iterative algorithm measures the
volume Vc(t) of the configuration space sampled within a
simulation time t through an average number nlza of iterations.
The simulation speed S(t) is then given by the time derivative
of Vc(t).

Figure 3(a) shows the volumes Vc sampled by the
simulations CST, SST/B, and REST/C at all temperatures
as functions of the simulation time t. The respective sampling
speeds S are the constants Vc(t)/t at t ) 1 ns. The Vc curves
of REST/C and SST/B cannot be graphically distinguished
at the given scale as is documented by the inset in Figure
3(a). Apparently, CST provides the highest overall sampling
speed of the three simulations. The sampling speeds of SST/B
and REST/C are by about 10% smaller, which may be caused

Figure 2. Uniformity of temperature sampling in SST simula-
tions. (a) Deviation of the weight w3 from its initial value in
simulation SST/A (gray) and SST/B (black), respectively. The
dotted line shows w3

′ calculated a posteriori from SST/A using
the WHAM expression eq 14. The broken w3 axis serves to
simplify the comparison with Figure 1(a). (b) Measured and
predicted uniformity measures �i and �̂i of SST/A and (c) of
SST/B.

Figure 3. Volumes Vc sampled within 0.25 ns, 0.5 ns, 1 ns,
and 2.5 ns by the simulations CST, SST/B, and REST/C. Due
to the linearity of the shown Vc(t) curves, the values at 1 ns
represent the sampling speeds S in units of nlza/ns. (a)
Volumes Vc(t) sampled by the trajectories at all temperatures.
According to the inset the Vc(t) curves of REST/C and SST/B
are so close that they cannot be distinguished in the main
plot. (b) Volume Vc(t) sampled at the target temperature T0 )
300 K. Note that the statistical errors of the measured volumes
are smaller than the symbol sizes.
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by the scaling of the solvent part of the Hamiltonian
corresponding to an effectively cooler environment.

We have checked the latter conjecture by two MD
simulations at 500 K (data not shown) with and without
solvent scaling. Here, the effectively cooler solvent indeed
reduces the sampling speed of 8ALA by about 20%. For
lower temperatures we expect this effect to be correspond-
ingly smaller. However, this small effect is tolerable if the
sampling speed at the target temperature T0 ) 300 K is
sufficiently enhanced, which is after all the aim of solute
tempering methods.

Figure 3(b) compares the sampling speeds at T0 ) 300 K
for the three methods. In contrast to the sampling speed of
the generalized ensemble, at 300 K REST/C samples the
peptide conformations 2.1 times faster than CST, and SST/B
outperforms CST even by a factor of 2.8. Thus, SST/B
samples also faster than REST/C, although the two simula-
tions employ the same temperature ladder and the same
solvent scaling. An explanation of this speedup is given by
the different round trip rates of 11.1 ns-1 for REST/C and
16.4 ns-1 for SST/B. Due to the higher rate, SST delivers
the structural information that is gathered at higher temper-
atures faster to the target temperature implying an enhanced
speed of conformational sampling at T0.

The reduced round trip rate of REST/C compared to SST/B
directly results from the fact that for a given temperature
ladder the average acceptance probabilities PjRE of RE
methods (including their sequential versions13) are smaller
thantheprobabilitiesPjST of thecorrespondingSTmethods.40-42

The reason is that in RE the configurations of two replicas
must simultaneously meet a certain energy criterion instead
of only one replica in ST. Therefore, the average acceptance
probability PjRE should be approximately the square of PjST.
For example, the average acceptance probability of SST/B
is about 26%. Thus, we expect a probability of 7% (0.262 ≈
0.07) for REST/C which is close to the measured value of
9%.

Optimal Exchange Scheme. Because the acceptance
probability of REST/C is much smaller than that of SST/B,
eq 17 predicts likewise different round trip rates. Compared
with that expectation the round trip rate measured for
REST/C (11.1 ns-1) seems to be too high compared to SST/B
(16.5 ns-1). This large REST/C rate illustrates the advantage
of the employed DEO exchange scheme compared to the
SEO scheme of SST/B.52 Furthermore, the optimal exchange
probabilities Pj which yield the highest round trip rates are
different for these two schemes. For SEO the optimal Pj is
23%,52,66 whereas for DEO the optimal Pj is between 40%
and 45% depending on the ladder size.39,52

To investigate the effects of the exchange scheme and the
acceptance probability on the SST round trip rates we have
carried out the two 12 ns simulations SST/C and SST/D.
SST/C switches from SEO to DEO, and SST/D additionally
uses five instead of four rungs to span the temperature range
from 300 K up to 500 K (see Table 1). SST/D thereby
increases Pj to about 40%. For SST/C we found a round trip
rate of 20.0 ns-1 which is about 20% larger than that of SST/
B. Thus, the DEO exchange scheme indeed speeds up the

round trips sizably. An additional increase of Pj in simulation
SST/D leads to a still larger round trip rate of 23.8 ns-1.

Figure 4 shows the effects of the round trip rates, which
increase in the sequence SST/B, SST/C, and SST/D, on the
sampling speed at 300 K. The highest sampling speed is
achieved by SST/C. Compared to SST/B the DEO exchange
scheme increases the sampling speed by about 15%. This
increase corresponds to the enhancement of the round trip
rate. Interestingly, the sampling speed of SST/D is smaller
than that of SST/B despite the much larger round trip rate.
Here, the lower sampling speed is caused by the 25% reduced
sampling time at 300 K due to the additional temperature
rung, which is not compensated by the higher round trip rate.

Finally, Table 4 summarizes the round trip rates and
sampling speeds measured in our simulations. Using REST
instead of CST speeds up the sampling by a factor of 2,
whereas SST yields a speedup factor of 3. Note, however,
that these factors are conservative estimates because of the
particular choice of the 8ALA system. In this system the
enthalpic barriers are small, and, therefore, the benefit of
tempering methods is limited (see Introduction).22 Cor-
respondingly, the sampling speeds do not increase very much
upon heating the system from the lowest to the highest
temperature. However, target applications of tempering
methods feature large enthalpic barriers14,67 for which the
sampling has to be accomplished mainly at high tempera-
tures. Correspondingly, the sampling speed at T0 should
depend much stronger on the round trip rates. As a key result,

Figure 4. Sampled volumes for the simulations SST/B, SST/
C, and SST/D at T0 ) 300 K by SST/C. Compared to SST/B
the DEO exchange scheme increases the sampling speed
by about 15%. This increase corresponds to the enhancement
of the round trip rate. Interestingly, the sampling speed of
SST/D is smaller than that of SST/B despite the much larger
round trip rate. Here, the lower sampling speed is caused by
the 25% reduced sampling time at 300 K due to the additional
temperature rung, which is not compensated by the higher
round trip rate.

Table 4. Round Trip Rates and Sampling Speeds
Measured at Temperature T0 ) 300 K

label round trip rates/ns-1 speed/nlza/ns

CST 0.63 68
REST/C 11.1 146
SST/A 15.8 204
SST/B 16.5 190
SST/C 20.0 216
SST/D 23.8 183
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SST in combination with the DEO exchange scheme should
generally show much better sampling properties than REST
or CST.

Conclusion

We have introduced simulated solute tempering (SST) which
combines the (serial) simulated tempering method with solute
tempering, i.e. the key idea of the REST approach. SST poses
an efficient alternative to conventional simulated tempering
and replica exchange, including REST and its sequential
version SREST because it offers the largest acceptance
probabilities for a given temperature ladder.

From a practical point of view, it is gratifying to note that
SST can be easily implemented. For example, for rigid
models of the solvent molecules only the partial charges and
the van der Waals parameters have to be scaled to generate
the modified Hamiltonians at higher temperatures. Further-
more, SST enables a parallel sampling of many replicas even
on heterogeneous computer clusters, because all replicas
travel independently through temperature space.

The necessary ingredients of SST are the weights, i.e. the
dimensionless free energies of the system at the rungs of
the temperature ladder. The trapezoid rule recently suggested
by Park and Pande9 for the computation of the weights is
not accurate enough for SST but well suited for CST. Our
rederivation of this rule has shown that it is only accurate
for temperature ladders featuring small temperature differ-
ences, which is the case for CST. In SST a few rungs suffice
to span a large temperature range. Due to the failure of the
trapezoid rule, the SST weights should be updated using the
more complex but asymptotically unbiased WHAM formula
of Kumar et al.45 Then an almost perfectly uniform sampling
of the temperature rungs is guaranteed, if the simulation time
exceeds the average round trip time by about 2 orders of
magnitude.

Our comparison of different sampling methods (REST,
CST, SST) applied to an octapeptide in explicit water has
demonstrated that the SST sampling is the most efficient one
as was shown by the largest round trip rate and the highest
sampling speed at T0. Finally we have shown that the round
trip rates can be maximized by using the DEO instead the
SEO exchange scheme and by choosing a temperature ladder
that provides acceptance probabilities close to 45%.

In conclusion, the sampling efficiency of SST as well as
its ease of implementation and application nourishes the hope
that simulated tempering will become more popular and that
we may see many exciting applications in the future.

Acknowledgment. This work was supported by the
Deutsche Forschungsgemeinschaft (Grants SFB 533/C1 and
SFB 749/C4). Computer time provided by Leibniz Rechen-
zentrum (project uh408) is gratefully acknowledged.

Appendix

For a canonical ensemble with a heat capacity CV

independent of the temperature, eq 12 can be derived by the
following physical considerations. Using the shorthand
notation ∆Xji ≡ Xj - Xi, the entropy difference ∆Sji ) CV

ln(1 + ∆Tji/Ti) can be estimated by a first order Taylor

expansion of the logarithm as ∆Sji ≈ CV∆Tji/Ti. With CV )
∆Uji/∆Tji one gets

With the Helmholtz free energy F ) U - TS, where U
denotes the internal energy, the free energy difference ∆Fji

between the systems at Tj and Ti can be written as

Inserting eq 19 one immediately finds

With eq 21, the dimensionless free energy difference ∆φji

) Fj/kBTj - Fi/kBTi can be written as

Interchanging i and j one obtains an equally valid estimate

where we have used ∆Xij ) -∆Xji. An even better ap-
proximation is then given by the arithmetic mean

where ∆Uji cancels. Restricting the internal energy U to its
configurational part, i.e., to the average potential energy 〈E〉,
yields the “trapezoid” rule eq 12.

Supporting Information Available: Average accep-
tance probabilities Pj i,i ( 1 for the various simulations (Tables
S1 and S2). This material is available free of charge via the
Internet at http://pubs.acs.org.
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Abstract: We investigated the adsorption and the diffusion of alkanes in the sodium-exchanged
zeolite Mordenite (Na-MOR) using molecular simulations. MOR-type zeolite consists of main
channels (6.5 × 7 Å) oriented along the z crystallographic axis that are connected to small side
pockets (3.4 × 4.8 Å). It is well-known that the adsorption of alkanes in Na-MOR strongly depends
on the precise location of the framework Al atoms either in the main channel or the side pockets
(Calero and co-workers, Angew. Chem. Int. Ed. 2007, 46, 276). We found that this effect can
be characterized by a single-order parameter: the number of framework Al in the main channel
divided by the number of framework Al in the side pocket (M/S ratio). For any M/S ratio, the
adsorption isotherm follows from a linear interpolation between the reference isotherms. This
enabled us to predict adsorption isotherms for any distribution of the Al framework atoms or
estimate the M/S ratio for a given isotherm. We found that the same model can predict the
effect of the M/S ratio on the self-diffusion coefficient, the Maxwell-Stefan diffusion coefficient,
and the accessible micropore volume.

1. Introduction
Mordenite (MOR-type zeolite) is an important catalyst in
the petrochemical industry, as it is used for the acid-catalyzed
isomerization of alkanes and aromatics.1,2 For example, Pt/
H-MOR is a suitable catalyst for the hydro-isomerization of
linear alkanes to branched ones, even though slow intrac-
rystalline transport hinders the catalytic performance to some
extent.3 Therefore, it is important to understand the adsorp-
tion and transport of hydrocarbon molecules in this zeolite.4

The framework of MOR-type zeolite consists of main
channels formed by large 12-membered rings with an
elliptical shape of 6.7 × 7.0 Å oriented along the z
crystallographic axis. Small side pockets are connected to
these main channels by eight-membered rings (3.4 × 4.8
Å) that are oriented along the y crystallographic axis.5 It was
found that methane is the only hydrocarbon that can be
adsorbed in the side pockets.6,7

In general, the structure of zeolites consists of covalently
bonded TO4 units, in which the framework T atom is usually
a silicon (Si) or an aluminum (Al) atom. To obey charge
neutrality, the substitution of a Si atom by an Al atom
requires the presence of a nonframework cation (usually Na+

or K+) or a proton (H+). It is well-known that the adsorption
of guest molecules in Na-MOR is significantly enhanced by
nonframework Na+ cations.8 The positions of the nonframe-
work cations in MOR-type zeolite are coupled to the
positions of the framework Al atoms.9 The aVerage distribu-
tion of framework Al over the various T sites (labeled T1,
..., T4) in Na-MOR was obtained experimentally by detecting
Brønsted acid sites.9-12 It was found that the majority of Al
is located at the T3 and T4 sites close to the side pockets.
Knowledge on the distribution of Al among T sites alone is
not sufficient to obtain the exact individual positions of all
framework Al atoms. Recently, Calero and co-workers used
an elegant reversed engineering approach to identify the
positions of the framework Al atoms in zeolites.13,14 For a
fixed Si/Al ratio, this approach considers all possible
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distributions of Al in the unit cell of the zeolite. It was found
that this approach correctly predicts the Al distribution in
Na-MOR. These authors also found that for some zeolites,
e.g., LTA, FAU, and MFI, the precise positions of the
framework Al atoms do not influence adsorption, while for
other zeolites, e.g., MOR, FER, and TON, the adsorption
strongly depends on the positions of the framework Al atoms.
For MOR-type zeolite, this is because nonframework Na+

cations in the side pocket only have a weak interaction with
adsorbed guest molecules in the main channel, while this
interaction is much stronger for cations located in the main
channel.

Many experimental and simulation studies have investi-
gated the effect of nonframework cations on the diffusivity
of guest molecules, particularly in MFI-type zeolite.15-18 Fan
et al.16 used molecular dynamics simulations to study the
diffusion of ethene in MFI-type zeolite. These authors found
that the diffusion of ethene was slowed down from 2.7 ×
10-9 m2/s in a silicalite framework to 1.6 × 10-9 m2/s in
ZSM-5 with four Al per one unit cell. Masuda et al.18 studied
the influence of acid sites on the diffusion of aromatics in
MFI-type zeolite. This study revealed that at low tempera-
tures, the diffusivity significantly decreased with an increas-
ing number of acid sites, while the diffusion of aromatics
was hardly affected by the acid sites at high temperatures.
Leroy et al.15 combined the quasi-elastic neutron-scattering
technique with molecular simulations to study the diffusion
of alkanes in MFI. These authors found that the diffusivity
of octane in silicalite is four times larger than in Na-ZSM-
5. This result agreed well with their molecular dynamics
simulations for MFI-type zeolite with two Na+ per unit cell.
In summary, previous studies show that diffusion of hydro-
carbons is slowed down by nonframework cations. Therefore,
it is important to know the effect of the Al distribution on
this.

In this work, computer simulations were used to investigate
the influence of the positions of framework Al on the
adsorption and diffusion properties of Na-MOR in a more
coarse-grained way. In our simulations, the Al distribution
was described by a single-order parameter: the M/S ratio,
which is the ratio of the number of framework Al in the
main channels (M) and the side-pockets (S) in MOR-type
framework (M/S ratio). The reasons for using this order
parameter were: (1) The adsorption of guest molecules is
only sensitive to the framework Al located in either the main
channels or the side pockets, rather than the exact positions
of framework Al atoms. (2) The Al distribution is a more
accessible parameter for experiments than the distribution
of nonframework Na+.

This paper is organized as follows. In Section 2, we briefly
describe the construction of a Na-MOR supercell as well as
the simulation methods for computing the adsorption iso-
therms, the diffusivities, and the accessible micropore
volume. In Section 3.1, the computed Na+ distribution in
MOR is compared with experiments. In Section 3.2, we
present an interpolation model to predict isotherms in Na-
MOR for any M/S ratio, using two reference isotherms with
a known M/S ratio. In Section 3.3, we show that the
nonframework Na+ cations seriously hinder the diffusion of

alkanes in Na-MOR at low temperature, and this effect is
correctly described by our model. We show that our model
is also applicable for calculating the micropore volume of
Na-MOR (Section 3.4). Our findings are summarized in
Section 4.

2. Simulation Methods

2.1. The Na-MOR Lattice. Zeolite Na-MOR consists of
Na, Si, Al, and O atoms with the composition
NaxAlxSi48-xO96. Natural mordenite has a Si/Al ratio of
approximately 4.3-6.0, so x ≈ 8.10 Demuth et al.19 pointed
out that the most common space group for MOR-type zeolite
is Cmcm with the exception of dehydrated protonated MOR
which has space group Pbcn. Macedonia et al.20 showed that
differences in adsorption isotherms between the space groups
Cmcm and Pbcn are negligible. Therefore, in this paper we
restricted ourselves to the Na-MOR lattice with a Cmcm
symmetry. The dimensions of the MOR unit cell are 18.094
× 20.516 × 7.524 Å with R ) � ) γ ) 90°. Each unit cell
contains four different tetrahedral sites (T1, ..., T4) for Si
and Al framework atoms, and ten different oxygen sites (O1,
..., O10).

21 The T3 sites are located in the side pocket, while
T1, T2, and T4 are located in the main channel, see Figure
1a. Alberti et al.10 derived the Al distribution over the four
T sites in natural Na-MOR from X-ray diffraction (XRD)
measurements. This is also expected to be applicable to
synthetic Na-MOR and H-MOR.

In this work, we constructed large supercells of MOR-
type zeolite consisting of 2 × 2 × 4 unit cells. Starting from
an all-silica supercell, Si framework atoms are randomly
substituted by Al in such a way that (1) the Löwenstein rule
is obeyed, and (2) the relative Al content of each T site
corresponds to the given M/S ratio. As a result, many Na-
MOR supercells could be generated with the same Si/Al ratio
but with different positions of the framework Al. We will
show that the properties of these supercells are nearly
identical, as the relative Al content of the T sites in the main
channel and the side pocket is identical for these supercells.
Computed properties were then averaged over 5-10 supercells.

2.2. Computing Adsorption Isotherms. Adsorption iso-
therms were computed by using configurational-bias Mon-

Figure 1. (a) The preferential sites A, D, and E for nonframe-
work Na+ cations in Na-MOR. The colors are: red for O and
yellow for Si and Al. The four T sites T1, T2, T3, and T4 are
shown as well. (b) Typical snapshot of Na-MOR with Si/Al )
5 for a supercell consisting of 2 × 2 × 4 unit cells at 300 K.
The colors are: red for O, cyan for Na+, yellow for Si, and
black for Al.
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te Carlo22-24 simulations in grand-canonical ensemble
(GCMC).24-27 Interactions between the guest molecules,
the zeolite framework, and the nonframework cations were
described by Lennard-Jones interactions. In addition,
electrostatic interactions between the nonframework Na+

cations and the framework were included. All force field
parameters were taken from the work of Calero et al.28

The Ewald summation was used to compute electrostatic
interactions. A typical simulation consisted of 3 × 106

Monte Carlo cycles. In each cycle, trial moves were chosen
at random with a fixed probability: translation of a guest
molecule or a nonframework cation (15%), rotation of a guest
molecule (15%), exchange of a guest molecule with a particle
reservoir (55%), and partial regrowth of a guest molecule
(15%). The number of trial moves in each cycle was equal
to the number of adsorbed guest molecules with a minimum
of 20. The number of Na+ atoms in Na-MOR was constant
during the simulations. For the simulation of adsorption, the
zeolite framework was kept rigid, and the nonframework
cations were mobile. For the systems considered here,
including framework flexibility usually results in a negligible
deviation of adsorption isotherms.29 For more details on these
simulations, we refer the reader to refs 26-28.

2.3. Computing Diffusivities of Guest Molecules. Mo-
lecular dynamics simulations30 were used to calculate the
self- and Maxwell-Stefan diffusion coefficients of adsorbed
guest molecules in MOR-type zeolite. We used the velocity
Verlet algorithm31 with a time step of 0.5 fs. The temperature
was controlled by a Nosé-Hoover thermostat.24 The initial
configuration of guest molecules was taken from the final
configuration of a Monte Carlo simulation in the NVT
ensemble. To avoid single-file diffusion, each main channel
of MOR-type zeolite contained only a single guest molecule.
For simplicity, we used a rigid framework. Nonframework
cations were allowed to move freely in the zeolite. The self-
(Dself) and Maxwell-Stefan diffusion coefficients (DMS) of
a single component adsorbed in a zeolite were computed
from particle displacements:

in which R is the direction of diffusion, n is the number of
adsorbed guest molecules, and ri(t) is the position of molecule
i at time t.32-34 For MOR-type zeolite, only diffusion in the
main channel (z direction) was taken into account, i.e., R )
z. In practice, the mean-square displacement in eqs 1 and 2
was computed using an order-n algorithm.24,33,35

2.4. Pore Size Distribution. In this work, the pore size
of a certain cavity or channel was defined as the maximum
diameter of a sphere that can be located in there. This
definition is applicable to pores with an arbitrary shape. For
cylindrical or slit pores, our definition is identical to the
IUPAC definition.36 Using this definition, the pore size

distribution was computed from the coordinates of the
framework atoms using the following algorithm:37 (1) A
three-dimensional grid with a small spacing is constructed.
We typically use a grid size of 0.1 Å (in each direction). (2)
A spherical test particle is positioned at a random position
in the zeolite. The radius of this particle is chosen as the
minimum distance between the center of the particle and any
of the zeolite framework atoms minus the radius of the
closest framework atom. The radius of an oxygen framework
atom is 1.35 Å, and the radius is 0.99 Å for Na+ .21

Tetrahedral atoms, e.g. Si, Al, are not considered, as for most
zeolites they are well screened by adjacent oxygen atoms.38

(3) The diameter of the test particle is recorded for all grid
points that are inside the spherical particle. (4) This procedure
is repeated many times. We found that the number of test
spheres should be at least 100 times the number of grid
points. For each grid point, the maximum recorded diameter
is computed, and this quantity is defined as the local pore
size of a specific grid point. The simulation stops when the
local pore size of all grid points is converged. (5) The fraction
of pores with a diameter between r and r + ∆r (pore size
distribution) is equal to the fraction of grid points with a
maximum diameter between r and r + ∆r. Using our
calculated pore size distribution, the micropore volume was
calculated by integrating the pore size distribution from 4.5
to 20 Å. For more details, we refer the reader to ref 37.

3. Results and Discussion

3.1. Na+ Distribution. Nonframework Na+ cations in-
teract with the framework Al through Lennard-Jones and
long-range Coulombic interactions. As a consequence, Na+

cations are not directly bonded to framework Al atoms.
Experiments on dehydrated Na-MOR crystals5,39-41 identi-
fied three favorable locations for nonframework Na+: the
center of eight-membered rings that run parallel to the main
channels (site A), the main channel at the entrance of the
side pocket (site D), and the main channel far away from
the side pocket (site E), see Figure 1a. Our simulations
showed the same adsorption sites for Na nonframework
cations, see Figure 1b. The Na+ occupancies at these sites
have been computed for natural Na-MOR with Si/Al ) 5
and 5.5, respectively. Table 1 shows that the computed Na+

occupancies at these sites agree very well with the available
experiments. For different supercells with an identical
distribution of Al over the T sites, we found that the
occupancy of Na+ at the three sites is nearly identical. The

DR
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∆tf∞

1
∆t〈( ∑
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Table 1. Comparison of the Na+ Occupancies between
Experiments and Simulations

Si/Al site A, % site D, % site E, %

experimenta 5.7 43 36 21
experimentb 5.7 53 34 13
experimentc 5 49 32 19
simulationd 5 50 38 12
this work 5.0 40.2 35.5 20.9
this work 5.5 40.1 35.3 20.9

a Schlenker et al.5 b Devautour et al.41 c Coughlan et al.39,44

d Tyburce et al.45 The Na+ occupancy was averaged over five
supercells. Note that the differences in occupancy between the
supercells were very small.
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corresponding radial distribution functions for Na+-Na+

interactions are very similar, as they all show peaks at
distances of 4.3, 6.2, 10.1, and 14 Å, see Figure 2.

3.2. Prediction of Adsorption Isotherms. Na-MOR has
two main adsorption sites for alkanes, the large main
channels and the smaller side pockets. Methane is the only
alkane that can access the side pockets.6,7 The side pockets
are also accessible for nonframework Na+ cations. It is
natural to divide the nonframework Na+ cations into two
groups: Na+ in the main channels (denoted by NaM

+) and Na+

in the side pockets (denoted by NaS
+). NaM

+ corresponds to
the Na+ cations at site D and E, while NaS

+ corresponds to
Na+ at site A. The NaM

+ cations interact more strongly with
alkanes absorbed in the main channel, as they are more close
by. A convenient order parameter to characterize the Na+

distribution is the Al M/S ratio, which is the ratio of the
number of the framework Al in the main channels and the
side pockets. The reason for this is that, due to the strong
interactions between Al and Na+, the distribution of the Na+

cations approximately follows that of the framework Al. The
difference of the adsorption properties between different Na-
MOR supercells with the same Al M/S ratio was found to
be small in our simulations. Al framework atoms at the
crystallographic site T3 are considered to be in the side
pocket, while Al atoms at T1, T2, and T4 are considered to
be in the main channel, see Figure 1a. The same classification
was previously used by IR spectroscopy experiments of probe
molecules in MOR-type zeolite.42 This technique is used to
locate Brønsted acid sites in H-MOR. We expect that the
Al distribution in Na-MOR is the same as in H-MOR, as
H-MOR is usually obtained by exchanging Na+ with H+.43

To model the adsorption behavior of alkanes in Na-MOR,
as a function of the M/S ratio (Al content in the main channel
divided by the Al content in the side pocket, here denoted
by r), we constructed the following model. The total number
of Al atoms per unit cell is denoted by n, while nM and nS

are the number of Al atoms per unit cell in the main channels
and the side pockets, respectively. Of course:

and we define the ratio r by

From this it directly follows that:

Our key assumption is that the loading of guest molecules
at pressure P (here denoted by I(P)) is a linear function of
nM and nS:

where RM(P) and RS(P) are pressure-dependent constants and
I0(P) is the loading of guest molecules for all-silica MOR at
pressure P. The maximum number of Al at the T3 sites is
four Al atoms per unit cell (nS e 4), which is much lower
than the maximum possible number of Al in the main
channel. For a given total content of framework Al atoms,
there are two extreme situations: (1) the M structure, i.e.,
all Al is located in main channels (nS ) 0, nM ) n, the
corresponding adsorption isotherm is denoted by IM(P)) and
(2) the S structure, where the side pockets are fully loaded
with Al, and the remaining Al are located in the main channel
(adsorption isotherm denoted by IS(P)). This leads to

and

By eliminating RM(P) and RS(P) we obtain

When the Si/Al ratio is larger than 11 (i.e., ne 4), the weight
factors of IM(P) and IS(P) in eq 10 are simply the fractions
of framework Al at the sites M and S.

To test the prediction of eq 10, we computed adsorption
isotherms of propane and butane in Na-MOR. These
molecules are exclusively adsorbed in the main channels.
Figure 3 shows the computed adsorption isotherms IM and
IS for Na-MOR with four Al per unit cell. Both isotherms
significantly differ from the one for an all-silica structure.
As expected, the adsorption isotherm strongly depends on
the positions of the framework Al atoms, and the differences
between isotherms of different supercells are small. At a
given pressure, the adsorbed amount for the S structure is
always lower than that of the M structure due to the increased
average distance between the guest molecules and the
nonframework Na+ cations.

Figure 2. Radial distribution functions for Na+-Na+ interac-
tions for 10 supercells with the same Al distribution (Si/Al )
5), see Section 2.1.

n ) nM + nS (3)

r )
nM
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r

r + 1
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nS ) n
1

r + 1
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I(P) ) I0(P) + RM(P)nM + RS(P)nS

) I0(P) + n
r + 1

[RM(P)r + RS(P)]
(7)

IM(P) ) I0(P) + RM(P)n (8)

IS(P) ) {I0(P) + RS(P)n for n e 4
I0(P) + 4RS(P) + (n - 4)RM(P) for n > 4
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I(P) ) { r
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Figures 4 and 5 show that the prediction of eq 10 is
excellent. This result is useful in two ways: First, the
adsorption isotherm for an arbitrary M/S ratio can be pre-
dicted by linear interpolation between two reference iso-
therms (for which we know the M/S ratio). Second, the M/S
ratio in a Na-MOR sample can be estimated by fitting a
measured isotherm to two reference isotherms. As an
example, we estimated an M/S ratio of 3:1 from experimental
adsorption isotherms of propane and butane in Figure 6. This
estimated ratio is close to the ratio of 2:1 proposed by Alberti
et al.10

In Figure 7, it is shown that our interpolation model is
able to accurately predict the Henry coefficients of n-alkanes
with 2-5 carbon atoms. For longer n-alkanes, small differ-
ences appeared between the computed and the predicted
Henry coefficients. The reason for this is that longer chains
will have interactions with more Na+ cations at the same
time, leading to nonlinear effects.

3.3. Prediction of Diffusivities. The computed and pre-
dicted diffusivities of alkanes in Na-MOR for various Si/Al
ratios are shown in Table 2. The simulations were performed
for propane and hexane diffusing in the all-silica MOR and

Figure 3. Adsorption isotherms of propane (a) and butane (b) in Na-MOR at 300 K for Si/Al ) 11. The M and S structures are
shown as well as the isotherm for the all-silica structure. Each isotherm is the average over three supercells with the same M/S
ratio. The error bars indicate the differences between these supercells. For each supercell, the error in the computed loading is
much smaller than the symbol size.

Figure 4. Linear interpolation of adsorption isotherms for propane in Na-MOR with Si/Al ) 11 at 300 K. The predicted isotherm
using eq 9 was compared to the computed isotherm at the same Al M/S ratio. (a) Al M/S ratio 2:1 and (b) Al M/S ratio 1:2.

Figure 5. Linear interpolation of adsorption isotherms for
butane in Na-MOR with Si/Al ) 11 at 300 K. The predicted
isotherm using eq 10 was compared to the computed isotherm
at the same Al M/S ratio 1:2.

Figure 6. Comparison of the predicted isotherms (eq 10) with
experimental data7 for propane and butane in Na-MOR with
Si/Al ) 19.75 at 373 and 438 K. The estimated Al M/S ratio
was 3:1 for this system.
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Na-MOR containing two or eight Na+ cations at 300K and
600K, respectively. As each main channel contains a single
alkane molecule only, it is expected that the Maxwell-Stefan
and the self-diffusivities do not differ very much. It can be
seen from Table 2 that both the self- and Maxwell-Stefan
diffusivities decrease as a function of the Na+ concentration
irrespective of the temperature and the alkane chain length.
This is in line with the results from Leroy et al.15 Note that
the differences of the calculated diffusivities were about 15%
for supercells with the same Al distribution. For each
supercell, the simulation error is about 20% for DMS and 10%
for Dself. These errors are much smaller than the difference
of the diffusivities for Na-MOR with different Si/Al ratios.
Therefore, we can conclude that the diffusion of alkanes is
slowed down by the nonframework cations of Na-MOR.

The self- and Maxwell-Stefan diffusivities were computed
for propane in Na-MOR with Si/Al ) 11 at 300 K and 600
K at a loading of one propane per main channel, see Table
3. As the loading is quite low, the self- and Maxwell-Stefan
diffusivities are almost equal. However, the diffusivity of
propane in the S structure is more than twice as large as in
the M structure. The reason for this is that because of the
strong interactions between propane and Na+, the Na+ ions
in the main channels will slow down the diffusion of propane
significantly. Therefore, DM < DM/S ) 2:1 < DM/S ) 1:2 < DS. In
the same spirit as eq 10, we predicted the self- and

Maxwell-Stefan diffusivities for M/S ) 2:1 and M/S ) 1:2,
based on the computed diffusivities DM and DS:

In this equation, D is the predicted diffusivity and DM and
DS are the two reference diffusivities. The predicted diffu-
sivities are very close to the computed ones. Differences of
calculated diffusivities are about 12% for the supercells with
the same Al M/S ratio. For each supercell, the simulation
error is about 20% for DMS and 5% for Dself. These errors
are much smaller than the difference of the diffusivities for
Na-MOR with different Al M/S ratios. Therefore, we can
conclude that the interpolation scheme is able to predict self-
and Maxwell-Stefan diffusivities in Na-MOR.

3.4. Prediction of the Micropore Volume. The mi-
cropore volume of Na-MOR for different M/S ratios is shown
in Table 4. As the micropore volume was calculated from
pores in the range of 4.5-20 Å, the main contribution to
the micropore volume originates from the main channels.
Therefore, when all the nonframework Na+ is located in the
main channel, the micropore volume decreases. This leads
to the following prediction: VM < VM/S ) 2:1 < VM/S ) 1:2 < VS.
For a given M/S ratio, the micropore volume can be
computed using

Figure 7. Linear interpolation of the Henry coefficients of
n-alkanes in Na-MOR with Si/Al ) 11 at 300 K. The error bars
are much smaller than the symbols.

Table 2. Self- and Maxwell-Stefan Diffusion Coefficients
of Propane and Hexane in All-Silica MOR and Na-MOR
with Si/Al ) 5:23 at 300 K and 600 Ka

Si/Al C3 at 300 K C6 at 300 K C3 at 600 K C6 at 600 K

Dself ∞ 5.5 7.0 12.3 13.1
Dself 23 2.5 1.6 7.0 5.7
Dself 5 1.8 0.9 5.5 3.6
DMS ∞ 5.5 7.0 11.6 12.8
DMS 23 2.3 1.4 6.9 5.5
DMS 5 1.8 0.9 5.3 3.5

a Each main channel contained a single alkane molecule. Self-
and Maxwell-Stefan diffusivities are denoted by Dself and DMS in
units of 10-8 m2/s, respectively. The diffusion coefficients in
Na-MOR were obtained by averaging over 10 supercells with the
same M/S ratio. The differences between supercells are
approximately 15%. For each supercell, the error in the computed
diffusivity was around 20% for DMS and 10% for Dself. For all-silica
MOR, the error in the computed diffusion coefficients was smaller
than 1%.

Table 3. Interpolation of Propane and Hexane Diffusivities
in Na-MOR with Si/Al ) 11 at 300 K and 600 K,
Respectivelya

DM DS DM/S ) 1:2 DM/S ) 2:1

C3 (300 K)
simulated Dself 1.4 2.8 2.0 1.6
predicted Dself n.a. n.a. 2.3 1.9
simulated DMS 1.3 3.0 2.2 1.4
predicted DMS n.a. n.a. 2.4 1.9

C6 (600 K)
simulated Dself 3.1 5.1 4.5 3.7
predicted Dself n.a. n.a. 4.4 3.8
simulated DMS 2.9 5.1 4.6 3.5
predicted DMS n.a. n.a. 4.4 3.6

a Each main channel contained a single alkane molecule. Self-
and Maxwell-Stefan diffusivities were denoted by Dself and DMS in
units of 10-8 m2/s. DM and DS are the computed diffusivities for the
M and S structure, see Section 3.2. All reported values were
obtained by averaging over 10 supercells with the same M/S ratio.
The differences between supercells are approximately 12%. For
each supercell, the error in the estimated diffusivity was
approximately 20% for DMS and 5% for Dself.

Table 4. Interpolation of the Micropore Volume (V) of
Na-MOR with Si/Al ) 11 in Units of mL/ga

VM VS VM/S ) 1:2 VM/S ) 2:1

simulated 0.1816 0.1934 0.1874 0.1855
predicted n.a. n.a. 0.1894 0.1855

a The notation is the same as in Table 3. All values were
obtained by averaging over 10 supercells with the same Al M/S
ratio. The differences of the micropore volumes were 0.5% for the
10 supercells with the same Al M/S ratio. The simulation error of
the micropore volume for each supercell was approximately 0.2%.

D ) { r
r + 1

DM + 1
r + 1

DS for n e 4

4r - n + 4
4(r + 1)

DM + n
4(r + 1)

DS for n > 4

(11)
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Table 4 shows that the predicted micropore volumes are
in good agreement with the computed ones. The differences
in micropore volume are 0.5% for supercells with the same
M/S ratio. The error in the computed micropore volume for
each supercell is about 0.2%. These errors are more than 1
order of magnitude smaller than the difference in the
micropore volume between the M and S structure. Therefore,
we can conclude that the interpolation scheme works also
well for the prediction of the accessible micropore volume
in Na-MOR.

4. Conclusions

We presented a simple interpolation model to predict the
effect of the framework Al distribution on the adsorption
isotherms and diffusivities of alkanes in Na-MOR as well
as the micropore volume. The key parameter is the Al M/S
ratio, which is the ratio between the number of Al atoms in
the side pockets (T3 sites) and the main channels (T1, T2,
and T4 sites). Our model predictions match the computed
values very well.
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W., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Vol.
84, pp. 1375-1394.

(5) Schlenker, J. L.; Pluth, J. J.; Smit, J. V. Mater. Res. Bull.
1979, 14, 751.

(6) Choudhary, V. R.; Mayadevi, S.; Singh, A. P. J. Chem. Soc.
Faraday Trans. 1995, 91, 2935–2944.

(7) Webster, C. E.; Cottone, A.; Drago, R. S. J. Am. Chem. Soc.
1999, 121, 12127–12139.

(8) Beerdsen, E.; Dubbeldam, D.; Smit, B.; Vlugt, T. J. H.; Calero,
S. J. Phys. Chem. B 2003, 107, 12088–12096.

(9) Marie, O.; Massiani, P.; Thibault-Starzyk, F. J. Phys. Chem.
B 2004, 108, 5073–5081.

(10) Alberti, A. Zeolites 1997, 19, 411–415.

(11) Niwa, M.; Suzuki, K.; Katada, N.; Kanougi, T.; Atoguchi, T.
J. Phys. Chem. B 2005, 109, 18749–18757.

(12) Bevilacqua, M.; Busca, G. Catal. Commun. 2002, 3, 497–
502.
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Abstract: A method to generate electrostatic potential (ESP) derived atomic charges in
crystalline solids from periodic quantum mechanical calculations, termed the REPEAT method,
is presented. Conventional ESP fitting procedures developed for molecular systems, in general,
will not work for crystalline systems because the electrostatic potential in periodic systems is
ill-defined up to a constant offset at each spatial position. In this work the problem is circumvented
by introducing a new error functional which acts on the relative differences of the potential and
not on its absolute values, as it is currently done with molecular ESP charge derivation methods.
We formally demonstrate that the new functional reduces to the conventional error functional
used in molecular ESP approaches when the simulation box of the periodic calculation becomes
infinitely large. Several tests are presented to validate the new technique. For the periodic
calculation of isolated molecules, the REPEAT charges are found to be in good agreement with
those determined with established molecular ESP charge derivation methods. For siliceous
sodalite, it is demonstrated that conventional molecular ESP approaches generate ‘unphysical’
charges, whereas the REPEAT method produces charges that are both chemically intuitive and
consistent between different periodic electronic structure packages. The new approach is
employed to generate partial atomic charges of various microporous materials and compared
to both experimentally derived and molecular fragment ESP charges. This method can be used
to generate partial atomic charges to be used in simulations of microporous and nanoporous
materials, such as zeolites and metal organic framework materials.

I. Introduction
Microporous materials are a fascinating class of condensed
matter systems with a wide range of important applications.
They are commonly employed as catalysts in the petro-
chemical industry, as adsorbents to trap impurities, as
physical reservoirs for gas storage, as molecular sieves for
size and shape selective separations, and as mediums for ion
exchange processes.1 Perhaps the most well-known mi-
croporous materials are zeolites, which are crystalline solids
with well-defined structures and pores that range in size from
∼1-20 Å.1 Recently, a new class of microporous materials
known as metal organic frameworks (MOFs)2 have emerged
that are composed of metal ions and bridging organic ligands.
Compared to zeolites, MOFs have a much wider variety of

structural and chemical motifs that promise a higher degree
of tunability. As such, MOFs have attracted significant
attention for their potential applications in hydrogen storage
and CO2 sequestration.3-9

Atomistic modeling of microporous materials, particulary
zeolites, have contributed enormously to increase our un-
derstanding on their properties and functionality.10,11 Most
studies of the full periodic systems have employed empirical
interatomic potentials (force fields), although periodic density
functional theory (DFT) studies have recently emerged.11

Molecular dynamics and Monte Carlo simulations using
empirical potentials have been successfully applied to
investigate the dynamics of guest molecules as well as their
adsorption characteristics within microporous materials.10-13

In some cases, atomistic simulations have led to the design
of improved compounds with enhanced properties and* Corresponding author. E-mail: twoo@uottawa.ca.
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performance.14,15 Although several generally transferable
force fields have been developed for organic molecules,
the treatment of electrostatic interactions still remains a
challenge when employing empirical potentials. Most force
fields use fixed partial atomic charges to treat the electrostatic
interactions, although more sophisticated methods have been
developed but are not in wide use. Since there are no ‘true’
atomic charges within polynuclear systems, an assortment
of charge derivation methods have been created for various
quantitative and descriptive purposes. The so-called elec-
trostatic potential (ESP) derived charges are most commonly
used for atomistic simulation of molecular systems.16-19 In
order to compute ESP charges, a quantum chemical calcula-
tion is performed on a molecule, and partial atomic charges
are fit to reproduce the quantum chemical electrostatic
potential on a fine grid surrounding the molecule. The grid
is chosen to lie outside of the van der Waals radius (or
similar) of each atom in the molecule. The charges are
‘designed’ to reproduce the electrostatic potential in the
region where it is most important when modeling intermo-
lecular interactions with two-body, additive Coulomb po-
tentials. In situations where there are deeply embedded
(buried) atoms in the molecule, the ESP charges for these
buried atoms can fluctuate widely, sometimes resulting in
nonchemically intuitive values. To deal with this problem,
Bayly and co-workers introduced the RESP method,18 where
a penalty function is introduced to the fitting procedure to
inhibit the ‘unphysical’ charges from arising. ESP charges
have been shown to provide superior results compared to
those using other schemes, such as charges derived from a
Mulliken population analysis, and therefore, ESP charges are
the norm for molecular simulation when employing point
charge electrostatic models.16,18

For the atomistic simulation of periodic systems, ESP
charges are not as universally applied as they are for
molecular systems. In highly packed solids, where there is
little volume outside of the van der Waals radii of the atoms
to define valid fitting points, ESP charges may not be
appropriate. However, even for the simulation of microporous
materials where there are large pore volumes, Mulliken
charges derived from periodic DFT calculations are still in
wide usage despite the strong basis set dependence of the
scheme.13,20 If ESP charges are used for periodic simulations,
they are derived by extracting a fragment of the periodic
lattice and performing a molecular ESP calculation.12,21-23

The assumption with this procedure is that the electrostatic
potential surrounding the isolated fragment is going to be
similar to that of the periodic structure. Considering the care
taken to treat long-range electrostatic interactions when using
periodic boundary conditions in molecular simulations, this
assumption may not be generally valid. Additionally, special
considerations also have to be made to ‘cap’ the electronic
system to satisfy unfilled valences resulting from the extrac-
tion or account for the net charge of the retrieved fragment.
Finally, the properties of a periodic wave function including
the electrostatic potential are averages over the Brillouin
zone. Molecular fragment calculations cannot capture the
effect of proper K-point sampling, which is important for
some periodic systems.

Although periodic ‘first principles’ (i.e., DFT) calculations
of materials with large unit cells containing hundreds of
atoms are now routinely performed, to the best of our
knowledge, a method to derive charges from the electrostatic
potential of periodic first principles calculations has not been
reported.24,25 One of the reasons for the dearth of develop-
ment of periodic ESP fitting techniques, as compared to
molecular systems, may be due to the fact that the absolute
energy of an atom is not an intrinsic bulk property, and
therefore, the average electrostatic potential is ill-defined.26

In other words, the reference state of the electrostatic
potential in a periodic system is arbitrary. This is numerically
demonstrated in Figure 1, where the electrostatic potential
for siliceous sodalite (a zeolite) is plotted as a function of
the square distance to the cell origin on a mesh resulting
from three different periodic DFT packages - VASP,
CPMD, and SIESTA.27 Qualitatively, the general structure
of the electrostatic potentials show the same features, except
that the manifold derived from each periodic DFT package
is shifted by a different but constant offset amount. Since
the average of the electrostatic potential in an infinite system
is ill-defined, there is no ‘correct’ offset value, and the
straightforward application of the ESP charge fitting proce-
dures developed for molecular systems will result in charges
that are dependent on this arbitrary offset value.

In this work, we introduce a modified ESP error functional
that can be used in periodic systems as well as in molecular
systems. Our functional allows for a robust computation of
the ESP charges while overcoming the fundamental problem
of the electrostatic potential having an ill-defined reference
state. We also introduce a new RESP-like penalty function
to prevent large fluctuations in the fitted charges of buried
atoms that is based on the expansion of the energy of an
atom as a function of charge. In the tradition of ESP charge
methods, we also suggest an acronym for the charges derived
from the method. We refer to these charges as REPEAT
(Repeating Electrostatic Potential Extracted ATomic) charges.
The remainder of the paper is as follows: The formalism of
the method is introduced in detail with the appropriate
equations in Section II. Section III describes the choice of
parameters used in our implementation of the REPEAT

Figure 1. Electrostatic potential plotted as a function of the
square of the distance from the cell origin for sodalite
generated from three periodic DFT packages: VASP (bottom),
CPMD (center), and SIESTA (top). The tabulation is per-
formed on a cubic grid, and only points located outside the
van der Waals radii centered on each atom are shown.
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method as well as details on the periodic DFT calculations
that were performed to generate the electrostatic potentials.
Section IV contains the tests and the applications used to
validate the REPEAT method, and Section V concludes the
paper.

II. Methodology

For molecular systems, the electrostatic potential at a point
rb that results from a set of Nq point charges, {qj}, is given in
eq 1 (in atomic units), where rbj represents the position of
each of the point charges:

In generating ESP charges for molecular systems, a
quantum chemical calculation is first performed to generate
a reference electrostatic potential, φQM(rb). The set of point
charges {qj} is then adjusted to minimize the differences
between the ‘quantum mechanical’ electrostatic potential,
φQM(rb), and the electrostatic potential due to the atomic
charges defined by eq 1, for grid points surrounding the
atoms in the molecule. This is typically performed in a least-
squares manner where the following function is minimized:

The second term in eq 2 represents a Lagrange multiplier
that ensures that the sum of atomic charges equals the total
charge of the system, qtot. The grid points used for the fitting
procedure are chosen to lie outside of the van der Waals
(VDW) radii (or similar) of the atoms in the molecule. The
actual algorithm for choosing the grid points varies between
different methods, and several ESP charge fitting techniques
are in wide usage, such as the CHELPG17 and the RESP18

approaches.

When generating ESP derived atomic charges for periodic
systems, there are additional complications that need to be
addressed as compared to molecular ESP charges. First, the
electrostatic potential due to the point charges has to account
for the infinite periodic images of the atomic charges. The
Ewald summation technique is a well-known mathematical
procedure to deal with the long-range electrostatic interac-
tions in periodic systems. Within the Ewald procedure, the
electrostatic potential is factored in two terms, real and
reciprocal space series. The real space series accounts for
the effects of the short-range interactions. Conversely, the
reciprocal space term includes the long-range effects arising
from the presence of the infinite images. For a formal
derivation of the mathematical expressions representing each
one of the series, we refer the reader to the original and
related works.28,29 Summarizing, the exact expression for
the potential according to the Ewald formulation is given in
eq 3 where the erfc stands for the complementary error
function.

The vectors Tb ) n1ab1 + n2ab2 + n3ab3, appearing in the first
double summation, map the real space lattice positions.
Conversely, the vectors kb) m1bb1 + m2bb2 + m3bb3, included
within the second double summation, map the reciprocal
space lattice. The variable R represents the width of the
screening Gaussian charge distribution added to each atomic
center. Equation 3 can be considered the periodic analogue
of eq 1. With infinite terms, eq 3 is mathematically exact
and independent of the value chosen for the parameter R.
However, the value of R as well as the number of terms in
the real and reciprocal space series determine the speed of
convergence and accuracy of the numerical computation of
the electrostatic potential. Techniques to select optimum
values for these parameters have been discussed elsewhere.30

If the charges are to be used in a molecular dynamics
simulation, then it can be argued that these Ewald summation
parameters used to derive the ESP charges should ideally
be the same as those used in the simulations.

The second complication when deriving periodic ESP
charges relates to the ill-defined nature of the reference state
of the electrostatic potential, as depicted in Figure 1. Even
if eq 3 is used for φq, minimization of the conventional error
function (eq 2) developed for molecular systems will not be
of any value when attempting to compute charges in periodic
systems. For example, it is clear that the different electrostatic
potentials shown in Figure 1 will yield drastically different
fitted charges. (There are reports of conventional ESP charge
fitting procedures yielding unsatisfactory results for periodic
systems.)31,32 To overcome this fundamental problem, we
introduce a modified error functional to perform the least-
squares fit. Our modified error functional can be expressed
as the sum of two independent terms:

where the new parameter δφ is given by

As in molecular approaches, the second term in eq 4
represents a Lagrange multiplier that ensures that the total
charge of the system remains equal to qtot, which is zero in
the case of periodic systems. Examination of the definition
of δφ in eq 5 reveals that the ESP fit is performed such that
only the relative differences with respect to the average value
of the potential on the grid points are considered. This
automatically guarantees that the quality of the fit is not
affected by a constant offset in the estimation of the potential
values. It is important to note that the expression for δφ can
be obtained in a simple and straightforward manner by
assuming δφ in eq 4 is another independent variable in the
error functional F({qj, δφ}). The definition of δφ in eq 5 can

φq(rb) ) ∑
j

Nq qj

|rb - rbj|
(1)

F({qj}) ) ∑
grid

(φQM(rbgrid) - φq(rbgrid))
2 + λ( ∑

j

qj - qtot)

(2)

φq(rb) ) ∑
j,Tb

qj

erfc(R|rb - rbj,Tb|)

|rb - rbj,Tb|
+ 4π

V ∑
j,kb

qje
ikb(rb-rbj)

e-
k2

4R2

k2

(3)

F({qj, δφ}) ) ∑
grid

(φQM(rbgrid) - (φq(rbgrid) + δφ))2 +

λ( ∑
j

qj - qtot) (4)

δφ ) 1
Ngrid

∑
grid

(φQM(rbgrid) - φq(rbgrid)) (5)
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then be derived by performing the minimization of F not
only with respect to the charges but also with respect to δφ.

Explicit consideration of δφ within the error functional
form not only removes the artifact of an ill-defined reference
state but implicitly introduces corrections to the dipole
moment and the other higher-order multipoles, if our
technique is to be employed to fit charges in molecular
compounds. More specifically, it is easy to show that for a
neutral molecular system if one expands δφ in the continuum
representation up to the first-order (dipole) corrections one
obtains

where pb is the electric dipole moment and ∆φq-QM is just
the difference between the zero levels of the quantum and
the classical charge distribution, which is expected to be zero
in molecular systems. The second term reveals that errors
in the dipole moment can be lowered using our fitting
technique. The possibility of including implicit corrections
to multipole moments allows for capturing potential polariza-
tion effects in the cluster calculations of charges within highly
polar molecular systems.

In systems in which there are buried atoms, such that there
are few valid fitting grid points close to these atoms, the
ESP charge fitting approach can yield charges that are
considered ‘unphysical’ or chemically nonintuitive. To avoid
wide fluctuations in the fitted charges for buried atoms,
penalty functions are added to the error functional, such as
those used in the RESP method.18 In order to generalize our
methodology to systems in which buried atoms could be
present, we propose adding a second set of Lagrange
multipliers, wj, such that the REPEAT error functional
becomes:

As opposed to the original RESP method and derivative
works,18 we have made no ad hoc assumptions regarding
the shape of the penalty term. We use a physically motivated
penalty multiplier that is an expansion of the energy of an
atom (idem to the potential in atomic units) as a function of
the atomic charges up to the second order.33,34 The param-
eters �j and Jj

00 are the electronegativity and the self-Coulomb
interaction, respectively, of the individual chemical elements.
The nature of the self-Coulomb interaction term Jj

00and how
to determine it is discussed in more detail by Rappe and
Goddard.34 The free parameter included in the model is wj,
which can be considered a weighting factor used to adjust
the strength of the restraints. A single weighting factor w
could be used for all atoms, or as expressed in eq 7, the
weighting factors can be individually adjusted to selectively
turn on penalty corrections only for atoms identified as buried
prior to performing the charge calculations. Aside from being

a physically motivated restraining method, the method also
has the advantage that the derivative of the error function
with respect to the charges is linear (vide infra), and
therefore, there is no need to solve the equations iteratively
as is required with the hyperbolic constraints of RESP.

In the following, we provide the full derivation of the
linear system of equations to be solved in order to calculate
atomic charges from the spatial tabulation of the periodic
electrostatic potential within the REPEAT approach. Mini-
mizing the error functional, F, defined in eq 7 with respect
to the independent variables {qj} and δφ yields the set of
equations:

The last equation above defines δφ as presented in eq 5. Using
the definition of the derivative of the potential with respect
to the charges:

combined with the first group of eq 8 and after some lengthy
algebra one arrives at a matrix problem with Nq + 1
unknowns of the type:

with matrix coefficients Ajm defined as

and

The vector B on the right-hand side of eq 10 has elements

and
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The elements of the unknown vector Q̃ are given by:

and

In the case where the crystallographic symmetry of the
system demands the equivalency of some of the atomic sites
and therefore charges, a minor modification needs to be
added to the above formulation. The columns and rows
corresponding to identical sites in the A matrix (rows in the
case of the right-hand side vector B) must be combined into
a single unit by adding their elements.

III. Computational Details

Due to the numerical nature of this work, in this section we
provide a discussion of the parameters chosen in the different
tests that were performed in order to validate our methodol-
ogy. We also provide the details of the DFT calculations
used to generate the electrostatic potentials of the different
systems considered as well as the details of other quantum
chemical calculations used for comparison purposes. Some
information on our implementation and coding of the
REPEAT method are also included.

For the Ewald summations, the real space cutoff has been
fixed to be Rcut ) 9 Å, and the reciprocal space cutoff order
has been fixed to be kmax ) 7. The magnitude for the width
of the Gaussian screening charge distribution was set as R
) �π/Rcut. These are typical values of the Ewald summation
parameters recommended in classical molecular dynamics
packages. We note that, when calculating the contributions
of the real and reciprocal space series, the speed of
convergence is not an issue because such series only have
to be computed one time during the fitting process.

Only those grid points located outside the VDW spheres
centered on each atomic site have been considered. Atomic
regions due to the periodic images of the atoms are also
excluded. The VDW radii used for this work were taken from
the universal force field (UFF).35 The grid points used for
the fitting procedure coincided with the regular numerical
FFT grid used in the periodic DFT calculation unless
otherwise specified. The majority of the REPEAT charges
reported in this work are unrestrained. In other words, the
last term of the REPEAT error functional of eq 7 is set to
zero. For results in which restraints were utilized, the
electronegativity, �, and self-Coulomb interaction parameters,
J00, of ref 34 are used.

Periodic DFT calculations were performed with several
packages, VASP,36 CPMD,37 Gaussian 03,38 and SIESTA.39

All DFT calculations used the Perdew-Burke-Ernzerhof
(PBE)40 exchange and correlation functional. For the VASP
calculations, the PAW method of Blöchl41,42 was utilized
with a plane wave cutoff of 600 eV. For the CPMD
calculations the Goedecker-Teter-Hutter pseudopotentials43

were used with a plane wave cutoff of 80 Ryd (∼1088 eV).
The Brillouin zone integrations were performed using a 4
× 4 × 4 Monkhorst-Pack grid for the calculations of

sodalite, natrolite, and zinc silicate, while a 14 × 14 × 14
sampling of the Brillouin zone was used for SnO2, ZnO, and
CdTe. For calculations of the isolated molecules and IRMOF-
1, only the Γ-point was evaluated. True molecular calcula-
tions and CHELPG charges were performed with the
Gaussian 03 package. RESP charges were generated using
the AMBER 8 package.44 To determine atomic charges using
the Gasteiger’s electronegativity equalization method45 and
Rappé’s QEq method,34 the Materials Studio modeling
package version 4.1 was used. Except for the calculation of
the isolated molecules, experimental geometries were used
in evaluating the electrostatic potential.

We have implemented the REPEAT method as a FOR-
TRAN code that is freely available upon request from the
authors. The program reads a tabulation of the electrostatic
potential in the Gaussian cube file format and can handle
any unit cell shape.

To compare the electrostatic potential resulting from the
fitted charges to that generated from the DFT calculation,
we use the relative root-mean-square (RRMS) error defined
in eq 17, where the sum runs over valid grid points or those
lying outside the van der Waals radii of the atoms.

IV. Results and Discussion

1. Charges Derived From Different DFT Packages. As
a first validation of the REPEAT method, we first compare
the charges derived from the electrostatic potential of sodalite
depicted in Figure 1 using the conventional error functional
of eq 2 and the charges derived using the REPEAT method
with its modified error functional given in eq 4 (without the
restraints).

Sodalite is a zeolite whose silicate framework is composed
of tetrahedrally coordinated Si atoms linked through two
coordinated oxygen atoms. This material has a cubic structure
with a lattice parameter a ) 8.965 Å and belongs to the
P4j3n space group. There are 36 atoms (12 Si, 24 O) in the
unit cell, with only one symmetry unique Si and O atom.
Three periodic DFT packages VASP, CPMD, and SIESTA
were used to compute the electrostatic potential within the
unit cell on a regular grid, using the PBE exchange
correlation functional. The tabulation of the potential as a
function of the square distance to the unit cell origin is shown
in Figure 1, as already mentioned. The grid point density
from each of the DFT calculations varied, but the total
number of grid points available to perform the fitting (those
outside of the VDW radii) was on the order of 3 × 105 for
all cases.

Given in Table 1 are the ESP derived charges using the
conventional error function of eq 2. The charges fluctuate
widely depending on the DFT package used, and in some
cases, the charges lack chemical meaning. It is notable that
the RRMS errors also vary widely reaching up to 43% in
the case of SIESTA. In contrast, the REPEAT charges also
given in Table 1 are rather insensitive to the DFT code,

Q̃m,m<Nq+1 ) qm (15)

Q̃m,m)Nq+1 ) λ
2

(16)

RRMS ) �∑
grid
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although, small variations are to be expected since the three
codes are using different types of basis sets and pseudopo-
tentials. Table 1 not only shows that there are only small
variations in the charges from one code to another, but it
also shows that the root-mean-square errors remain quite
similar and significantly smaller than those computed with
the conventional functional.

To complement the numerical example above, it is also
of value to consider a straightforward mind experiment to
test the robustness of the REPEAT approach. In this
experiment, it is assumed the existence of an ideal neutral
periodic point charge distribution for which all the charges
are known a priori. However, the tabulation of its corre-
sponding electrostatic potential has been modified such that
a small systematic constant error, δe, has been added to each
one of its local values. If both the conventional as well as
our REPEAT functional were to be applied on such a
redefined potential, one can intuitively guess that the only
way of recuperating the original values of the point charges
is by using the REPEAT method. Moreover, the REPEAT
method should provide correct charges regardless of the
magnitude of the error level δe. Conversely, applying
the conventional definition of the error functional makes the
predictions for the charges level dependent and does not
render the right values unless the error in the level is
identically zero.

The REPEAT charges for sodalite can be compared to
those derived for sodalite and related silicates using other
methods where there is wide variation depending on the
approach used. Nicholas and co-workers46,47 developed
charges of +1.1 e for Si and -0.55 e for O to model sodalite.
These charges were derived from fragment calculations and
adjusted to intrinsically account for cations in the sodalite
framework when Si is replaced by Al atoms in the frame-
work. For silicates, Si charges ranging from +0.4 to +1.91
e have been utilized.47 Mulliken charges using the traditional
atom centered basis functions gave a very wide range of
charges for sodalite. Specifically, charges on Si were
calculated to be +1.693, +1.723, and +0.965 e for the
3-21G, 6-31G, and 6-31G(d,p) basis sets, respectively. Using
Gasteiger’s electronegativity equalization method45 gives
charges of +0.624 e on Si and -0.312 e for O, while the
QEq method of Rappé and Goddard34 provides charges of
+1.00 e on Si and -0.50 e on O.

2. Molecular Calculations. The previous results given
in Table 1 reveal that the REPEAT algorithm minimizes the
dependency of the charges with respect to the periodic DFT
code. Although they show that similar charges are derived
regardless of the arbitrary offset in the electrostatic potential,

a natural question arises. Does the REPEAT method simply
provide an optimum least-squares fit of the problem or do
the charges generated represent more pragmatic charges
similar in the spirit of existing ESP charge derivation
methods? To examine this question, we study the REPEAT
charges obtained from isolated molecule calculations and
compare them to established molecular ESP charge derivation
methods.

Provided in Table 2 are the CHELPG and RESP charges
of ammonia, water, and alanine resulting from a PBE/6-
31G(d,p) isolated molecule calculation. Also presented in
Table 2 are the REPEAT charges resulting from periodic
VASP calculations of the molecules, using the same geom-
etry as the molecular calculations. In the periodic calcula-
tions, a simple cubic simulation cell of L ) 20 Å was used
to minimize the interaction with the periodic images. Table
2 reveals that the CHELPG, RESP, and REPEAT charges
are all in good agreement with one another. One should note
that the CHELPG and RESP charges were derived from the
same electrostatic potential, whereas the REPEAT charges
were derived from a separate DFT calculation using a
different basis set type and pseudopotential.48 It is further
notable that the total number of grid points (not shown in
the table) used for the REPEAT charges was almost 2 orders
of magnitude greater than those of the CHELPG and RESP
methods.

Also provided in Table 2 are the REPEAT charges in
which the quadratic restraints first introduced in eq 7 are
applied. We have used a weighting factor defined as wj )
2a/Jj

00 for each atom, where a is the weighting factor
employed within the parabolic RESP approach. This is
equivalent to using the weighting factor of 0.005 recom-
mended by Baley et al. for the quadratic form of the RESP
restraint.18 The changes in the REPEAT charges resulting
from the application of the restraints can be characterized
as negligible. In these examples there are no embedded

Table 1. ESP Charges of Sodalite Derived from the
Electrostatic Potential Generated from Various Periodic
DFT Packages Using the Standard Error Function and with
The REPEAT method

conventional ESP charges REPEAT ESP charges

atom CPMD VASP SIESTA CPMD VASP SIESTA

Si +3.075 +10.522 +0.503 +1.355 +1.389 +1.151
O -1.537 -5.261 -0.251 -0.677 -0.694 -0.575
RRMS error 0.193 0.289 0.426 0.066 0.066 0.064

Table 2. Comparison between REPEAT, CHELPG, and
RESP ESP Charges for Isolated Ammonia, Water, And
Alanine Molecules

molecule atom CHELPGa RESPa REPEATb
REPEAT

(restrained)c

NH3 N -0.956 -0.752 -0.814 -0.813
H +0.319 +0.251 +0.271 +0.271

H2O O -0.706 -0.704 -0.661 -0.661
H +0.353 +0.352 +0.330 +0.330

CH3NH2CHCOOH C -0.289 -0.321 -0.329 -0.318
H +0.075 +0.098 +0.091 +0.088
H +0.091 +0.098 +0.109 +0.107
H +0.083 +0.098 +0.098 +0.095
N -0.848 -0.795 -0.814 -0.805
H +0.334 +0.329 +0.322 +0.319
H +0.342 +0.329 +0.329 +0.327
C +0.328 +0.233 +0.264 +0.261
H +0.089 +0.022 +0.007 +0.006
C +0.530 +0.508 +0.612 +0.610
O -0.482 -0.464 -0.523 -0.523
O -0.462 -0.446 -0.481 -0.480
H +0.318 +0.311 +0.316 +0.314

a ESP charges derived from a molecular PBE/6-31G(d,p)
calculation. b ESP charges derived from a VASP calculation of the
molecules using cubic supercell of length 20 Å and the PBE
functional. c Calculated with the restraining function introduced in
eq 7.
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atoms, and such negligible changes are desirable because
the restraints will always act to increase the RRMS difference
between the quantum mechanical electrostatic potential and
the point charges. A detailed study of the most appropriate
restraining parameters to evaluate REPEAT charges of
periodic systems with embedded atoms will be the subject
of an upcoming publication. In this paper, we focus on the
general applicability of the REPEAT method to derive ESP
charges for periodic systems but include the restraining
formulation to retain the complete REPEAT formulation (eqs
7-16) in one place. It is worth mentioning that, in general,
the charges predicted in molecular calculations are more
susceptible to the RESP-type penalties than those obtained
for periodic systems.

The results of Table 2 suggest that for isolated molecule
calculations the REPEAT method does generate charges that
are consistent with other ESP derived charge methods.
Indeed, it can be shown that for the periodic calculation of
isolated molecules the charges derived using the conventional
ESP error functional converge to the REPEAT charges as
the size of the simulation cell increases. If we rewrite the
definition of the unrestrained REPEAT functional up to first-
order corrections using eq 6 we obtain

where the new term I(∆bpq - QM) is the integral over the dipole
differences as appearing in the second term of eq 6. In the
limit of an infinitely large box, the term ∆φq - QM becomes
the ‘reference zero’ of the quantum electrostatic potential
because the ‘reference zero’ of the classical potential is
strictly null. Therefore eq 18 can be rewritten as

with φQM* ) φQM - ∆φq - QM representing the ‘true’ quantum
potential with respect to its well-defined zero. Thus, in order
to prove that the REPEAT functional reduces to the
conventional functional in the limit of an infinitely large box,
we only need to show that I(∆bpq-QM

) approaches zero in such
limit. To achieve such a goal, we split the valid grid points
into two regions of volume V1 and V2 as shown schematically
in Figure 2. The first region is that lying outside of the VDW
radii of all atoms and enclosed by a sphere centered at the
charge origin of the molecule and with a radius R1. We define
R1 as the distance from the charge origin to the furthest grid
point lying on a VDW surface of an atom, where we have
assumed that the charge origin is located at the center of a
cubic simulation box. This first region of volume V1 is that
shaded in Figure 2. Next, the second volume is defined as
that lying outside of the first sphere of radius R1 but lying
within a second sphere centered at the charge origin of radius
R2 ) L/2, where L is the length of the simulation box. Using
the above way of separating the grid into regions, the term
I(∆bpq-QM

) can be written as

The last integral in eq 20 turns out to be identically zero
for symmetry reasons. Notice that the integration takes place
on a region located between two spherical surfaces. Alter-
natively, the first integral yields a finite number, which is
independent of the size of the simulation box. Nevertheless,
having the first integral being multiplied by the inverse
total volume allows us to make the contribution of the full
I(∆bpq - QM) as small as desired by increasing the simulation
box size. In an analogous way, one can show that higher
moment contributions could be made as small as desired.
Thus, we have analytically shown that the REPEAT charges
reduce to the standard ESP charges in the limit of an infinitely
large simulation box.

To complement the previous analytical proof, we will
numerically demonstrate that for molecular calculations the
charges derived using the conventional error functional
converge to the REPEAT charges as the size of the
simulation cell increases. To do this, we have performed a
series of water molecule calculations with VASP in which
the cubic simulation cell is varied. At large box sizes, the
water molecules can be considered noninteracting. However,
as the box size, L, is decreased, the water molecule and its
periodic images will begin to interact with one another. This
situation is shown schematically in Figure 3. Since the dipole
moments of the molecule and its images are aligned, the
molecules should become more polarized as the simulation
cell length is shortened. In other words, we would expect
the fitted charges to become larger in magnitude as the length,
L, is diminished.

Plotted in Figure 3 are the results of these calculations
for both the REPEAT and the ESP charges derived by using
the standard ESP error functional. As expected, the REPEAT
charges become larger in magnitude as the simulation box
size decreases. On the other hand, the ESP charges using
the standard error functional become smaller in magnitude,
in contradiction to what should physically occur. This is

F({qj, δφ}) ) ∑
grid

(φQM(rbgrid) - φq(rbgrid) - ∆φq-QM -

I(∆pbq-QM))2 (18)

F({qj, δφ}) ) ∑
grid

(φQM* (rbgrid) - φq(rbgrid) - I(∆pbq-QM))2

(19)

Figure 2. Schematic representation of an isolated molecule
within a cubic simulation box of length L, defining the radii R1

and R2 of eq 20. The dotted outline represents the van der
Waals radii of the atoms within the molecule. The shaded area
represents V1. The charge origin of the molecule is denoted
by the square.
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undoubtedly a result of the ill-defined reference state in
the periodic DFT calculations. As previously reasoned,
Figure 3 shows the REPEAT charges and those derived using
the standard functional converge to the same value as the
simulation box increases. This suggests that the corrections
due to the presence of the δφ term in eq 4 tend to zero as
the simulation cell size increases.

To examine if the polarization of the REPEAT charges
occurs in a physically suitable manner, we have performed
a series of cluster calculations whereby a central water
molecule is surrounded by 124 water molecules. The
surrounding water molecules are positioned such that they
correspond to the first and second shell of periodic images
to mimic the truly periodic VASP calculations. The CHELPG
charges of the central water molecule resulting from these
cluster calculations are also plotted in Figure 3. At large
simulation cell sizes, the charges resulting from the cluster
calculation and the REPEAT charges converge to slightly
different values. This is to be expected because of the
differences in calculations, such as the nature of the basis
sets used. Importantly, at short box lengths, the degree of
polarization of the REPEAT charges is in good agreement
with that observed in the cluster calculations. Thus, if
molecular ESP derived charges are considered suitable for
use in the simulation of molecular systems, then the results
shown in Table 2 and Figure 3 suggest that REPEAT charges
are equally appropriate for the simulation of periodic systems.

3. Dependency on Exclusion Radii and Grid Point
Density. In this section, we examine how robust the REPEAT
charges are with respect to the grid point density and the size
of the VDW radii used to exclude grid points from the fitting
procedure. To shed light on how the REPEAT charges vary
with respect to these factors, we have selected two different
porous materials: sodalite and zinc silicate. The results are
summarized in Table 3 and Figure 4.

In most periodic electronic structure packages, the electro-
static potential is evaluated on a regular real space grid that is
used for the discrete fast Fourier transform (FFT). For the
practical application of the REPEAT method, it is of interest
to know whether a typical FFT grid used in these calculations
is appropriate for calculating the charges or whether a much
higher grid density is required. To examine this, we have
performed plane wave DFT calculations on sodalite and zinc

silicate using an 80 Ry plane wave cutoff with the CPMD
package. For sodalite, which has a simple cubic unit cell with
length a ) 8.965 Å, the plane wave cutoff results in a relatively
dense 100 × 100 × 100 grid point mesh. For zinc silicate, which
has an orthorhombic unit cell with lengths a ) 10.07, b ) 14.05,
and c ) 7.07 Å, an 80 Ry plane wave cutoff in CPMD gives
a default mesh of 120 × 160 × 80 grid points. REPEAT
charges of sodalite and zinc silicate have been evaluated using
these default grid point meshes and are provided in Table 3
under the ‘fine grid’ subheading. The number of valid grid
points per atom that lie outside of the VDW radii of the atoms
that is used for the ESP fit is also given in Table 3. We then
evaluated the REPEAT charges from the same DFT calculation,
but where the grid points were uniformly trimmed. For example
for sodalite, the grid points were trimmed by a factor of 8 and
125 to give 50 × 50 × 50 and 20 × 20 × 20 grid point meshes,
respectively. These charges are given in Table 3 under the
‘medium grid’ and ‘coarse grid’ subheadings, respectively.
Table 3 shows that the REPEAT charges remain essentially
unchanged despite a drastic reduction in the number of grid
points used in the fits. We note that the crystal symmetry was
not imposed on the atomic charges during the fitting procedure.
In the case of sodalite, which only has one symmetry unique
Si atom and one unique O atom in a 36 atom unit cell, the
standard deviation in the fitted charges was less than 2 × 10-6

e in all cases. For zinc silicate, the standard deviation was larger
than with sodalite, but no greater than 6 × 10-3 e in all cases.

For sodalite, a 20 × 20 × 20 FFT mesh (the ‘coarse grid’)
would be considered very sparse for any periodic DFT
package we are familiar with and translates into only 88
fitting points per atom. Thus, we believe that the default FFT
mesh settings used in most periodic electronic structure codes
should be appropriate for deriving REPEAT charges.

Due to the lack of a unique definition of VDW radii, there
should ideally be no significant oscillations in the REPEAT
charges with modest variations in the radii used to exclude
grid points from the fitting procedure. Shown in Figure 4
are the REPEAT charges of sodalite and zinc silicate plotted
as a function of the factor used to uniformly scale the default
VDW radii. In the scaling range of 0.8-1.3, the charges on

Figure 3. Charges of the O and H atoms of water as a
function of the length of the simulation box using various
methods.

Table 3. REPEAT Charges for Sodalite and Zinc Silicate
at Varying Grid Point Densities

chargea or grid details

molecule atom fine grid medium grid coarse grid

sodalite Si +1.355 +1.352 +1.372
O -0.677 -0.676 -0.686
grid mesh 100×100×100 50×50×50 20×20×20
grid pointsb

per atom 10 925 1 359 88
zinc

silicateb
Zn +1.033(3) +1.030(5) +1.027(3)
O -0.493(3) -0.494(3) -0.485(3)
Si +1.387(3) +1.383(4) +1.377(6)
grid mesh 120×160×80 60×80×40 30×40×20
grid pointsb

per atom 6 215 778 98

a Average charge (in e) over symmetry equivalent atoms. For
zinc silicate, the standard deviation is reported in parentheses,
while for sodalite, the standard deviation was 2 × 10-6 e or
smaller in all cases. b Number of valid grid points outside of the
VDW radii of the atoms used in the ESP fit. b Only the charges of
selected Si and O atoms are presented.
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Si and O only differ by a maximum of 3.7% from the values
derived using the default VDW radii. On an absolute scale,
the O charges range from -0.703 to -0.678 e and for Si
they range from +1.406 to +1.356 e. It is only when the
VDW radii is rescaled by a factor of 0.7 that the charges
begin to significantly deviate, differing by 14.7%. The
REPEAT charges of zinc silicate are somewhat more
sensitive to the VDW radii, with the charges deviating by
more than 10% at scaling factors of 1.2 or greater and 0.7
or less. Such variations in the ESP fitted charges as a function
of the VDW radii are related, in part, to alterations in the
spatial geometry of the grid.

Our motivation for developing the REPEAT method was
to generate charges for use in the classical simulation of
microporous materials. Thus, we chose sodalite and zinc
silicate to evaluate the method’s sensitivity toward the VDW
radii. We found that the total number of valid grid points
could be drastically reduced without having a significant
impact on the charges derived. As a result, we were curious
as to how the method would perform when applied to densely
packed solids, where the number of valid grid points
available to perform the ESP fit is relatively small compared
to microporous materials. For this purpose, we have exam-
ined the charges in zinc oxide, tin oxide, and cadmium
telluride. Metal oxides like ZnO and SnO2 enjoy a wide range
of applications, ranging from gas sensors to transparent
conductors in display technologies, while cadmium telluride
has found important applications in solar cell technologies.
VASP calculations of ZnO, SnO2, and CdTe have been
performed to generate an electrostatic potential for each
compound. Using our default values for the VDW radii
in these densely packed crystals resulted in mesh resolu-
tions of approximately 103-104 grid points. Such numbers
represent a total of at least 1 order of magnitude smaller
than the typical grid sizes for microporous compounds,
which have 3 × 105 points forming the grid. The variations
in the charges as a function of the VDW scaling factor
for zinc oxide, tin oxide, and cadmium telluride are given
in Figure 5.

The REPEAT charges of oxygen in ZnO and SnO2 appear
to converge to the same approximate value of -1.25 e as a
function of the VDW scaling. This is interesting since oxygen
has a formal charge of -2 in both oxides. However, for zinc
oxide, the convergence occurs at scaling factors greater than

1, while it converges for values less than 1 for tin oxide.
Another notable result is that the ESP charges for both the
Zn and O atoms in ZnO are significantly greater in magnitude
than those of the ESP charges of Zn and O in zinc silicate.
This is consistent with the notion that the bonding in zinc
silicate is more covalent, whereas the bonding in zinc oxide
is considered more ionic in nature.

The results for CdTe are more difficult to analyze. As can
be seen from Figure 5, the REPEAT charges oscillate and
do not appear to converge as a function of the VDW radii
used. This may be due to the fact that the charge is not as
localized as in ZnO or SnO2, whose bonding may be expected
to be more ionic than in CdTe. This is supported by the fact
that the charges in CdTe are notably smaller in magnitude
than in ZnO, even though the formal charges are the same.
Regardless of the underlying reasons for the behavior of the
CdTe REPEAT charges, the results likely highlight the
limitations of employing ESP derived charges for highly
packaged systems.

4. Application to Porous Materials. Although one can
foresee applications of the REPEAT method to various
periodic systems, our motivation for developing the approach
was our recent interest in simulating microporous and
nanoporous materials, in particular MOFs. In this section,
we apply the REPEAT method to two porous materials - a
zeolite for which experimentally derived charges are available
to compare with, and an MOF that has been the subject of

Figure 4. REPEAT charges for sodalite and zinc silicate under proportional scaling of the VDW radii used in the fitting procedure.

Figure 5. Comparison of the charges obtained for ZnO,
SnO2, and CdTe as a function of the VDW radii.
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a number of recent computational studies where different
partial atomic charges used in the classical simulations are
also available to compare with.

The ultimate goal of any theoretical study with practical
applications in mind is to be able to reproduce/predict
experimental (or experimentally derived) data. Although
atomic charges are not a physical observable, the detailed
analysis of X-ray diffraction data can allow for electronic
density modeling and estimation of atomic charges, for
example, via multipolar refinement. Coppens and others have
developed a few procedures to extract partial atomic charges
from experimental X-ray crystallographic data in this way.49-51

In the context of molecular simulation, Pearlman and Kim
have compared experimentally derived charges to those
typically used in force fields for a molecular crystal of a
nucleic acid constituent, 2′-deoxycytidine-5′-monophos-
phate.52 For microporous materials, one of the works that
we are aware of where experimental partial atomic charges
have been derived is that of Ghermani et al.,53 who examined
natrolite. Although the charges should not be strictly the
same, we thought it would be of interest to compare
REPEAT charges of natrolite using the experimental geom-
etry to those derived experimentally.

Natrolite is a naturally occurring zeolite whose structure
has been studied since the 1930s when Pauling first examined
it.53 Natrolite (Na2Al2Si3O10,2H2O) has a unit cell containing
a total of 184 atoms and possesses an orthorhombic crystal
with a space group symmetry Fdd2. We have evaluated the
electrostatic potential from a VASP calculation using the
experimental lattice parameters and the atomic positions.53

The tabulation of the electrostatic potential had a resolution
of N ) 200 × 200 × 72 mesh points. In the original work
in which natrolite charges were derived from X-ray diffrac-
tion data, its authors had fixed the atomic charge of the
sodium ions to be unity (+1). Aside from basic chemical
intuition, the authors justified the sodium charges by the
sharpness of the 4s scattering factor of the cited element
within the diffraction pattern. Therefore, the charges of all
atomic sites were computed in a reference state in which
the charge of the sodium atom was always +1.

Shown in Table 4 are the unrestrained REPEAT charges
determined for natrolite generated from a VASP and a
CPMD calculation. To compare to the experimentally derived
charges, we have imposed a strong quadratic RESP-like
penalty function on the sodium atoms to restrain those
charges to +1. We have also derived REPEAT charges where
the Na atoms were allowed to freely fluctuate. The REPEAT
charges are in general agreement with the experimentally
derived charges. Perhaps the most notable difference is that
the relative magnitude of the REPEAT charges on Si1 and
Si2 are the opposite of what was determined experimentally.
Although the charge was restrained to match the experimental
charge on Na, the overall agreement between the experi-
mental charges and the REPEAT charges, as quantified by
∆2, was slightly reduced compared to the unrestrained
REPEAT charges. Since Mulliken charges are still widely
used in simulation of microporous materials, these charges
derived for natrolite are also provided in Table 4. These
charges were obtained from a CPMD calculation whereby

the plane wave orbitals were projected54 onto a atom centered
basis set composed of single-� Slater-type functions. The
Mulliken charges are also in agreement with the experimen-
tally derived charges, although the square difference, ∆2, is
approximately twice as large as the REPEAT charges. For
reference, the REPEAT charges resulting from the CPMD
calculation used to derive the Mulliken charges are also given
in Table 4. Here it is notable that the REPEAT charges from
CPMD and VASP (free Na charge) are very similar with a
∆2 between one another of only 0.12.

One prototypical MOF material that has been the subject
of several recent computational studies12,23,32,55-59 is IR-
MOF-1, also known as MOF-5.8 IRMOF-1 has attracted
significant attention as the parent compound of materials that
have potential hydrogen storage applications.60 The structure
of IRMOF-1 consists of inorganic Zn4O clusters that are each
connected to four 1,4-benzenedicarboxylate (BDC) organic
linkers in an octahedral array to form a porous cubic
framework. Figure 6 shows a ball and stick model of the
unit cell of IRMOF-1, which consists of 424 atoms.

A number of groups have examined various aspects of
IRMOF-1 using classical potentials where the atomic charges
have been primarily generated from fragment ESP calcula-
tions. Using Monte Carlo simulations, Sagara et al.32

examined the H2 binding in IRMOF-1 using CHELPG
charges derived from a molecular fragment calculation of
Zn4O(CO2CH3)5-BDC-Zn4O(CO2CH3)5 at the PBE/6-
31+G(d) level of theory. Schmid and co-workers12 studied
the diffusion of benzene in IRMOF-1 with charges derived
from fragment calculations58 in a manner similar to Sagara’s
work but using the Merz-Kollman61 ESP charge derivation
scheme. Greathouse and co-workers have examined the
interaction of water in IRMOF-1 with molecular dynamics
simulations using charges that are based on the CVFF force
field62 that were then manually adjusted to more closely
match the charges of Sagara. The charges used in these

Table 4. Atomic Charges Determined for Natrolite Using
Various Methodologies

atoma
X-ray

derivedb
REPEAT

(Na ) +1),d
REPEATc

VASP
REPEAT
CPMD Mullikene

Si1 +1.84(12) +1.376 +1.370 +1.304 +1.541
Si2 +1.65(10) +1.722 +1.516 +1.451 +1.484
Al +1.51(11) +1.616 +1.435 +1.383 +1.165
O1 -0.90(5) -0.898 -0.851 -0.814 -0.602
O2 -1.21(5) -1.057 -0.895 -0.862 -0.629
O3 -1.03(5) -1.107 -0.989 -0.954 -0.619
O4 -1.07(5) -1.099 -0.981 -0.946 -0.615
O5 -0.87(5) -0.767 -0.730 -0.697 -0.598
Na +1.0000 +1.000 +0.882 +0.862 +0.930
Ow -0.59(3) -1.002 -0.858 -0.807 -0.488
H1 +0.24(3) +0.472 +0.408 +0.383 +0.318
H2 +0.36(3) +0.432 +0.377 +0.350 +0.331
∆2f - 0.501 0.489 0.609 1.156

a Atom numbering is taken from ref 53. b Ref 53 where the
charge of Na is set to +1.0. c REPEAT charges derived from a
VASP calculation of natrolite using the experimental geometry of
ref 53. d REPEAT charges derived from VASP where the charge
of Na is restrained to +1.0. e Mulliken charge derived from the
CPMD calculation in which the wave functions expanded in terms
of plane waves are projected54 onto a single-� atom centered
Slater-type functions. f ∆2 is the sum of the differences between
the experimentally derived reference charges and the calculated
charges squared, ∆2 ) ∑(qi

ref - qi
calc)2.
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simulation studies are given in Table 5 with the atom labeling
provided in Figure 6b.

We have determined the REPEAT charges of IRMOF-1
resulting from the DFT calculation of the full periodic system
using the CPMD package. These are given in Table 5 and
show significant similarity to the charges reported by Sagara
and Schmid resulting from the molecular fragment calcula-
tions and also to the charges of Greathouse that were
manually adjusted to be similar to those derived by Sagara.
These results further show that the REPEAT method
produces sensible partial atomic charges for periodic systems.
On the other hand, the results also put into question the need
for an ESP charge derivation method for periodic systems,
if molecular fragment calculations are adequate. We note
that the suitability of ESP fragment calculations to ascertain
partial charges in this particular compound relies on the fact
that a chemically sensible and neutral moiety can be easily
extracted from the framework. However, the extraction of
fragments from a periodic solid can sometimes have non-
trivial complications. For example, the need to ‘cap’ the

fragment to satisfy unfilled valences can, among other things,
compete with the ideal of a charge neutral fragment. One
such example within the MOF family occurs with zeolitic
imidazolate framework (ZIF) materials that have recently
beenshowntohaveremarkablyhighCO2 storagecapabilities.5,7

ZIFs are composed of Zn2+ ions tetrahedrally coordinated
to imidazolate anions, Im-, in a 1:2 ratio to form structural
topologies identical to those of zeolites. Extraction of
chemically sensible fragment with one Zn ion, [ZnIm4]2-,
leaves the imidazolate anions under coordinated. Adding
another layer of Zn ions gives [Zn5Im4]6+, unfortunately, a
rather large net fragment charge. Alternatively, the REPEAT
approach offers a simple yet robust approach to deriving
atomic charges in periodic systems such that the complica-
tions associated with extracting a sensible molecular fragment
do not have to be contended with because they are
determined from a true periodic calculation. This means that
minimal user intervention is required to generate the
REPEAT charges, which is necessary for the automation of
the charge derivation procedure. Such automation would be
very useful in high throughput computational studies of
nanoporous materials.

V. Conclusions

A simple and robust method to derive ESP charges in
periodic systems is introduced that we have termed the
REPEAT method. To the best of our knowledge, the
REPEAT method is the first ESP fitting technique that
properly circumvents the fundamental issue of the ill-defined
offset in the electrostatic potential within periodic electronic
structure calculations. By modifying the conventional error
functional used in molecular ESP charge derivation methods,
we have developed an approach that can be equally applied
to molecular systems as well as to periodic systems such as
zeolites. A formal analytical proof is provided showing that
the conventional error functional used in molecular ESP
calculations is a limiting case of the REPEAT method for
an infinitely large simulation box. The methodology also
implicitly includes corrections to the dipole and the higher
multipole moments when evaluating charges of isolated
molecules with a finite-size periodic simulation cell.

Validation of the new methodology is demonstrated with
a variety of tests. First it is shown that when the conventional
ESP functional is applied to a continuous periodic solid, the
fitted charges obtained with different periodic electronic
structure packages differ drastically. In some cases, the
charges obtained are ‘unphysical’, for example +10.5 e for
Si in sodalite. In contrast, the REPEAT method generates
charges that are both physically reasonable and very similar
between different electronic structure codes. Tests on isolated
molecules were also performed. The REPEAT charges,
resulting from periodic calculations of ‘isolated’ molecules,
were found to be in good agreement with the CHELPG and
the RESP charges resulting from nonperiodic molecular DFT
calculations.

The stability of the REPEAT charges, with respect to the
VDW radii used to exclude fitting grid points, as well as the
grid point density was examined. For microporous materials,
such as sodalite, the REPEAT charges were found to be very

Figure 6. (a) Ball and stick representation of the unit cell of
IRMOF-1 (blue ) carbon, red ) oxygen, white ) hydrogen,
gray ) zinc). The green sphere represents the largest sphere
that fits in the unit cell’s cavity without touching the VDW’s
surface of the atoms. (b) Numbering of the unique atoms in
IRMOF-1.

Table 5. Atomic Charges Determined for IRMOF-1

atoma REPEAT Sagarab Schmidc Greathoused

Zn +1.28 +1.31 +1.26 +1.20
O1 -1.57 -1.79 -1.44 -1.20
O2 -0.61 -0.63 -0.67 -0.60
C1 +0.52 +0.62 +0.68 +0.60
C2 +0.14 +0.05 +0.06 +0.00
C3 -0.18 -0.12 -0.16 -0.10
H +0.17 +0.12 +0.16 +0.10
∆2e - 0.074 0.053 0.181

a Labeling of the atoms is given in Figure 6b. b Ref 32. c Ref 12.
d Ref 56. e ∆2 is defined in Table 2 with respect to the REPEAT
charges.
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stable upon variations of the aforementioned parameters, in
particular the grid point density. To examine the limitations
of the REPEAT method, several nonporous ionic solids were
studied, specifically SnO2, CdTe, and ZnO. The REPEAT
charges of these systems were found to be chemically
intuitive, however they did vary significantly with the VDW
radii in some cases.

Although other applications can be foreseen, the original
motivation for developing the REPEAT method was to
generate partial atomic charges for the simulation of nan-
oporous materials, such as zeolites and metal organic
framework materials. To demonstrate the applicability of the
method to these systems, REPEAT charges were generated
for the zeolite natrolite and the MOF IRMOF-1. Partial
atomic charges have been determined from experimental
X-ray diffraction data for natrolite and were found to be in
good agreement with the REPEAT charges, although a direct
correspondence is not expected. The second material, IR-
MOF-1, has been the subject of a number of computational
studies where charges have been derived from molecular ESP
calculations on fragments extracted from the periodic
framework. The REPEAT charges were in excellent agree-
ment with these charges. Extracting chemically sensible
fragments from a periodic solid to perform molecular ESP
charge derivation calculations is not always trivial and
minimally requires some user intervention or manual adjust-
ment. Therefore, the REPEAT method offers a straightfor-
ward and robust approach to deriving ESP charges for the
simulation periodic systems that is amenable to automation.
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Abstract: We investigated the binding nature of three peptides (inactive NB1 and active B1
and B3) to single-walled carbon nanotubes (SWCNTs) using a density functional tight-binding
(DFTB) method with an empirical van der Waals force correction. We show that the three peptides
could be spontaneously adsorbed to the carbon nanotube (CNT) surface through π-π and/or
H-π stacking at physisorption distances and the geometric and π-electronic structures of
SWCNTs remain basically undamaged upon the adsorption. We also investigated the diameter
and chirality dependence of binding energies. The calculated results are consistent with
experimental observation, and we found that aromatic residues, such as His and Trp, are the
keys in determining peptide/CNT binding. In addition, our calculations predict that noncovalent
modification of SWCNTs by the active peptides might increase the electron transfer capabilities
of SWCNTs.

1. Introduction

Carbon nanotubes (CNTs), discovered in 1991 by Iijima,1

have many novel electrical and mechanical properties, such
as high electrical conductivity, excellent stiffness against
bending, and high tensile strength.2 Single-walled carbon
nanotubes (SWCNTs) have potential biological applications
ranging from biomedical sensors to drug delivery.3-5 But
such biological applications have, so far, been limited owing
to two major obstacles: hydrophobicity and conformational
heterogeneity. Although the solubility in water can be
improved by chemically modifying the SWCNTs through
covalent bonding of various functional groups to the
nanotubes,6,7 these modifications can perturb the intrinsic
properties of SWCNTs, such as electrical properties. As a
result, alternative approaches using the noncovalent adsorp-

tion of surfactants,8 polymers,9 and biomolecules10-12 to
solubilize the SWCNTs have been proposed and tested.

In recent years, much research attention has focused on
the design and utilization of polypeptide/CNT complexes
because of their functionality in biological systems.13-18

Encircling CNTs with peptides has two major advan-
tages:15 (1) the peptides will not dissociate from the CNTs
thereby providing extremely stable CNT dispersions and (2)
this method enables the diameter selective separation of
SWCNTs,15 since nanotubes with a specific diameter are
preferentially circled by a given length of peptides. For
example, to improve CNT solubility in water as well as
biocompatibility, Zorbas et al. developed a family of am-
phiphilic helical peptides that noncovalently bind and solu-
bilize SWCNTs in water, yielding unbundled and individual
SWCNTs.14 Later they devised a novel way to coat SWCNTs
with reversible cyclic peptides to separate them based on
differences in diameters.15

Despite these exciting experimental observations, many
outstanding questions remain regarding the affinity of
selected peptide/SWCNTs complexes. For example, how
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does the type of carbon-based nanomaterial differ in the
selection for peptide sequence? Do peptide sequences
selected for one kind of carbon-related nanomaterials pre-
serve the high attraction for other forms? As an initial step
in exploring these critical questions, we investigated the
binding feature between SWCNTs and three representative
peptides, namely, inactive peptide NB1 and active peptides
B1 and B3. The present research is a theoretical contribution
to the binding features of biomolecule/nanomaterial com-
plexes in the gas phase.

2. Computational Details

Weak interactions exist widely and play a significant role in
determining and stabilizing the three-dimensional structures
of proteins. In proteins, the weak interactions among aromatic
side chains, backbone amides, carboxyl groups, aliphatic
hydrogen atoms, and other parts exist widely. Individually,
these interactions might be weak but when combined they
have a large influence on the conformational stability of a
protein.19,20 For example, the arene-arene and arene-COO
interactions were reported to complicate the measurement
of the UV absorption of residues.21

The peptides adsorbed on the surface of SWCNTs might
be a proto-typical weakly interacting complex that involves
π bonding; this remains a challenging issue for theoretical
studies because these systems cannot be described correctly
by conventional DFT or methods based on classical inter-
atomic potentials. MP2 and CCSD theories are used as
standard methods to consider the dispersion force,22,23 but
for large systems of biological interest, such methods are
not applicable. In this study, we used a computationally
efficient approximation to density functional theory, the self-
consistent charge density functional tight-binding (SCC-
DFTB) scheme, complemented by the empirical London
dispersion energy term (acronym DFTB-D) to study the
energy and geometry structure of the three peptides in
relation to the CNTs. The SCC-DFTB model has been
derived from a second-order expansion of the DFT total
energy functional with respect to charge density fluctuations;
at the same time, the Hamiltonian matrix elements are
calculated with a two-center approximation. These are then
tabulated together with the overlap matrix elements with
respect to interatomic distance. A comprehensive description
of the method can be found in the literature.24,25 The van
der Waals interaction has been described with an empirical
dispersion term, consisting of an R-6, term added to the SCC-
DFTB total energy.26,27 The SCC-DFTB-D has been suc-
cessfully applied to investigating the energies and structures
of biomolecules.

In this work, we considered SWCNTs with different
chiralities, saturated at the ends by hydrogen atoms. The
CNTs we studied are armchair (n, n) (n ) 3-6), zigzag (8,0)
tube, and chiral (6,3) tube. The tube length is around 33 Å,
which is long enough to eliminate the effect of the terminal
hydrogen atoms. We investigated three representative pep-
tides, including the peptide NB1 of sequence LPPSNAS-
VADYS, the peptide B1 of sequence HWKHPWGAWDTL,
and the peptide B3 of sequence HWSAWWIRSNQS. Pep-
tides NB1 and B1 were initially constructed as fully extended

structures. For B3, previous CD experiments have demon-
strated that the free B3 peptide adopts a helical conformation
at a neutral pH value and the binding to SWCNTs does not
affect its helical conformation.18 Therefore, in this work, we
considered the initial structure of peptide B3 as a helical
conformation. We first positioned the arene clusters in these
peptides approximately parallel to the sidewall of the
SWCNTs, with part of them making direct contact, followed
by full geometric optimizations using conjugate gradient
algorithm until the residual forces were below 2 × 10-4 au;
we set the charge convergence criterion to be 10-5 electrons.

To provide a better understanding of the electronic
properties of the peptide/CNT complexes, we investigated
the density of states (DOS) of the active complexes. The
DOS was calculated using the SIESTA method.28,29 We used
the Ceperley-Alder version of the LDA30 for the electron
exchange and correlation as well as optimized Troullier-
Martins pseudopotentials31 for the atomic cores in this
calculation. We performed the computations of this part using
a supercell approach and periodic-boundary conditions. We
adopted a lateral separation of 35 Å between the tube centers,
which was large enough to eliminate the interaction between
the neighboring tubes. We then used two Monkhorst-Pack
k points for the Brillouin zone integration along the tube
axis. A cutoff of 150 Ry for the grid integration was utilized,
representing the charge density. Although different models
might result in different optimized structures and, thus,
different electronic properties, this effect can be eliminated
if the tube length is long enough to eliminate the interaction
between the peptide and the hydrogen atoms at the tube ends
and the lateral separation between tube centers is large
enough to eliminate the interaction between the neighboring
tubes. In our work, the binding energies for the cluster and
the periodic models were respectively almost the same, as
were the optimized structures for the interacting parts for
both models.

3. Results and Discussion

3.1. Structures and Binding of the Peptide/CNT
Complexes. Figures 1a-c show the optimized structures for
the three peptides. NB1 involves only one arene (Tyr) at
the 11th position. B1 in which an extended conformation is
adopted involves five arenes: three tryptophans at the second,
sixth, and ninth positions and two histidines at the first and
fourth positions, respectively. For the helical peptide B3, the
structure is relatively compact as a result of the intramo-
lecular hydrogen bonds. One representative intramolecular
hydrogen bond is formed between CdO of the Trp2 and
N-H of the Trp6 positions with N-O and H-O distances
of 2.91 and 1.90 Å, respectively.

Figure 2 shows the optimized geometries of the three
peptides/(5,5) CNT complexes. We calculated the binding
energies of the studied systems with the following equation:
EB ) E(peptide/SWCNT) - E(SWCNT) - E(peptide), where E(SWCNT)

and E(peptide) are the total energy of the isolated pristine tube
and peptide, respectively, and E(peptide/SWCNT) is the total energy
of the peptide/SWCNT complex.
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Upon adsorption to the CNTs, the three peptides show
different binding features. For the inactive peptide NB1
(shown in Figure 2a), the contact area of peptide NB1 with
the (5,5) CNT surface is located at the aromatic ring of
Tyr11. The phenol ring is adsorbed to the CNT surface in a
parallel manner by a favorite “bridge site” with a nearest
C-C distance of 3.00 Å. The binding energy is calculated
to be -0.71 eV. Since little contact occurs between the CNT
and the other parts in NB1, the geometry of peptide NB1
undergoes little change upon adsorption.

The active peptide B1 wraps around the (5,5) CNT surface,
as shown in Figure 2b. Compared with isolated B1 in Figure
1b, most of the peptide interacts with the CNT surface, and
the adsorbed B1 shows obvious conformational changes to
facilitate maximum interaction with the surface. First, the
aromatic ring of the N-terminal residue His1 is turned parallel
to the tube surface, with the nearest distance between the
C-C around 3.14 Å. Second, of all three Trp residues, Trp2
and Trp6 adopt a favorable parallel orientation to the CNT
surfaces. However, Trp9 is tilted to the CNT surface due to
the sterical effect. For the Trp2 ring that is favorably bonded
to the CNT surface by π-π stacking, the nearest distance
between the C-C is around 3.02 Å. While the His1 is close

to the tube surface, the His4 is perpendicular to the tube.
Since the CNT is circled by the peptide B1, the contact area
is much larger than that of NB1/CNT. Third, several XH-π
(X ) C or N) interactions occur between the peptide B1
and the CNT surface. While a NH-π interaction is found
between the backbone amide of Trp2 and the CNT surface
with a N-C distance of 3.25 Å and a H-C distance of 2.28
Å, respectively, a weaker CH-π interaction is identified
between the CR of Lys3 and the CNT surface, with a shortest
C-C distance of 3.48 Å and a H-C distance of 2.47 Å,
respectively. The overall binding energy is calculated to be
-2.85 eV.

For active peptide B3 with a helical conformation, the
binding energy to the (5,5) CNT is predicted to be -2.22
eV. Figure 2c shows the adsorbed peptide on the CNT
surface. Compared with the isolated peptide, the adsorption
has minor effect on the peptide’s helical conformation.
Similar to active peptide B1, peptide B3 binds to the CNT
surface via the favorable π-π stacking between the CNT
surface and the aromatic residues His1, Trp2, and Trp5, with
the corresponding N-C and C-C distances calculated to
be 3.21 and 3.05 Å, 3.34 and 2.94 Å, and 3.22 and 3.06 Å,
respectively. Moreover, the π-π stacking clusters Trp2/Trp6

Figure 1. Optimized structures for (a) peptide NB1, (b) peptide B1, and (c) peptide B3. The important aromatic residues are
labeled in red.
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and Trp5/Arg8 found in the isolated peptide (Figure 1c) are
well preserved in the B3/CNT complex, indicating that the
π-π interactions contribute not only to the binding activities
of the peptide but also to the stabilization of the helical
conformation. The preservation of the helical conformation
upon peptide B3 adsorption to the side wall of SWCNT is
consistent with the experimental observation obtained using
CD spectroscopy.18 Our results demonstrate that the geo-
metric structure of CNT remains almost unchanged after the
adsorption of peptides.

3.2. Diameter and Chirality Dependence of the
Binding Energy for the Peptide/CNT Complexes. Figure
3 shows the diameter dependence of the binding energies of
active peptide B1 to the (n, n) CNTs (n ) 3-6) at a given
tube length. Overall, the binding energies increase as the tube
diameter grows larger, except at the beginning when n ) 3
and 4; the peptide/(4,4) CNT binding is slightly higher than
the binding of the peptide/(3,3) CNT. For the active B1 that
encloses the CNTs, the contact area between the B1 and the
CNT is large. When B1 is adsorbed to the CNT, the aromatic
parts (such as His and Trp) in direct contact with the CNT

will undergo considerable conformation change to facilitate
maximum intermolecular interactions with the CNT. This

Figure 2. Illustration of the peptide/(5,5) CNT interactions: (a) inactive peptide NB1, (b) the active peptide B1, and (c) the active
peptide B3. The π-π stacking and XH-π (X ) C and N) interactions are displayed in the left and right panels for the (b) B1/CNT
complex, respectively. Key residues are labeled in red.

Figure 3. Diameter dependence of binding energies of B1
to the (n,n) CNT (n ) 3-6) at a given tube length.
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will result in a change of B1 geometry arising from
intramolecular interactions. In addition, the geometric change
in peptide B1 will affect the intermolecular interactions
between the CNT surface and peptide B1. This chain
interaction will finally change the basic structure of the free
peptide B1. As mentioned above, the interactions between
B1 and CNT involve π-π, CH-π, and NH-π interactions,
and the competition of these weak interactions will deter-
mine the final equilibrium structures and binding energy.
Therefore, we cannot simply assume that as the contact area
increases, the binding energies will increase correspondingly,
just as we found in 1-pyrenebutanoic acid, succinimidyl ester
(PSE)/CNT.32 We did not observe any linear relationship
between the binding energy and the tube diameter for any
of the three peptide/CNT complexes considered here.

We also studied the chirality dependence of the binding
energy for peptides/CNT and considered three tubes with
similar diameters: (5,5), (8,0), and (6,3) tubes. Table 1 gives
the results. We found that, although the chirality dependence
of the binding energies is not obvious, generally as the tube
diameter increases, the binding energy will also increase.
Of the three tubes considered here, the armchair (5,5) tube,
with the largest tube diameter, has the largest binding energy,
while the chiral (6,3) tube, with the shortest diameter,
demonstrates the smallest binding energy.

3.3. Molecular Orbitals of the Peptide/CNT Com-
plexes. Figure 4 presents the isosurfaces of the selected
frontier orbitals for peptide B3/(5,5) CNT, pristine (5,5) CNT,
and single B3 at a 0.01 au isovalue. For isolated B3, the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) locate on the Arg and
Trp2, respectively. After adsorption to the (5,5) CNT system,
both the HOMO and LUMO locate on the (5,5) tube, and
no molecular orbital overlapping occurs between the B3 and
the (5,5) CNT. We conclude that the noncovalent π-π
stacking of B3 to CNTs does not damage the π-conjugation
electronic structures of the CNTs. Our calculations show that
after adsorption of B3 on the sidewall, the HOMO-LUMO
gap for the CNT remains almost unchanged. These results
suggest that the π-electronic properties of the CNT are
preserved after noncovalent adsorption of B3, which is
similar to the features for simple planar organic molecules
adsorbed on CNTs.33,34 We find similar orbital features for
the NB1/(5,5) CNT and the B1/(5,5) CNT.

3.4. Electronic Properties. We sought further under-
standing of the electronic properties of peptide/CNT interac-
tions by calculating the DOS of the peptide/CNT complexes.

We considered the metallic (5,5) CNT and the semiconduct-
ing (8,0) CNT to study the features of the DOS. Figure 5
shows the total DOS of the B3/(8,0) CNT. For the B3/
metallic (5,5) CNT (not shown here), we find that the total
DOS of the system preserves the DOS features of pristine
(5,5) tube, and there isn’t obvious new DOS induced near
the Fermi level. But we find different binding features when
B3 interacts with semiconducting (8,0) CNT. Compared with
the pristine (8,0) CNT, the DOS of the B3/(8,0) CNT shows
new states near the Fermi level, which were contributed by
the peptide B3. Still, the nature of physisorption is shown
since the total DOS preserves the features of the DOS of
pristine (8,0) CNT. The Fermi energy level (Ef) of the
semiconducting (8,0) CNT was predicted to be -3.86 eV,
while for the B3/(8,0) CNT, the Ef was almost unchanged.
We find new DOS, composed mainly of the HOMO of B3
molecular orbitals, between the (8,0) CNT conduction and

Table 1. The Chirality Dependence of the Binding Energy
for Peptide/CNT Complexes

tube diameter (Å) binding energies (eV)

NB1/(5,5) CNT 6.78 -0.71
NB1/(8,0) CNT 6.26 -0.67
NB1/(6,3) CNT 6.23 -0.64
B1/(5,5) CNT 6.78 -2.85
B1/(8,0) CNT 6.26 -2.82
B1/(6,3) CNT 6.23 -2.69
B3/(5,5) CNT 6.78 -2.22
B3/(8,0) CNT 6.26 -2.21
B3/(6,3) CNT 6.23 -1.97

Figure 4. Isosurfaces of the selected frontier orbitals of the
B3/(5,5) CNT complex at the ground state. The isovalue is
0.01 au.

Figure 5. Total density of states for B3/(8,0) CNT.
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valence bands. Hence, the band gap of the system has sharply
decreased from the pristine (8,0) tube 0.58 to 0.29 eV of the
complexes. Similar finding of band gap reduction has been
found in the (7,3) polyC-DNA complex compared to the
free semiconducing (7,3) tube.35 For the semiconducting (8,0)
CNT, the band gap remains almost unchanged. For peptide
B3, our calculations show that the band gap is enlarged
slightly after adsorption. The finding of the new DOS formed
between the (8,0) CNT conduction and valence bands is quite
similar to our previous study of flavin adenine dinucleotide
(FAD)/(10,0) CNT.36 For the DOS of B1/(8,0) CNT (not
shown here), we find similar features of the weak interaction:
new states, composed mainly of the HOMO of the B1
molecular orbital, between the (8,0) CNT conduction and
valence bands. Compared to pristine SWCNTs, the new states
formed in the active peptides/(8,0) system may cause obvious
increasing electron transfer abilities. A CV experiment is
highly desirable to verify this observation.

We furthermore examined the charge transfer between
the peptide B3 and the (8,0) CNT from an analysis of the
Mulliken charges for the SCC-DFTB-D calculations. There
is very small charge transfer (0.02e) observed from peptide
B3 to (8, 0) tube. Again, the negligible charge transfer in
this π-π bonded system demonstrates the weak interaction
nature of the peptide and CNT complexes.

Based on the above analysis of the structures and proper-
ties of the peptide/CNT complexes, we show that the arene
parts, such as His and Trp, play a significant role in the
noncovalent binding of peptides to the CNT surface. Our
theoretical results confirm the experimental finding37 and also
agree with previous theoretical reports.38,39

4. Conclusions

We show via quantum mechanical investigation that peptides
(inactive NB1 and active B1 and B3) could be spontaneously
attracted to the sidewall of CNTs through π-π and/or H-π
stacking, which is at the physisorption distance. The com-
petition of π-π and/or H-π stacking plays a key role in
binding the peptides to the CNTs, thus, determining and
stabilizing the binding of the peptide/CNT systems. The
isosurfaces of the selected frontier orbitals show that the
π-electronic structures of the CNTs remain basically undam-
aged. This study confirms the experimental finding37 of the
key role of His and Trp when binding to the CNT surface.
Our calculations predict that the noncovalent modification
of SWCNTs by the active peptides might increase the
former’s electron transfer capabilities. These results provide
a better understanding of the binding between peptides and
CNTs and, therefore, have potential applications for design-
ing biofunctionalized CNTs as biosensors and drug delivery
devices.
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Abstract: A novel docking protocol using a long, all atom molecular dynamics (MD) simulation,
in an explicit solvent medium, without using any distance constraints is presented. This MD
docking protocol is able to dock ligands, based on the C-terminal domain (CTD) of RNA
polymerase II, into the tryptophan-tryptophan (WW) domain of Pin1. In this docking process, a
significant loop-bending event occurs in order to encircle the ligand into its solvent exposed
binding site, which cannot be simulated using current protocols. The simulations were validated
structurally and energetically against an X-ray structure to confirm correct sampling of
conformational space. Based on these simulations, and justification of the starting structure as
a valid intermediate structure, a potential molecular basis for binding was predicted as well as
confirming the key residues involved in the formation of the final strong and stable Pin1 WW
domain-ligand complex.

Introduction

Human Pin1 (Pin1), a peptidyl prolyl cis/trans isomerase,
was first isolated from a yeast two-hybrid screen of inter-
actors of the known mitotic regulator NIMA from Aspergillus
nidulans and shown to be essential for normal growth in
some organisms.1,2 Pin1 has been found to be involved
in many cell processes such as mitosis, transcription, and in
response to DNA damage. It has been seen that Pin1 is
overexpressed in cancers such as breast cancer,3 and
conversely it is down-regulated in degenerative neurons in
patients who have Alzheimer’s.4 Because of its involvement
in these major medical issues, Pin1 has been identified as a
major target for drug discovery.5 However, Pin1 is an
extremely flexible protein,6 and this challenges the standard
drug design protocol, based on the notion that binding occurs
in a lock and key fashion.

Pin1 and its homologues such as PinA7 and Ess18 are
composed of two domains: a C-terminal peptidyl-prolyl cis/
trans isomerase (PPIase) domain and an N-terminal WW

domain, which are linked by a long linker region.9,10 It is
currently hypothesized that Pin1 functions through the WW
domain first acting as a targeting domain and binding the
substrate before the PPIase domain isomerizes the substrate
at specific phosphorylated serine/threonine-proline (pSer/Thr-
Pro) motifs, either with the substrate still bound to the WW
domain or, possibly, after the substrate has completely
dissociated from the WW domain.11 Named due to a pair of
highly conserved tryptophan residues (at position 11 and 34
in Pin1), WW domains normally consist of 38-40 residues
and fold into triple-stranded antiparallel beta sheets.12 WW
domains bind proline rich proteins and are classified into
different groups depending on which motif they bind. Group
IV WW domains, to which Pin1 belongs, bind to Pro residues
preceded by a pSer/Thr.13,14 Pin1 and its homologues are
unique as they are the only parvulin-like proteins (a family
of prolyl isomerase) with WW domains.15 Assays on the
WW domain and PPIase domain individually show that the
WW domain interacts with pSer/Thr-Pro motif containing
substrates with a higher affinity than the PPIase domain and
of nearly equal affinity to that of the whole protein.10,14

However in isolation, the WW domain shows no isomerase
activity. It is therefore critical that the WW domain interacts
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with these pSer/Thr-Pro motifs containing peptides prior to
the substrate being passed onto the PPIase domain for
isomerization.16

A number of three-dimensional structures of Pin1 and its
homologues are available through the Protein Data
Bank5,7-10,17,18 of which, two are extensively used in this
work. The first is the X-ray structure of Pin1 bound to an
AlaPro dipeptide at the PPIase domain but without a ligand
bound to the WW domain (1PIN).9 The second X-ray
structure has a ligand comprising of a 7 amino acid sequence
of the C-Terminal Domain (CTD) of RNA polymerase II
bound to the Pin1 WW domain (1F8A).10 This CTD ligand,
(CTD-S2/S5) with sequence YpSPTpSPS, has three serines,
two of which are phosphorylated, one at position 2 and one
at position 5. It is of interest to note that all peptides bound
to the WW domain bind with the proline in a trans
conformation and that they all bind in the same unique
binding mode.11,17

From the X-ray structures of Pin1, two important subdo-
mains of the Group-IV WW domain were identified for
ligand-binding (Figure 1). First the XP groove,19 which is
formed by residues Tyr23 and Trp34 which interacts with
the proline residue of the pS/pT-P motif from the substrates
in a hydrophobic fashion. Second loop I, the loop between
the first and second �-sheets and composed of residues
16-21, is very flexible and binds the phosphate group
immediately upstream of the proline. The flexibility of loop
I is highlighted by comparing the ligand free (1PIN) and
ligand bound (1F8A) X-ray structures of the Pin1 WW
domain where a major difference is seen with loop I closing
over the binding site in the ligand bound form (Figure 1).

A key aspect of the work in this paper is the ability to
dock a ligand into a binding site. A number of programs
have been developed with the premise of being able to dock
a ligand into a receptors binding site. The algorithms used
in these programs can be grouped according to the level of
flexibility of the receptor and ligand that the algorithm
allows.20 In order of increasing complexity, the three groups
are as follows: (a) rigid body docking, where both the
receptor and small molecule are treated as rigid; (b) flexi-
ble ligand docking, where the receptor is held rigid, but the
ligand is treated as flexible; and (c) flexible docking, where

both receptor and ligand flexibility is considered. Thus far,
the most commonly used docking algorithms use the rigid
receptor/flexible ligand model where the receptor site is
unable to change its conformation upon ligand binding. This
is mainly because treatment of backbone flexibility in
protein-protein docking is quite challenging, and thus few
docking programs deal with the backbone flexibility.21 Those
programs that can deal with ligand and receptor flexibility
however are normally only used for screening purposes.20

Thus they are not suitable to use in studies such as these,
where a ligand is to be docked into an open form of a protein.

In this work, we were guided by Hornak et al. who used
all atom molecular dynamics (MD) simulations on a HIV
protease complex.22 These long simulations, produced with
an implicit solvent model and no distance constraints, were
able to sample the conformational changes that take place
when a ligand is placed in the active site of HIV protease,
and the protease moves from an open to a closed conforma-
tion. In contrast to the HIV protease simulations, an explicit
solvent model was used in this study since it is known that
water molecules play an important role in the stability of
the ligand in the solvent exposed binding site.10

Our aim in this paper was to develop a molecular dynamics
protocol to simulate the large conformational change of loop
I in Pin1 moving from an open form, to a closed form when
a pS/pT-P motif containing ligand (CTD-S2/S5) is bound.
The protocol required validation which was achieved by
producing multiple simulations. The first two were duplicate
simulations of the CTD-S2/S5 ligand docked into Pin1. The
third, also using the MD docking protocol, was a CTD-S5
simulation where the open form of Pin1 is docked with the
singularly phosphorylated CTD-S5 ligand. Finally a standard
MD simulation was run on the X-ray complex of Pin1 in its
native bound conformation with the CTD-S2/S5 ligand to
provide standard reference structures to compare with all
three simulations run with the MD docking protocol. This
reference simulation allowed us to validate the protocol,
confirming that the MD docking protocol was able to produce
complexes that sampled correct conformational space.

The second aim of this work was to use the simulations
from the MD docking protocol to propose a potential binding
mechanism for the CTD ligand to the Pin1 WW domain.
By justifying that the starting structure used is a valid
intermediate structure, key stages in the binding process were
identified in the multiple simulations and the role of key
residues in the binding process and stabilization of the
complex, as identified by previous biological experimental
studies, were explained. Most of the investigation of Pin1
in the literature has focused on its cellular role, yet there
has been no investigation into the detailed ligand binding
process. The importance of Pin1 in its many cellular
processes means that the results from this study will be
important in the future production of ligands to inhibit Pin1.

Materials and Method

Structure Creation. The Pin1 WW domain-CTD-S2/S5
complex used as the starting structure for the CTD-S2/S5
simulations was created using the scheme seen in Figure

Figure 1. Front and side view of the superimposition of the
X-ray structures of ligand free (red) and bound (blue) Pin1
WW domain. In the ligand free structure, termed the “open”
form, loop I points upward. In the ligand bound structure,
termed the “closed” form, the loop I bends down to cover the
binding site.
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2a-d. The “bound” structure of the Pin1 WW domain (b)
(PDB ID: 1F8A), with the CTD-S2/S5 ligand (YpSPTpSPS),
was superimposed onto the “free” structure of Pin1 (a)
(residues 6-37 in PDB ID: 1PIN) using the Maestro program
from Schrodinger.23 From this superimposed structure (c),
the “bound” Pin1 structure was deleted, and then the “free”
Pin1 and the CTD ligand were merged together (d).

For the starting structure of the CTD-S5 simulation, where
S2 is unphosphorylated, the Pin1-CTD-S2/S5 complex used
as the starting structure for the CTD-S2-S5 simulations was
modified by removing the phosphate group on S2 of the
CTD-S2/S5 ligand to convert the phosphorylated serine to a
standard serine residue. The crystal structure of the “bound”
form of Pin1 (1F8A) was used as the starting structure for
the X-ray complex simulation.

Parameters for the standard amino acids in the Pin1 WW
domain and the ligand were taken from the AMBER ff03
force field,24 while parameters for the phosphorylated serines
(phosphoserine with deprotonated phosphate group, SER-
PO3) were taken from the AMBER Parameter Database
(http://pharmacy.man.ac.uk/amber/).25 Hydrogen atoms were
added such that all residues were in their standard protonation
states at pH 7. Each complex was placed in a octahedral
box of TIP3P water molecules26 such that the box extended
at least 10 Å from any atom of the Pin1-CTD ligand
complexes. The systems were neutralized and made up to a
salt concentration of 0.2 M by adding appropriate numbers
of Na+/Cl- ions. These final steps of molecular system
creation were achieved using the Leap module of AM-
BER9.27

MD Simulation Protocol. All simulations involved in the
MD docking protocol were performed using the AMBER9
package of programs.27 A four-step equilibration scheme was
performed with the first step being a minimization where
the Pin1/ligand complex was held fixed with a restraint of
500 kcal mol-1 Å-1, such that the position of water molecules
and ions could be relaxed. A second minimization followed,
whereby all atoms were allowed to move for 1000 steps of

steepest descent and then 1000 steps of conjugate gradient
to relax the system as a whole. Once sufficiently relaxed,
the system was carefully heated to 300 K over 10 ps using
a Langevin dynamics temperature regulation scheme28 with
a collision frequency of 1 ps-1, with everything except water
held under a 10 kcal mol-1 Å-1 restraint. Volume was kept
constant, and SHAKE29 was used to constrain bonds involv-
ing hydrogen such that a time step of 2 fs could be used.
The final step of the equilibration scheme, to equilibrate the
physical parameters such as temperature, pressure, and
density of the system, was run over 10 ps using NPT
conditions. Temperature and pressure were held constant
using Langevin and isotropic scaling schemes, respectively.
Production phase was run in 10 ns blocks under the same
NPT conditions used for the final step of equilibration. The
random seeds used to generate velocities were changed for
each different block of a simulation to stop the possibility
of synchronization of trajectories.30 SHAKE was used, and
long-range electrostatic interactions were calculated using
the PME method with a cutoff of 10 Å.31 Coordinates were
printed to the trajectory file every 500 steps (every 1 ps)
such that each trajectory held 10000 snapshots and a restart
file was written every 1000 steps. Each simulation was
continued on for a further 10 ns after a stable complex was
formed for validation purposes.

Structural Analysis. Visual, distance, torsion, and rmsd
analyses were completed using VMD.32 All quantitative data
used in the validation of the MD docking simulations were
taken from the last 10 ns of the simulations. Over this time
it was confirmed that the simulations were sampling a stable
conformational space through hydrogen bond (H-bond)
analysis using the ptraj module of AMBER9 (data not
included).

Distances between the S5 phosphate of the CTD ligand,
and key functional groups in loop I which are shown to
H-bond to S5, were calculated between the phosphorus of
the S5 and the hydrogen connected to the H-bond donor in
loop I. Distance data for the Pin1 1F8A structure were
calculated using the final structure from the first minimization
of the X-ray complex from the X-ray complex simulation.
This minimized structure was used instead of the initial X-ray
structure as the X-ray structure did not include hydrogen
atoms in optimized positions. The phi/psi angles on either
side of the amide bond between Arg17 and Ser18 were
calculated to quantify amide bond flipping.

The X-ray structure of the Pin1 complex (PDB ID: 1F8A)
was used as the template structure for all rmsd calculations.
All trajectories were aligned onto the backbone of this
structure, and rmsds were calculated for each snapshot over
the entire production phase. Snapshot intervals were changed
to 5 ps to ensure that snapshots would be uncorrelated when
compared to the next/previous snapshot.33 Heavy atom and
backbone rmsds were calculated for the entire Pin1 WW
domain (residues 6-37), the loop I residues (16-21), and
the XP groove (23 and 34) and were then averaged for each
10 ns portion of production phase.

Root mean square fluctuations (RMSF) for each residue
were calculated using ptraj (see the Supporting Information).
Each 10 ns portion of a simulation was rms fitted, for residues

Figure 2. MD docking protocol. AfD show the production
of the initial starting structure for the MD docking simulation.
DfE show the initial structure moving into the closed form
as seen in the “bound” X-ray structure as a result of the MD
simulation.
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6-37 from Pin1, onto the first structure of that portion of
the simulation. RMSF were calculated for both Pin1 and
CTD ligand residues.

Binding Energy Calculations. Binding energies were
calculated using the MM-PBSA approach from AMBER9.34,35

The single trajectory approach for calculating MM-PBSA
energies was used with the ensemble of structures obtained
from the final 10 ns of each simulation. Snapshots were taken
every 5 ps from these trajectories such that 2000 snapshots
were used in the calculations. For each snapshot, water
molecules and counterions were removed, and estimates of
the binding energies were calculated using

where the free energy of each part of the system was
calculated using the formula

with <> signifying average values over the simulation. The
EMM term incorporates the molecular mechanical (MM)
energies of the system. Using the single trajectory approach,
this term was calculated using just the nonbonded, electro-
static and van der Waals components. The solvation energy
(Gsolv) term was divided into two parts

The nonpolar contribution (Gnp) to Gsolv was calculated using

where γ ) 0.0072 kcal mol-1 Å-2; � ) 0.0 kcal/mol; and
SASA is the solvent accessible surface area. The polar
contribution (Gpol) to Gsolv was calculated using both the
Poisson-Boltzmann (PB) and Generalized-Born (GB) meth-
ods. PB estimates of Gsolv were calculated by solving the
Poisson-Boltzmann equation using the PBSA module of
AMBER 9. GB estimates of Gsolv were calculated using the
GB model developed by Onufriev et al. and implemented in
SANDER from AMBER 9.36 The interior and exterior
dielectric constants were set to 1 and 80, respectively, with
a grid spacing set to 0.5 Å and 1000 linear iterations were
performed. Bondi radii and a probe radius of 1.4 Å were
used for both Gpol and Gnp calculations. The entropy

component (TSsolute) of the system was not calculated as
discussed in the Results section of this paper.

Results and Discussion
The MD docking protocol was tested by running three
separate simulations. The first test involved running on a
simulation on the Pin1 CTD-S2/S5 complex. Further testing
of the MD docking protocol was achieved by performing
an independent duplicate of the CTD-S2/S5 simulation. The
independence of the duplicate simulation was achieved by
changing the random number seeds which initiate velocities
and the forces on atoms at each stage of the simulation. This
guaranteed that although the simulations started from the
same structure, the velocities generated would be independent
and therefore the simulations also. It has also been shown
that if the random number seed values are not changed,
simulations can synchronize.30

Binding energy studies have shown that there is no
significant difference in binding affinity between Pin1
binding to the CTD-S2/S5 and CTD-S5 ligands,10 suggesting
that phosphorylation of S2 has a limited role in the binding
process and therefore the bound structure would resemble
the X-ray structure of the CTD-S2/S5 complex. The third
and final test of the MD docking protocol was to run a
simulation on the Pin1 CTD-S5 complex to determine
whether the protocol was able to predict a bound conforma-
tion of this new complex, and, if so, did it have a similar
conformation to the bound CTD-S2/S5 ligand complex.

In all three MD docking simulations performed, Pin1 was
seen to fold from its open form (Figure 3a), into an
intermediate “semi-open” form of the Pin1 WW domain after
an 180° amide flip between Arg17 and Ser18 in loop I, to
finally the closed form (Figure 3b), creating a ligand binding
pocket as seen in the X-ray crystal structure 1F8A.

Validation of the MD Docking Simulations. The quality
of the simulations, and in particular, the final structures in
which the ligands were bound to Pin1, were validated through
comparisons with the X-ray structure of the bound complex
(1F8A). It should be noted that this X-ray structure was not
used to generate the simulation. rmsd, distance, and binding
energy comparisons were made from the structures from the
final 10 ns of each simulation (2000 structures) to the X-ray
structure.

The data from Table 1 show that for the backbone atoms
of the whole protein, loop I, and the XP groove, the rmsds

Figure 3. Interactions between loop I of the Pin1 WW domain and the CTD S2/S5 ligand in (a) the open and (b) closed form
of the Pin1 complex from the MD docking protocol simulation. Specific hydrogens are shown to highlight the 6 key hydrogen
bonds shown in (b) that stabilize the bound form of the complex.

∆Gbind ) Gcomplex - (Greceptor + Gligand) (1)

G ) <EMM > + <Gsolv > - <TSsolute> (2)

Gsolv ) Gpol + Gnp (3)

Gnp ) γSASA + � (4)
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are all about 1 Å. This is well below the standard 2 Å limit
with which structures are said to be “nativelike”.37 In order
to ascertain the quality of this data, a MD simulation of the
X-ray structure (1F8A) with hydrogens added and in a
solvent box was run and the last 10 ns of the simulation
compared back to the single X-ray structure (shown in
bottom row of Table 1). These data are almost identical to
the data seen for the simulations run with the MD docking
protocol suggesting the simulations are sampling a confor-
mational space similar to the X-ray structure.

Interactions between the loop I residues in Pin1 and the
S5 phosphate of the CTD ligand are compared by calculating
the distances of six important hydrogen bonds from the last
10 ns of the simulations against the distances seen in the
X-ray complex. Table 2 shows that five of the six hydrogen
bonds between the loop and the ligand are directly compa-
rable with the X-ray structure. For Ser18 OH however, there
is a considerable difference between the distance in the
simulation (3.17 Å) and the distance in the X-ray structure
(5.6 Å). Interestingly, the X-ray complex simulation shows
this considerable difference to the single X-ray complex
structure as well and is discussed below. For completeness,
Table 2 also shows the six H-bond distances from the initial
structures used for the CTD-S2/S5 simulations where loop I
was in its open form. These highlight the dramatic changes
in structure that took place in the simulation. Overall the
six H-bond distances are internally self-consistent and
comparable with the X-ray structure confirming that our
simulations were sampling the correct conformational space.

The final tool used to validate the MD docking simulations
was the calculation of “binding energies” using the MM-
PBSA protocol within the AMBER software.34,35 The
binding energies of the MD docking simulations and the

X-ray complex simulation are very similar, differing by on
average 2.2 and 2.7 kcal/mol for the Poisson-Boltzmann
(PB) and Generalized Born (GB) methods, respectively
(Table 3). The results from the PB and GB methods are
expected to be different but show internal self-consistency38

which is what is seen in these results. It is important to note
that these energies are purely relative and are not absolute
estimates of the binding energy. MMPBSA/GBSA has
consistently been shown to be a good method for comparing
binding energies of similar complexes.34,38,39 Entropy cal-
culations have not been included as it has been documented
in many papers that it is difficult to calculate, and with similar
ligands it can be assumed that differences in entropy will be
small.34,40 Given that the simulations started from structures
very different to the X-ray structure, and that such close
agreement is seen, the binding energy data again confirms
that the simulations are sampling a very similar conforma-
tional space.

Importance of an Explicit Solvent Model. The use of
an explicit water model was essential to simulate the
transformation of the Pin1 WW domain from the “open” to
“closed” form. Preliminary simulations performed on the
CTD-S2/S5 complex following the protocol of Hornak et
al., using an implicit solvent model failed consistently with
the CTD ligand quickly flying away from the binding site.
These simulations failed due to the binding site being on
the surface of the protein and, hence, solvent exposed, which
contrasts to the HIV protease work where the ligand is placed
in a cavity which is solvent excluded. By modeling the Pin1/
CTD ligand simulations in explicit solvent, the movement
of the ligand was significantly restrained in the binding site
which allowed loop bending and, eventually, the formation
of the strong and stable complex.

The crystal structure of the Pin1 complex (1F8A) showed
that there is a key water mediated interaction between Tyr23
and the S5 phosphate of the ligand. Due to the solvent
exposure of the binding site, it is expected that many different
water molecules will mediate this interaction. This is seen
in the MD docking simulations with the water molecules
continually exchanging with the bulk solvent. This continual

Table 1. Rmsds over the Last 10 ns of Each Simulation against the X-ray Structure of the Pin1 Complex (1F8A)a

all loop I XP groove

backbone heavy backbone heavy backbone heavy

CTD-S2/S5 0.97 (0.07) 1.97 (0.09) 1.01 (0.16) 1.53 (0.11) 0.77 (0.09) 1.20 (0.03)
CTD-S2/S5 (duplicate) 1.02 (0.08) 2.17 (0.08) 0.87 (0.10) 1.61 (0.17) 0.72 (0.08) 1.23 (0.05)
CTD-S5 1.04 (0.11) 2.00 (0.12) 0.99 (0.13) 1.37 (0.19) 0.69 (0.06) 1.18 (0.02)
X-ray complex 0.78 (0.11) 2.13 (0.25) 1.10 (0.31) 1.43 (0.20) 0.62 (0.12) 0.67 (0.08)

a Standard deviation in parentheses.

Table 2. Distances (Å) from the Phosphorus of S5 to the Hydrogens of Loop I Functional Groups over the Last 10 nsc

Ser16 OH Arg17 N Arg17 NE Arg17 NH Ser18 N Ser18 OH

Pin1 1F8Aa 2.93 2.98 2.88 2.47 3.32 5.57
CTD-S2/S5 2.85 (0.03) 2.74 (0.06) 2.85 (0.03) 2.66 (0.06) 3.27 (0.26) 3.17 (0.75)
CTD-S2/S5 (duplicate) 2.82 (0.03) 2.72 (0.05) 2.86 (0.05) 2.72 (0.08) 3.10 (0.05) 2.81 (0.18)
CTD-S5 2.84 (0.03) 2.69 (0.07) 2.79 (0.04) 2.70 (0.09) 3.03 (0.13) 2.90 (0.16)
X-ray complex 2.81 (0.03) 2.67 (0.01) 2.78 (0.01) 2.65 (0.01) 3.13 (0.02) 2.81 (0.02)
initialb 2.16 5.78 10.41 11.83 9.00 10.51

a Pin1 1F8A distances are taken from the final structure of the first stage of minimization from the X-ray complex simulation. b Initial
distances are taken from the structure used to start all the CTD simulations. c Standard deviation in parentheses.

Table 3. Binding Energies from Last 10 ns of Simulationsa

method CTD-S2/S5
CTD-S2/S5
(duplicate) CTD-S5

X-ray
complex

PB -64.18 (1.05) -64.05 (0.92) -63.81 (0.89) -66.23 (0.99)
GB -52.42 (0.80) -53.57 (0.75) -53.65 (0.73) -55.92 (0.78)

a Energies in kcal mol-1 and standard errors in parentheses.
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exchange of water molecules allows for a consistent interac-
tion between Tyr23 and S5, helping to stabilize the complex
at early stages and increase strength of binding during the
latter stages. This again illustrates the importance of per-
forming these simulations in explicit solvent as an artificial
restraint would need to be placed on the structural water
molecule for it to stay in position in an implicit solvent
simulation.

Successful simulation using the MD docking protocol
relied upon placement of proline 6 of the ligand in the XP
groove of Pin1, with the proline sandwiched between Try23
and Trp34. It could be suggested that this is a limitation of
the MD docking protocol in that we have used the bound
X-ray structure as a basis for this work. However we view
the work in this article is a proof of concept showing that
we can position a ligand with one key component near the
correct position and run a simulation to produce a known
bound complex.

Overall it has been shown that the MD docking protocol
has been able to dock ligands into a binding site and simulate
the movement of the complex from an “open” free state to
a “closed” bound state. It has also predicted that the CTD-
S2 ligand, of which no crystal structure has been produced,
binds in an identical manner to the CTD-S2/S5 ligand, as
highlighted by similar rmsd, distances and pleasingly having
a similar binding energy as seen previously in experimental
studies.

Proposed Binding Mechanism

Justification of Initial Ligand Placement. If the starting
structure used in the MD docking simulations is a valid
intermediate in the binding process, mechanistic information
from the MD simulations can provide a detailed description
of the binding process. The simulations presented in this
paper start with the ligand proline (Pro6) positioned close
to the XP groove. Given that the predominant ligand
interactions with Pin 1 in the bound structure are (i) the Pro6/
XP groove interactions and (ii) the phosphorylated serine
(pSer) interactions with the flexible loop I, it might be argued
however that an alternative starting geometry based on the
pSer/loop I interaction could be plausible.

There is significant evidence supporting the starting
geometry used in these simulations as a valid intermediate.
The first reason is by docking Pro6 into the XP groove,
significant hydrophobic burial occurs, in which the placement
of the hydrophobic proline in XP groove reduces the
unfavorable solvent contacts these hydrophobic residues
experience. Second, by docking Pro6 into the XP groove,
the pSer is positioned in the vicinity of the loop binding site
as a result of the geometric consequences of Pin1 only
binding the trans form of the CTD ligand.11,17 Placing pSer
near the binding site allows subsequent bending of loop I to
generate a number of H-bonds to pSer. Third, mutational
analysis of the XP groove residues shows no binding is seen
when either residue, Tyr23 or Trp34, is mutated to alanine.14

This suggests that binding can only occur when a fully
functional XP groove is available. Finally the fact that our
MD docking simulations have been able to correctly produce

structures that sample a similar conformational space to the
X-ray structure suggest this could be a valid intermediate
structure.

The alternative starting geometry which relies upon pSer
first interacting with loop I of Pin1 is not favored as a valid
intermediate for a number of reasons. The first is that pSer
is a polar residue which would result in a significant
desolvation penalty which pSer would have to overcome
upon binding by forming interactions with a number of
residues simultaneously.41-44 This is unlikely since loop I
is not optimized to interact in its open form with pSer as:
Ser16 is hidden in the binding site and is not accessible;
Ser18 points out toward the solvent; while Arg17 is flapping
around in space, far from the binding site. Another reason
is that any interactions between pSer and loop I would
significantly decrease the flexibility of loop I,45-47 resulting
in significant barriers to allow loop I to bend, and to bring
the CTD ligand along with it. Finally, mutational analysis
of key loop I residues to alanine show that although a
reduction of binding strength is seen, binding occurs none
the less.10,14,48 Therefore by removing potential H-bond
partners, binding still occurs suggesting initial binding may
not take place via this approach.

CTD-S2/S5 Docking Simulation. Given that the starting
structure has been shown to be a valid intermediate, the MD
docking simulations could be investigated to identify a
potential binding mechanism. The final structures from the
initial CTD-S2/S5 MD docking simulation show that there
were 6 key hydrogen bonds (H-bonds) between residues in
loop I and the CTD ligand (as shown in Figure 3b). The
progress of binding was followed by monitoring these
distances throughout the simulation, in which 6 distinct stages
are clearly identified (Figure 4). This MD docking simulation
is much more readily understood by visualization and
therefore a QuickTime movie (15MB) of this simulation is
available in the Supporting Information for this paper. Each
stage is characterized by a geometric change in the structure
of the complex. The stages, A through F, of the simulation
are described below and give a fascinating insight into the
proposed binding mechanism.

Figure 4. Distances from key functional groups in loop I
residues to the phosphorus atom of S5 of the CTD ligand for
the first 50 ns. The timeline is shaded to define the six stages
of the simulation. Distances were calculated as running
averages over 100 snapshots. After 50 ns, only insignificant
changes are seen and have therefore been excluded from
the figure for clarity.
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A) Starting Conformation. At the start of the simulation
the proline at position 6 of the CTD-S2/S5 ligand is
positioned into the XP groove of Pin1 according to the bound
X-ray structure. Throughout the whole simulation there is
very little movement in this proline, with this group
functioning as an anchor, holding the ligand in place while
other motions takes place. With the proline sandwiched in
between Tyr23 and Trp34, the S5 phosphate points up toward
loop I and forms a stable hydrogen bond with the Ser16 OH.
Loop I is open at this stage of the simulation, and no other
hydrogen bonds are seen between the S5 phosphate and the
rest of loop I.

B) Amide Flip. After about 6 ns the amide bond between
Arg17/Ser18 flips, as shown by the 180° change in the psi-
17/phi-18 angles in Figure 5. This flip of the amide bond
does not significantly alter the backbone of adjacent residues
nor does it change the omega angle of the amide bond (data
not shown). The carbonyl of Arg17 now points out toward
the solvent while the amine (N-H) of Ser18 points toward
the ligand, and loop I bends into a “semiopen” conformation.
Thus the distances between both the backbone Ser18 NH
(Ser18 N) and the Ser18 OH and the S5 phosphorus decrease
from about 8 Å to just above 5 Å (Figure 4). Following the
flip, a short period of stability (from 8-12 ns) is seen in
which a number of water molecules position themselves
between loop I and the S5 phosphate, forming water
mediated H-bonds. These water molecules effectively block
S5 from interacting directly with the loop I residues, in turn
blocking the transition to the “closed” form. As a result of
this, instead of moving closer toward loop I, at about 12 ns
the S5 phosphate moves away from the binding site and a
period of chaos ensues.

C) Chaos. During this period, no hydrogen bonds are seen
between loop I and the S5 phosphate, and a high degree of
flexibility is seen throughout the complex. From RMSF data
(Supporting Information) it can be seen that the backbone
of S5 is quite stable with the side chain being flexible. The
flexibility of the S5 side chain is highlighted in this “chaos”
period where it rotates about 60° out into the solvent, as
shown in Figure 6, allowing layers of water molecules to
position themselves between S5 and loop I. During this chaos
period water mediated interactions are seen between S2 and

S5, interactions between S2 and the side chain of Arg17,
and interactions between S5 and the side chain of Arg17.
After 16 ns of chaos, S5 rotates back into the binding site,
as shown by the decreases in length between Ser16 OH and
S5, and chaos finally comes to an end when a stable H-bond
again forms between these two residues at about 28 ns.

D) Bending Cascade. The reformation of the S5 to Ser16
OH H-bond starts a cascade of events which allow the loop
to fully bend over into the “closed” conformation. The first
step of this cascade occurs at 30 ns where the water
mediating the interaction between the Arg17 backbone NH
(Arg17 N) and the S5 phosphate moves from the binding
site allowing a direct H-bond. This causes a small downward
movement of loop I which in turn removes the waters
mediating interactions between Ser18 N/Ser18 OH and the
S5 phosphate. This causes another downward movement of
the loop and two direct H-bonds between Ser18 and S5 are
formed. Thus at 32 ns we have 4 direct H-bonds to S5
phosphate with all distances being consistently 3 Å, and
therefore the complex is in a stable conformation.

E) Arg17 Side Chain Optimization. During the time that
the rest of loop I was stable, the side chain of Arg17
alternately interacts with both the solvent and with the S2
phosphate. At ∼44 ns, the side chain of Arg17 finally forms
two H-bonds with the S5 phosphate. After this time in the
simulation, the Arg17 side chain remains at the standard 3
Å distance from the S5 phosphate.

F) Strong Stable Complex. Throughout the remaining
25 ns (through to 70 ns) a predominantly strong and stable
complex is seen. Occasionally loop I tries to move back to
the semiopen form, as seen by the Ser18 distance increasing
to ∼5 Å. This is quickly rectified, and the Ser18 distances
decrease back to 3 Å almost immediately, presumably
because of the stability caused from the rest of the H-bonding
interactions, such that the strong stable complex is the
predominant conformation seen in the last 25 ns of the
simulation.

CTD-S2/S5 Duplicate Docking Simulation. Although the
same conformational space is being sampled at the end of
the duplicate simulation, Figure 7 shows there are consider-
able differences in the time evolution of the two simulations,
in particular that there is no “chaos” period (stage ‘C’) in
the duplicate simulation. This is because S5 does not move
outside the binding site and is shown in Figure 7 by the Ser16

Figure 5. Plot of the psi 17 (17N - 17C-alpha - 17C - 18N)
and phi (17C - 18N - 18C-alpha - 18C) torsion angles from
the first 35 ns of the simulation. Angles were calculated as
running averages over 100 snapshots.

Figure 6. Pin1 WW domain in its semiopen form with CTD-
S2/S5 ligand having its S5 side chain positioned in the pS/
pT binding site (red) and after 60° rotation away from the
binding site in the “chaos” period (blue).
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OH distance never deviating from around the 2.7 Å distance.
After the amide flip, which occurs on a similar time scale to
the initial simulation, S5 stays in the binding site, and the
bending cascade occurs much earlier. In the duplicate we
also see that side chain optimization occurs at a much earlier
stage than the initial simulation. Overall this means that a
stable complex is formed after only ∼15 ns compared to
the 45 ns it took in the initial simulation. Although no
“chaos” period is seen in the duplicate simulation, all other
five stages of the binding can be identified.

An interesting aspect of the duplicate simulation is that
the bending cascade occurs in the opposite order to the initial
simulation. Instead of interacting with Arg17 N first and then
interacting with Ser18 N and Ser18 OH, S5 H-bonds to Ser18
OH first and then to Ser18 N followed by Arg17 N. Visual
analysis shows that this is because for the first part of the
simulation, S5 interacts with Arg21 of loop I. This causes
S5 to sit in the far right-hand side of the binding site (Figure
1-front view). In this position, S5 is unable to interact with
Arg17, and it is only when Ser18 OH starts to interact with
S5 (∼9 ns) that we see a shift in the position of S5 back to
the center of the binding site. This movement allows Ser18
N to H-bond to S5 which in turn allows Arg17 N to interact.
With S5 centrally located in the binding pocket, side chain
optimization can then occur. It is important to see the
movement of S5 from interacting with Arg21 at one end of
loop I to eventually interacting with Arg17 as it shows that
although there are some favorable interactions between
Arg21 and S5, it is more favorable for S5 to sit in the left-
hand side of the binding site where multiple interactions can
occur which will allow for a more stable complex.

As this duplicate has been started with a different seed
compared to the initial simulation, the velocities of each atom
at the start of the simulations will be different. Because of
this, the different simulation will follow different trajectories.
It is therefore to be expected that the simulations follow
different paths and are not identical. However, although the
simulations do not follow the same path, they do both show
the key steps of binding: amide flip; a loop I bend; and Arg17
side chain optimization to derive bound structures as close

to identical as possible to the X-ray structure, thus highlight-
ing the quality of the MD docking protocol.

CTD-S5 Docking Simulation. The MD docking simula-
tion of this mutated ligand showed that despite the absence
of phosphorylation of Ser2 of the CTD ligand, the system
was able to sample a conformational space very close to that
of the X-ray structure of the CTD-S2/S5 complex. The
binding process differed however from that seen for the initial
MD docking simulation and its duplicate, although all six
stages can be seen in the trajectory (Figure 8). A striking
feature of this “unphosphorylated” simulation is that the
amide flipping is the last conformational change to occur
and does not occur until ∼48 ns which is more than three
times longer than any other simulation.

As it takes so long for the amide to flip, a number of
conformations of the complex are seen in the preceding time.
It can be seen from the distance graph (Figure 8) that after
∼5 ns, both Ser16 OH and Arg17 N are H-bonded to S5.
This indicates that Arg17 N can bind to S5 at any stage of
the whole binding process and is not dependent on loop
bending as suggested from the initial simulations. Unexpected
interactions between the Arg17 side chain and S5 (stage ‘E’)
are also seen before loop I bending. Due to the amide flip
and loop I bending having not occurred yet, these interactions
are not stable, and, thus, the system is able to move into
small stages of chaos. It is thought that these stages of chaos
are shorter than seen in the initial simulations due to S2 no
longer being phosphorylated and therefore not being able to
stabilize the Arg17 side chain or S5 in their “chaotic” forms,
allowing them to position themselves back to the binding
site relatively quickly.

In the end it appears coincidental that at the time that the
amide flip occurs, all other important residues are H-bonded
to S5 which allows immediate formation of the strong and
stable complex. This is different than the other simulations
where the amide flip occurred before S5 was in its “bound”
position. It can therefore be concluded that the bending
cascade (stage ‘D’) can only occur once the amide has flipped
and the S5 is positioned correctly in the binding site. This
shows the pronounced importance of the amide flip and how
it is a rate limiting step of the proposed binding mechanism.

Figure 7. Distances from key functional groups in loop I
residues to the phosphorus atom of S5 of the CTD ligand for
the duplicate simulation. The timeline is shaded to define five
out of the six stages of the simulation as defined for the initial
CTD-S2/S5 simulation. Distances were calculated as running
averages over 100 snapshots.

Figure 8. Distances from key functional groups in loop I
residues to the phosphorus atom of S5 of the CTD ligand for
the CTD-S5 simulation. The timeline is shaded to define the
six stages of the simulation. Distances were calculated as
running averages over 100 snapshots.
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Key Residues in Simulations. MD docking simulations
in this work have provided significant insight into a potential
binding mechanism of CTD ligands with the pS/pT-P motif
to the Pin1 WW domain. In particular it highlights the
importance of the structure of the complex around the XP
groove; the amide flip; and the interactions between S5 and
the loop I residues.

The MD simulations produce in this work show that the
structure in the vicinity of the XP groove is very stable, as
seen from the backbone data in Table 1 with an average rmsd
of ∼0.7 Å. This compares favorably with the rmsd from the
X-ray complex simulations and given the low backbone rmsd
to start with, it can be concluded that the backbone of the
XP groove must have started in a conformation very similar
to the final bound conformation and does not deviate
significantly from this position. It is appropriate to suggest
that the stability of the XP groove is due to its hydrophobicity
and it being unfavorable for it to interact more significantly
with the surrounding polar environment.

Other than interacting with proline, Tyr23 plays another
key role in binding by being able to also form water mediated
H-bonds to S5. Interaction energy calculations show that
there is a significantly high electrostatic interaction between
Tyr23 and the S5 phosphate. These energy calculations are
unable however to include the contribution that the water
mediated H-bonds play as they are transient (different water
molecules play the role of the mediator). It can also be seen
from these calculations that there is a significant VDW
contribution to the interaction energy between proline for
both Tyr23 and Trp34. No doubt this is in part due to their
hydrophobic interactions to the proline from the ligand.
Together with the data presented earlier, this work has shown
the critical role that the XP groove has in binding and the
production of a stable complex.

A significant difference in the orientation of the amide
bond between Arg17 and Ser18 is observed between the open
(1PIN) and closed (1F8A) forms of Pin1 WW domain. In
the open form, the NH points away from where the ligand
binds, while, in the closed form, the NH points toward the
ligand. In all the MD docking simulations produced in this
work, this amide 17/18 flip was seen allowing a conforma-
tional change of loop I to occur unhindered.

This amide bond flipping is a very important step in the
binding process of the ligand to Pin1, as the loop cannot
bend until this amide flip has taken place. Without the amide
flip, interactions between S5 and Ser18 N or Ser18 OH would
not be seen which would severely limit the ability of a strong
and stable complex to be formed. To consolidate this
hypothesis, a further simulation was run in which the amide
bond in the free/open structure was manually flipped such
that it showed no structural difference to its closed form.
From this simulation, conformational change of loop I was
seen after just 1 ns, which gave strong evidence to suggest
that the NH of the amide between Arg17 and Ser18 must be
pointing toward the ligand for conformational change to
occur. Therefore the timing of the amide flip is critical to
the timing of conformational change and therefore binding.

Initial comparison of the Pin1 free and bound complexes
showed the greatest difference between the two structures

was seen in the loop I region. This has been highlighted in
our simulations and through rmsd, distance, and RMSF
calculations, these changes have been quantified. All this is
understandable as this is where the important loop bending
occurs which locks the ligand into its bound position.

Of the loop I residues, the first residue of the loop, serine
16, is the most stable. The reduced movement seen in Ser16
relative to the other residues suggests that Ser16 may initially
be in an optimal position for binding. Our simulations show
that Ser16 consistently interacts with S5, and the interaction
is necessary for subsequent stages of the binding process to
occur. Without interaction between Ser16 and S5, no other
interactions are seen between S5 and the loop except for the
Arg17 side chain for small time scales in the chaos period
of the initial CTD-S2/S5 simulation. It therefore seems that
Ser16 is crucial to the whole binding process, which has been
suggested in other work.10,19,48,49

Previous work, based on the crystal structure of the bound
form of Pin1, suggests that Ser18 plays a minimal role in
the binding to the CTD ligand.10 In that X-ray structure
(which does not include hydrogens), the Ser18 backbone NH
is slightly outside the H-bonding distance, and the oxygen
in the Ser18 side chain points away from the ligand, thereby
preventing any H-bonding to S5. It is because of these
distances, and some binding energy calculations,48 that Ser18
was predicted to be unimportant. However Ser18 is one of
only two residues from loop I that are conserved in the
analogues of Pin1, PinA, and Ess1, suggesting a more
significant role in the binding process. In addition to this,
our MD simulation of the X-ray complex, which started from
the initial X-ray structure, actually shows the Ser18 side chain
rotating such that the distance from the S5 phosphorus to
Ser18 OH decreases from 5.57 Å to within 3 Å. The Ser18
backbone NH also sits at a similar distance, ultimately
allowing two H-bonds to form to S5. The MD docking
simulations carried out also show this conformation where
the Ser18 NH/OH are within H-bonding distance of S5
(Table 2). Given that this form of the complex is the
predominant one seen, the simulations indicate that Ser18
has a much more significant role to play in binding than
previously thought.

Since the X-ray structure of Pin1 bound to the CTD ligand
was published it has been thought that Arg17 played a very
important role in binding.10 Due to arginine being a positively
charged amino acid and the S5 phosphate from the ligand
being negatively charged, it is easy to understand why this
has been thought. This has been supported by binding studies
which have shown that by mutating Arg17 to Ala, the binding
strength decreases 6-fold,10 and that a homologue of Pin1,
PinA, where Arg17 is replaced by Asn, also has a binding
strength ∼6-fold less.19 Our simulations also support the
importance of Arg17 to the binding strength by showing that
Arg17 contributes 3 H-bonds to the final complex, two from
the side chains and one from the backbone NH.

Arginine is a highly charged, flexible residue that is
regularly seen on the surface of proteins. The ability of our
simulations to show this flexibility, yet also to show the
remarkable stability when the Arg17 side chain interacts with
S5 is extremely important to the successful simulation of
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the binding process. The fact that different time intervals
are seen for when this stability occurs also highlights the
fact that the Arg17 side chain optimization step is an
independent process and another rate-limiting process in
binding of the Pin1 WW domain to a ligand.

As important as Arg17 has been shown to be to the overall
binding strength of Pin1 to the CTD ligand, our simulations
show that Arg17 is not critical for binding to occur. There
are numerous stages in the simulations where a stable
complex is formed without interaction between S5 and the
Arg17 side chain and where Arg17 interactions occur yet
stability is not seen. The binding studies discussed above
also suggest that Arg17 is not critical as complexes are still
formed with acceptable binding energies when Arg17 is not
present. Sequence alignment of the three analogous WW
domain containing proteins, Pin1, PinA, and Ess1, show that
the key residues in loop I at positions 16, 17, and 18 are
conserved with residue 17 either an arginine, asparagine, or
lysine. This suggests that the binding motif that pSer looks
for may be S-X-S, where X is an amino acid containing at
least one amine group in its side chain.

Conclusion

The development of an MD docking protocol using all atom
unrestrained MD simulations in this work has allowed us to
simulate the binding of a ligand into a solvent exposed
binding site. Validation of the MD docking simulations has
shown that our MD docking protocol has produced structures
that sample the same conformational space as the X-ray
structure of the bound complex. The simulations also
highlight the importance of using an explicit solvent model
for docking a ligand into a solvent exposed binding site.

The results of the simulations, given that the starting
structure is a valid intermediate as has been justified, show
that the binding of a ligand containing the pS/pT-P motif to
Pin1 is a multistage process. First, the proline of the ligand
docks itself in between the XP groove residues Tyr23 and
Trp34 of Pin1 where it is stabilized by hydrophobic interac-
tions. The next steps in the binding mechanism are the flip
of the amide bond between Arg17 and Ser18 and Arg17 side
chain optimization. The flipping of the amide bond allows
loop I to move into a semiopen conformation, from which
it eventually moves into a closed conformation when S5 is
correctly positioned in the binding site. Optimization of the
Arg17 side chain occurs when H-bonds form between the
NHs of the Arg17 side chain and the oxygens from the S5
phosphate. It is only when all stages of the binding
mechanism have been completed do we see the strong and
stable complex.

Our work using a MD docking protocol for solvent
exposed binding sites has shown that a number of interactions
between the pS-P motif in the ligand and the XP groove
and loop I residues are vital for the formation and strength
of the bound complex. These results confirm that for a ligand
to bind into the Pin1 WW domain, it must have a hydro-
phobic fragment to bind into the XP groove, connected to a
fragment containing a phosphate or some very electroneg-
ative atoms in the correct spatial relationship to interact with

loop I as highlighted by recently published work involving
phosphorylated serine mimics.50

This work has shown that the MD docking protocol can
be used as a refining tool after docking. To become a truly
predictive tool, the protocol should be able to place the CTD
ligand in any conformation in the environment surrounding
the binding site and, following a MD docking simulation,
have the complex settle into the bound conformation. It
would then be possible to use the protocol to identify
potential ligands designed to inhibit phospho-peptide binding.
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Abstract: The energetics of redox states in different models of rubredoxin-like iron-sulfur
complexes (ISC) was computed using a combination of density functional and electrostatic
continuum theories. In agreement with experiment, the calculated redox potential for the small
ISC model [Fe(SCH2CH3)4]1-,2- in acetonitrile was -813 mV [Galstyan, A. S.; Knapp, E. W.
J. Comput. Chem. 2009, 30, 203-211] as compared to the measured value of -838 mV.
Surprisingly the experimental values for rubredoxin (Rd) are much higher ranging between -87
and +39 mV. These large variations in redox potentials of ISC models and ISC in Rd are due
to specific conformational symmetries adopted by the ligands due to both the protein environment
and type and the number of H-bonds, and the dielectric environment. In a dielectric environment
corresponding to proteins (ε ) 20), the computed ISC redox potentials shift positive by about
64 mV for Fe-S · · ·H-N and 95 mV for Fe-S · · ·H-O H-bonds, correlating well with data
estimated from experiments on ISC proteins. In aqueous solutions (ε ) 80), a positive shift of
58 mV was computed for Fe-S · · ·H-O H-bonds (using a model with the same ISC conformation
as in Rd) in agreement with a measured value for Rd with partially solvent exposed ISC. The
latter demonstrates the dependence of the ISC redox potentials on the environment (solvent or
protein). For a model whose chemical composition is analog to the relevant part of ISC in a
specific Rd, the computed redox potential of the model agrees with the measured value in Rd.
This study allows to understand redox potential shifts for small ISC models and ISC in proteins.

Introduction

Iron-sulfur complexes (ISC) are common redox-active
cofactors in proteins.2-6 These ISC proteins mediate electron
transfer processes occurring in enzymatic catalysis, photo-
synthesis and respiration. ISC proteins are ubiquitous in
nature and despite their similarity in physicochemical
composition and structure of the iron sulfur complexes their
redox potential values in proteins cover a large interval
extending from -700 to +400 mV.3,7-10 Interestingly, the
measured redox potential of the most elementary ISC model
[Fe(SCH2CH3)4]1-,2- in acetonitrile (AN) is with -838 mV
even lower.11 This large variation in the ISC redox potentials
was suggested to be due to differences in solvation,12-15

H-bond pattern9,16-21 and the electrostatic environment of
the redox centers provided by the protein.

There are two types of H-bonds commonly formed by ISC
with ligating groups of the protein: Fe-S · · ·H-N and
Fe-S · · ·H-O. The first type arises mainly from peptide
backbone interactions with the ISC, while the second type
is generally due to interactions with amino acid side chains
of serine and tyrosine. Analysis of ISC models and ISC with
peptide-based ligands involving Fe-S · · ·H-N H-bonds22-28

analogue to rubredoxin (Rd) and ISC in proteins16,18,29-33

demonstrated that the redox potentials are shifted positively
in the presence of H-bonds with sulfur. The influence of
Fe-S · · ·H-O H-bonds on the ISC redox potentials was
quantified through mutations in corresponding proteins
yielding a positive shift in Rd (65 mV for Ala to Ser
mutation)34 and Rieske proteins (44 or 65 mV for Tyr to
Phe and -95 or -120 mV for Ser to Ala mutations).35,36
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To study the influence of Fe-S · · ·H-N H-bonds in
proteins is more difficult, since these interactions involve
backbone nitrogen atoms that cannot be removed without
distorting the protein structure significantly. Hunsicker-
Wang18 analyzed the measured redox potential shifts of
Rieske and Rieske-type proteins with different H-bond
patterns leading to estimates of 70 mV for Fe-S · · ·H-N
and 140 mV for Fe-S · · ·H-O. An analogue analysis is not
possible for Rd, since the six amide H-bonds are present in
all known Rd crystal structures. In this case, the influence
of H-bonds on Rd redox potentials was studied by site-
directed mutagenesis, which varied the redox potential,
modifying the strength but not the number of H-bonds with
the ISC.29-31,33,37 Unfortunately, these series of mutations
involve also changes in the dielectric environment and have
side effects in protein conformation,10,34,38 making it difficult
to extract the influence of Fe-S · · ·H-N H-bonds on the
Rd redox potentials faithfully.

Theoretical results on ISC39-41 and Rd9,42-45 redox
potentials obtained with quantum chemical and electrostatic
energy computations demonstrated the difficulty to predict
small variations (100 mV) in redox potentials and the
limitations using continuum dielectric models to reproduce
and understand properties of ISC in different environments.
In the protein, specific H-bonds may help to delocalize and
stabilize excess negative charges, which may particularly
occur for ISC in a reduced state. Hence, to describe ISC
redox potentials of model compounds and in proteins,
H-bonds with the ISC sulfur atoms should be considered
explicitly.39,40

Recently, electrostatic energy computations were combined
with density functional theory (DFT) using a new functional
B4(XQ3)LYP to evaluate accurate redox potentials of
transition metal complexes in different solvents.1 This
method is able to predict experimental redox potentials of
mononuclear transition metal (Fe, Ni, Mn) complexes in
different solvents (water, AN, and dimethylformamide) with
nearly 60 mV absolute value accuracy and is, therefore, an
ideal tool to investigate how ISC redox potentials vary with
different H-bond patterns. Similar accuracy was achieved
earlier46 for the redox potential calculations on the small
organic compounds using the much more expensive ab initio
G3MP2-method47 combined with independent electrostatic
computations.

In order to avoid the complications of ferromagnetic
coupling observed in multinuclear ISC,39,48-52 we have
chosen the ISC of Rd that is one of the smallest redox-active
proteins, containing the simplest ISC consisting of one iron
coordinated by sulfur atoms of four cysteines. There are
several crystal structures of Rd available (Figure 1a, for
references see Supporting Information, Table S1.1).

The simplicity of ISC in Rd made it possible to construct
several Rd-like ISC models where one can vary conforma-
tions and H-bond numbers and types and construct large
models that include all structural elements to reproduce
measured redox potentials of ISC models and Rd. In this
study, model 4, described later in detail, (Figure 1b) is most
similar to the ISC in Rd. Therefore, it can best be used to

study the dependence of Rd redox potentials on various
details of the protein structure.

In this study we report on computed ISC redox potentials
obtained with a combination of DFT and electrostatics1,54

to estimate the effect of the two different H-bond partners
(Fe-S · · ·H-N and Fe-S · · ·H-O) in ISC models and
proteins. In agreement with experiments in proteins,18,33-36

our computed ISC redox potentials are shifted positive by
H-bonds to sulfur with a smaller influence for Fe-S · · ·H-N
than for Fe-S · · ·H-O H-bonds due to the lower polarity
of the NH versus the OH groups. We also found a linear
correlation between the number of H-bonds and the ISC
redox potential shift in agreement with experimental obser-
vations.18 Another important effect influencing ISC redox
potentials found in our computations is the closeness of the
solvent (degree of solvent exposure) to the iron-sulfur core,

Figure 1. (a) The ISC in Rd is formed by one iron ligated by
four Cys residues. The ISC in Rd interacts with the protein
backbone through six amide H-bonds that are described by
model 4 [depicted in part (b)], which mimics the three H-bond
types (HB1, HB2, HB3) found in Rd without the sequence
specific amino acid side chains. For a definition of the H-bond
types, see Scheme 1 and text. It is the most detailed model
to study the ISC in Rd. The redox potential calculated for this
model in a dielectric continuum of ε ) 20, corresponding to a
protein environment, is +57 mV, which is close to values
measured in different Rds (-87 to +39 mV). The color code
of atoms corresponds to conventional CPK. We denoted in
black color the two C-atoms, where model 4 was truncated
from the ISC embedded in Rd.
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which varies with the size of the ISC model. These findings
are relevant for ISC proteins where we observed a strong
dependence of the ISC redox potential with the dielectric
environment,14,15 which combined with H-bond effects
provide the key to understand the variation of the redox
potentials for different ISC models and ISC in proteins.

Materials and Methods

ISC H-Bonds in Rd. The ISC redox potentials in Rd are
affected by the strength of the six amide H-bonds formed
with the protein backbone.16,29-33 We distinguish three types
of H-bonds (Figure 1a) (HB1, HB2, HB3, depicted in
Scheme 1). Each of the ISC sulfur atoms, S1 and S3, is
engaged in two H-bonds, which we call type HB1 and HB2.
The two HB1 are formed between the NH-groups of the other
two Cys ligating to the iron with sulfur atoms S2 and S4.
The two HB2 are formed with the NH-groups of the residues
next to these Cys in the N-terminal direction. The ISC sulfur
atoms S2 and S4 are involved in single H-bonds each, called
type HB3. These H-bonds are formed with the amide
backbone of the residues two positions in the C-terminal
direction from the ligating Cys providing the sulfur involved
in this H-bond. The amide groups forming HB1 are more
constrained than that of HB2 and HB3, since they belong to
the backbone of the ligating Cys.

H-bonds of Rd-like ISCs. Model 1a with redox states
[Fe(SEt)4]1-/2- is the most simple Rd-like ISC (Figure 2).
Its initial coordinates were taken from a synthetic ISC
models55 of known crystal structure [Cambridge structural
database (CSD) reference code CANDAW] possessing a
nearly ideal S4-symmetry. Model 2a has the same chemical

composition as model 1a but was built in order to represent
a conformation closer to the one found in Rd crystal
structures, where the ISC possesses a distorted C2-symmetry
due to steric constrains.56 The initial geometry of model 2a
is based on the coordinates of the Fe(Cys)4 complex from
Clostridium pasterianum (Cp) Rd (PDB code 1IRO53), where
the backbone of each Cys was substituted by a methyl group
resulting in sulfur with an ethyl group (Figure 2). The use
of ISC with ethyl groups was recommended by Szilagy and
Winslow,57 to avoid the spread of negative charge in the
H-atoms observed in ISC models with methyl groups.33,39,50,58

Models 1a and 2a were subsequently used to model
systematically ISCs with a different H-bond pattern, replacing
the terminal -CH3 groups of the ligands by one to four
-CH2OH groups in model 1a or one to two -CH2OH groups
in model 2a to form intramolecular S · · ·H-O H-bonds
yielding models 1b-e and 2b-c with S4- and C2-based
symmetry, respectively (listed in Table 3). ISC model
complexes with S · · ·H-O H-bonds were built to mimic the
interaction of a Ser side chain with ISC observed in several
ISC proteins.18,34,59 Due to the C2-symmetry of model 2a,
it was only possible to consider ISCs with one and two
S · · ·H-O H-bonds.

Scheme 1. The H-bonds of the ISC in Clostridium
pasterianum (Cp) Rd (PDB code 1IRO53) Formed with the
Protein Backbone NH-Groups Are Displayeda

a There are six amide H-bonds of three different types related by
two-fold rotation symmetry (C2). Each H-bond type possesses different
orientation and flexibility that affects the electronic state of the ISC
model. The H-bonds of type HB1, HB2, and HB3 involve the residue
pairs Cys9/Cys42, Val8/Leu41, and Tyr11/Val44, respectively. The
two symmetry-related sulfurs from Cys6 and Cys39 are simulta-
neously involved in H-bonds of types HB1 and HB2, while the two
sulfurs from Cys9 and Cys42 form only a single H-bond of type HB3.
Further explanation of the H-bond types is given in the text. In Rd,
the orientations of Cys6 and Cys9 lead to C2-symmetry in contrast to
the S4-symmetry observed in small ISC models. The backbones of
Cys6 and Cys39 are buried in the protein, while the backbones of
Val8/Cys9/Tyr11 and Leu41/Cys42/Val44 are solvent exposed. Figure 2. ISC models with symmetry S4 and C2 (models 1a

and 2a, respectively) and ISC models 1e and 2c with
Fe-S · · ·H-O H-bonds derived from models 1a and 2a,
respectively. The H-bond models 1b-e and 2b-c were
constructed from model 1a and 2a, respectively, by substitut-
ing the corresponding terminal -CH3 groups by -CH2OH
groups, which form intramolecular H-bonds with the sulfur
atoms and preserve the same solvation surface to account
for the redox potential shift dependence on the number of
H-bonds. Due to symmetry, model 1a allows formation of a
maximum four H-bonds (model 1e), while in model 2a just
two H-bonds are possible (model 2c).
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Model 3a (Figure 3) possesses four H-bonds with NH-
groups two of type HB1 and two of type HB2 reflecting part
of the H-bond pattern of the ISC in Rd (see Scheme 1). The
coordinates of this model were generated based on the crystal
structure of Cp Rd.53 Models 3b-h were derived from model
3a by substituting one (3b, 3c), two (3d, 3e), three (3f, 3g),
or four (3h) of the NH-groups by CH2-groups to reduce the
number of H-bonds accordingly.

Model 4 (Figure 1b) includes all six amide H-bonds
formed with the protein backbone as in Rd (Scheme 1). The
coordinates of this model were modeled based on the crystal
structure of Cp Rd.53 For the backbone parts of the ISC
model 4, which are not engaged in H-bonds with sulfur and
not relevant for this study, we substituted -N-H and -CdO
groups by -CH2 groups without distorting the remaining
backbone conformation. This, relatively large ISC model, is
a trade-off between the limitations imposed by the perfor-
mance of quantum chemical computations and the suf-
ficiently faithful modeling of the ISC protein environment.
Nevertheless, it can account for three main factors that shift
the redox potential in ISC: ISC symmetry, H-bonds, and
dielectric environment.

Redox Potentials. Absolute values of the ISC redox
potentials were calculated using the B4(XQ3)LYP approach,1

which employs the DFT method with a modified functional
combined with a postcomputational charge dependent em-
pirical DFT correction and subsequent optimized electrostat-
ics to compute solvation energies. In the B4(XQ3)LYP
approach, we compute the free energy difference of reduced
minus oxidized state in vacuum ∆Gg° , combining quantum
chemical DFT-based (Gg

°, B4LYP) and empirical (GX) contribu-
tions as follows:

with the empirical term ∆GX (in units of kcal ·mol-1),
depending on the total charge qred of the reduced state, where
∆GX(qred) ) GX(qred) - GX(qred + 1) and

The B4LYP functional contains the same terms as the
B3LYP but with weights that differ for the exact exchange.
The weight parameters for the two exchange terms in the
B4LYP functional are decoupled. While the parameter for
the local exchange remains at the B3LYP value of 0.80, the
exact exchange term is reduced from 0.20 to 0.12, and the
other parameters are the same as in the B3LYP functional.1

An empirical correction GX compensates for the energy
deficit caused by the decrease of the exact exchange
contribution and is fitted after the SCF computation to
reproduce correctly the experimental redox potentials.1

The quantum chemical ground-state electronic energies
(E0

B4LYP) are computed in vacuum for both the oxidized and
reduced states using the incomplete DFT functional B4LYP,1

while the zero-point vibrational energies for the vibrational
ground state (ZPE) and the free energies for the thermal
excited states at 298 K (G0f298 K) are calculated with the
standard B3LYP functional according to the previous work.1

The free energy of a redox reaction in solution ∆Gs° can
be computed as

where ∆Gg°and ∆∆Gsol° are, respectively, the differences of
vacuum and solvation energies between the reduced and
oxidized states.

The standard (°) redox potential E° of the redox reaction
Oxs + egf Reds in solution relative to the absolute potential
of the standard hydrogen electrode (SHE), ESHE° , is given by

where F ) 23.06 kcal ·mol-1 V-1 is the Faraday constant
and n is the number of transferred electrons (in our case n
) 1).

For the ESHE° , the values of 4.43,61 4.44,62 and 4.3663 are
known. Since the value of the free energy of hydration,
included in the calculation of ESHE° stems from the indirect
measurements, their accuracy will influence the value of ESHE° .
The value of -4.36 eV for ESHE° has been suggested
recently,63 based on the newest results of proton hydration
energy from gas-phase experiments.64 However, the exact
value of ESHE° is not crucial in our method, since the computed
redox potentials can be easily adjusted to another value of
ESHE° . Here, we use -4.44 V,62 as recommended by IUPAC.

Quantum Chemical Computations. Quantum chemical
calculations were performed using DFT. Geometries of all
considered ISC models were optimized in vacuum using the
B3LYP65-69 functional with LACVP70 effective core po-
tential for the iron atom and the 6-31G** basis functions
for main-group atoms (LACVP**). Single-point electronic
energies E0

B4LYP needed for the computation of absolute redox
potentials of the model complexes within the B4(XQ3)LYP
approach1 were calculated for optimized geometries using
the incomplete functional B4LYP1 with the basis sets
LACV3P**++, including the LACV3P71 effective core
potential for the iron atom and the 6-311++G** basis

Figure 3. ISC model 3a with four amide H-bonds (two HB1
and two HB2, as defined in Scheme 1). ISC models related
to model 3a but with a smaller number of H-bonds [models
3b-h] were obtained by substituting one (3b, 3c), two (3d,
3e), three (3f, 3g), or all four NH-groups by CH2-groups. Thus,
the solvent boundaries of the ISC models are approximately
preserved. This avoids influences from different electrostatic
boundaries on the ISC redox potentials and allows to observe
how the redox potential shifts with the number of H-bonds.

∆Gg
o ) ∆E0

B4LYP + ∆ZPE + ∆G0f298K + ∆GX(qred) )

∆Gg
o,B4LYP + ∆GX(qred) (1)

GX(q) ) -0.333q3 + 1.545q2 + 21.634q (2)

∆Gs
o ) ∆Gg

o + ∆∆Gsol
o (3)

Eo ) ESHE
o -

∆Gs
o

nF
(4)
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function for all other atoms. Vibrational frequency calcula-
tions were done using the B3LYP functional with LACVP**
basis set without rescaling of vibrational frequencies. Since
the ISCs in Rd are in the high spin state,72 the model
compounds with total spins S ) 5/2 and S ) 2 for reduced
and oxidized forms, respectively, were considered. All
quantum chemical computations were performed by the
program Jaguar 5.5.71

Atomic Partial Charges. Atomic partial charges of the
ISC were obtained from electrostatic potentials using the re-
straint electrostatic potential (RESP) method.73,74 The elec-
trostatic potentials were calculated quantum chemically in
vacuum at the B3LYP/LACVP** level using Jaguar 5.5.71

The atomic partial charges were determined in two stages,
using hyperbolic restraints with the total charge fixed. In the
first stage of the RESP procedure, the atomic charges were
allowed to change with a restraining weight of 0.0005 au.
In the second stage, the charges on C- and H-atoms were
left free, while all other atomic charges were constrained at
their values obtained from the first stage, using a restraining
weight of 0.001 au.

Solvation Energy. For the computation of solvation
energies ∆Gsol° , the environment was represented as a
dielectric continuum. For water, a high dielectric constant
(εW ) 80.0) was used, while for AN a lower dielectric
constant (εAN ) 37.5) was used. The value of the dielectric
constant appropriate to describe proteins depends on the
atomic detail of the protein model75,76 and the method used
to represent the continuum77 and can vary typically between
4 and 30. For protein models with all atomic details, εP ) 4
is generally used.78 For implicit protein models with no
atomic detail, the appropriate dielectric constant varies
typically between 10 and 30. For the sake of simplicity, we
consider in this application an implicit protein model with
no explicit atom representation assuming εP ) 20.

The solvation energies were computed with the program
module “solvate” from the MEAD program suite.79,80 The
dielectric constant within the solute cavity was taken to be
ε ) 1. The solute cavity was defined by the joint van der
Waals volumes of all atoms using atomic radii, as in a
previous work.1 Since H-atoms have the ability to approach
other atoms most closely, they will have the strongest
electrostatic interactions with other atoms, if they are polar.
To account for this effect, we use larger atomic radii for
solute atoms in aprotic solvents, like AN, than in protic
solvents, since in protic solvents polar hydrogens are
absent.46 Outside the solute cavity, the dielectric constant
appropriate for the solvent/protein was taken, and the ionic
strength was set to zero. As for the solvent probe radius, we
used 1.4 Å for water and molecular groups from the protein
environment, while we used 2.23 Å for AN.1 A two-step
focusing procedure was used to solve the Poisson equation
numerically on a grid consisting of (189)3 points, using first
a low- and then a high-resolution grid with lattice constants
of 0.4 and 0.1 Å, respectively.

Results and Discussion

The shifts of redox potentials of our ISC models depend
basically on the following factors: the change of symmetry

of the ISC (from S4 to C2) and the number and type of
H-bond partners (Fe-S · · ·H-O or Fe-S · · ·H-N) interact-
ing with sulfur ligated to iron and dielectric environment
(degree of solvent exposure).12-19 These factors are presented
and discussed in detail in the following sections. We start
with the symmetry effect, discussing also how it affects the
charge distribution. Then we analyze the influence of the
H-bond partners for different numbers and types of H-bonds.
Finally, with a model similar to ISC in rubredoxin (Figure
1b), we quantify the factors shifting the redox potential from
the ISC models to protein.

ISC Models with S4 and C2 Symmetry. Geometry
comparison of an ISC model with similar composition but
different conformational symmetry of the ligands (model 1a
with S4 and model 2a with C2 symmetry, Figure 2) shows
that the ISC core structure consisting of Fe(SC)4 is nearly
invariant (see Supporting Information, Table S3.1). Structural
differences appear in the dihedral angles Fe-S-C-C
involving the ethyl groups, which in the oxidized state are
at 8° for Fe-S1-C-C and Fe-S3-C-C and at -8° for
Fe-S2-C-C and Fe-S4-C-C with S4 symmetry, while
in the model with C2 symmetry the corresponding values
are 17° and 85°, respectively (see Figure 2).

The atomic partial charges of the iron and sulfur atoms of
models 1a and 2a essentially do not depend on symmetry,
while the charges of the attached ethyl groups do depend on
symmetry (Supporting Information, Table S4.1). The
groups (S2/S4)-CH2-CH3 of model 1a carry larger dipole
moments than the corresponding atoms of model 2a with
C2 symmetry.

Table 1 shows the energies of the most elementary ISC
models 1a and 2a with S4 and C2 symmetry, respectively.
The energies are given in kcal/mol relative to the vacuum
oxidized state in S4 symmetry (whose energy was set to zero)
using the conventional B3LYP DFT functional as well as
the alternative approach with the B4(XQ3)LYP DFT func-
tional and subsequent post-SCF correction.1 Comparing the
vacuum energies, we recognize that the ISC model in the
oxidized state is more stable in the S4 than in the C2

symmetry for both DFT functionals, while this is opposite
for the reduced state. This behavior changes in the condensed
phase where, according to our computations, the S4 symmetry
conformer is more stable in both redox states (valid for
environments with ε > 10). We have tested this behavior
for both water and acetonitrile. In Table 1 we show the
energies for the dielectric constant of ε ) 37.5, corresponding
to acetonitrile but used the small set of atomic radii suitable
of protic solvents, while AN is an aprotic solvent. This setting
is close to the electrostatics prevailing in the protein
environment with an effective dielectric constant of ε ) 20,
where we also verified that the S4 conformer (model 1a) is
more stable than the C2 conformer (model 2a) in both redox
states. Hence, the fact that in the protein the ISC possesses
C2 symmetry is due to the constraints, which the protein
applies to the ISC ligand geometries.

Table 2 shows the redox potentials of models 1a and 2a.
The calculated redox potential of model 1a in AN is -813
mV,1 which is in agreement with the measured value of -838
mV.11 This very negative redox potential demonstrates the
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discrepancies in redox potentials between the small model
compounds in aprotic solvents and the redox potentials
reported in Rd, which is between -87 and 39 mV (see
Supporting Information, Table S1). Changing the solvent
from AN to water stabilizes the reduced state of model 1a
(S4 symmetry), shifting the redox potential by a large positive
value of 798 mV as observed in experiments of ISC
measured in aprotic and aqueous solutions.22,23 To demon-
strate this effect more clearly, we computed the redox
potential of ISC in a dielectric corresponding to AN but
assumed that AN is a protic solvent where the small solute
atomic radii apply. Assuming such an artificial solvent
condition, the redox potentials of the ISC are computed to
be -104 and -28 mV for S4 (model 1a) and C2 (model 2a)
symmetry, respectively. This is an enormously large shift to
more positive redox potentials as compared to the conditions
appropriate for the aprotic solvent AN. These large shifts
are due to the smaller solute atomic radii, which are
applicable for protic dielectric environments of water and
protein as compared to AN. In an environment of a large
dielectric constant, smaller solute atomic radii lead implicitly
to strong H-bonds, formed with the electronegative atoms
of the solute.

In our study of Rd-like ISCs, we observed that the change
of conformational symmetry of the ISC (from S4 to C2) is
also up-shifting the redox potential. Due to structural
peculiarities, the free energy differences (∆Gg° and ∆∆Gsol° ,
see eq 2) between the reduced and oxidized states are larger
in the conformation with S4 than with C2 symmetry. This
leads to an increase of the [Fe(SCH2CH3)4]1-/2- redox
potential by 71 mV in water and 211 mV in AN when
changing the symmetry from S4 to C2 (Table 2). To analyze
the symmetry related redox potential shifts more in detail,
we computed the ISC redox potentials of model 1a in water
using the coordinates of S4 symmetry combined with atomic
partial charges of C2 symmetry and vice versa yielding redox
potentials of -142 and -273 mV, respectively. Comparing
these values with the computed redox potentials combining
coordinates and charges appropriately (Table 2), we observe
a down-shift of the redox potentials for the artificial
combinations of coordinates and charges, which is much

stronger for C2 than for S4 symmetry. Interestingly, changes
in the charges and the coordinates shift the redox potentials
in opposite directions such that the net effect in water is a
moderate upshift of the ISC redox potential going from S4

to C2 symmetry. However, in AN, this upshift is considerably
larger at about +200 mV. Hence, the variation in ISC redox
potentials with symmetry clearly shows that redox potentials
in Rd can be better understood, if the ISC models considered
possess the same symmetry as in the protein.56

ISC Models with Fe-S · · ·H-O H-Bonds. The consid-
ered ISC models with different H-bond geometries of type
Fe-S · · ·H-O are presented in Table 3. The ISC models
1(b-e) and 2(b-c) are variations of models 1a and 2a,
respectively, which involve OH groups that form H-bonds
with sulfur. The OH group H-bond partner is not present in
native Rd but was created for a mutant of Pyrococcus abyssi
(Pa)34 to measure the influence of S · · ·H-O H-bond in Rd.
The crystal structure of the Pa mutant was solved at high
resolution (0.86 Å), and the redox potential was estimated
to shift by 65 mV due to the Fe-S · · ·H-O H-bond.34 In
this crystal structure, the S · · ·O distance is 3.24 Å, and the
S · · ·H-O angle with the H-bond partner is 158.7°. The
geometry optimized structures of our ISC models yield in
the oxidized state S · · ·O distances varying from 3.26 to 3.58
Å and H-bond angles in the range 164.3 to 178.6°. Hence,
our calculated S · · ·O distances in the ISC models (Supporting
Information, Table S3.3) seem to agree with the value
obtained from the Rd crystal structure, although, the calcu-
lated H-bond angles are closer to linearity than in the crystal
structure. The latter is actually the reason that the S · · ·O
distance in the crystal is smaller than the average distance
obtained with the ISC models.

In proteins, the S · · ·O distances of H-bonds between OH
groups and sulfur of cysteines and methionines are 3.45 and
3.32 Å, respectively, with standard deviations of 0.2 Å.81

Considering small models with these H-bonds, we obtained
after geometry optimization, using the same level of theory
as for the ISC, 3.39 and 3.45 Å for the S · · ·O distance in
Cys-hydroxyl and Met-hydroxyl, respectively (see Sup-
porting Information, Table S3.6), which are quite similar to
the corresponding distances in proteins. The small discrep-
ancies between our computed values and the reported values
in protein crystal structures may be related to the different
types of constraints in our models and in proteins.34

Table 1. Computed Energies (kcal/mol) of the ISC Models
1a and 2a (Figure 2) Relative to the Oxidized States in
Vacuum Using the DFT Approach with Functionals B3LYP
and B4(XQ3)LYP1 and Symmetries S4 and C2

symmetries

ISC models S4
a C2

b S4
a C2

b

Energies in Vacuum, ∆Gg
o (eq 1)

B3LYP B4(XQ3)LYP1

[Fe(SCH2CH3)4]1- 0.00c 3.40 0.00c 3.63
[Fe(SCH2CH3)4]2- 31.54 28.92 29.09 26.61

Energies in Acetonitriled ∆Gs
o (eq 3)

B3LYP B4(XQ3)LYP
[Fe(SCH2CH3)4]1- -44.33 -39.55 -44.33 -39.32
[Fe(SCH2CH3)4]2- -126.31 -125.52 -128.75 -127.82

a Model 1a. b Model 2a (see Figure 2). c To facilitate
comparison of energies for different redox states and symmetries,
the energy of the oxidized state in symmetry S4 was set to zero.
d ε ) 37.5 corresponds to AN, but with smaller solute atomic radii
it corresponds to protic solvent environment like water or protein.

Table 2. Computed Free Energy Differences and
Comparison of Calculated and Measured Redox Potentials
of the ISC Model [Fe(SCH2CH3)4]1-/2- in Two Different
Symmetry States, S4 (model 1a) and C2 (model 2b)

Ecomp
o (eq 4), mV Eexp

o , mV

ISC models watera ANa protic ANb aprotic AN

[Fe(SCH2CH3)4]1-/2- (S4) -15 -104 -813c -838d

[Fe(SCH2CH3)4]1-/2- (C2) 56 -28 -602 -

a Inside the ISC volume, the dielectric constant is unity, while
outside we used 80 for water and 37.5 for acetonitrile (AN). Here,
we use the same smaller solute atomic radii for AN as for water,
corresponding to a protic rather than an aprotic solvent. b In this
case we use the larger solute atomic radii corresponding to AN.
c Ref 1. d Ref 11.
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The redox potentials of the ISC models 1a and 2a are
shifted positively, increasing the number of S · · ·HO H-bonds
(models 1(b-e) and 2(b-c)) (Table 3) depending linearly
on the number of H-bonds, Figure 4. For the series of
H-bonds in ISC models 1(a-e), the linear fit yields an
increase per H-bond of 90 mV in water (ε ) 80) and 95
mV in low dielectric medium, corresponding to a protein
environment (ε ) 20). Due to the C2 symmetry (see Figure
2), the ISC model 2a can form only up to two H-bonds of
ligands with sulfur. For this compound, the dependence of
the ISC redox potentials with the number of H-bonds is
evidently not linear (Figure 4). The deviation from linearity
is probably due to the single H-bond in ISC model 2b that
disturbs the C2 symmetry, which is perfectly maintained for
the corresponding ISC models with none or two H-bonds.
The redox potential shift due to two H-bonds is for the ISC
model 2c ∆E ) 117 mV (58 mV for one H-bond), which is
comparable to the redox potential shift of the corresponding
ISC model 1c (with two H-bonds in S4 symmetry yielding
the shift ∆E )+158 mV, see Table 3). These results indicate
that the influence of H-bonds on the ISC redox potential
depends on the type of symmetry of the ISC, and in the series
of models 1(a-e), the H-bonds have a stronger effect on
the ISC redox potentials than in models 2(a-c).

The experimental shifts of ISC redox potentials estimated
for the formation of Fe-S · · ·H-O H-bonds in ISC proteins
range from 44 to 120 mV.34-36 Hence, our calculated shift
of 90 mV for this type of H-bond is in the range of measured
values. Deviations from measured redox potentials may be
due to constraints from and interactions with the protein
environment.

ISC Models with Fe-S · · ·H-N H-Bonds. Table 4 and
Figure 3 contain the values of computed ISC redox potentials
of models 3(a-h) with a variable number of amide H-bonds.
In Scheme 1, corresponding to model 3a, we depicted four
intramolecular H-bonds of type HB1 and HB2, involving
the Cys backbone amide group and the protein backbone as
in Rd, respectively. Models 3(b-h) are variations of model
3a, possessing similar chemical composition and dielectric
boundary but involving different numbers of intramolecular
H-bonds.

The S · · ·N distances obtained in our models after geometry
optimization of crystal structures vary from 3.5 to 4.3 Å
(Supporting Information, Table S3.4), being in general larger
than 3.3-4.0 Å observed in Rd crystal structures. Analyzing
H-bonds in proteins between the NH group of the backbone
and the sulfur of Cys and Met, the S · · ·N distances are 3.61
and 3.59 Å, respectively, with standard deviations of 0.2 Å.81

The S · · ·N distances obtained after quantum chemical
geometry optimization of Cys-amide and Met-amide
models (using the same level the theory as for the ISC
models) are 3.69 and 3.64 Å for Cys and Met, respectively
(see Supporting Information, Table S3.6), which essentially
agree with corresponding distances in proteins. Hence,
constraints by the protein environment are likely not the
reason for discrepancies between the computed and the mea-
sured S · · ·N distances in ISC models and Rd. The reasons
that we computed larger S · · ·N distances in our ISC models
as compared to the values in the Rd crystal structures could
be the specific constraints of the ISC models not present in

Table 3. Computed Redox Potentials Ecomp
o of ISC Models

Based on S4 (models 1(a-e)) and C2 (models 2(a-c))
Symmetry, Depending on the Number of Fe-S · · ·H-O
H-Bonds

Ecomp
o , mV

ISC modelsa NH
b ε ) 80c ε ) 20c

1a [Fe(SEt)4]1-/2- (S4) 0 -15 -240
1b [Fe(SEt)3(SEtOH)]1-/2- (C1) 1 80 -138
1c [Fe(SEt)2(SEtOH)2]1-/2- (C2) 2 143 -69
1d [Fe(SEt)(SEtOH)3]1-/2- (C1) 3 254 44
1e [Fe(SEtOH)4]1-/2- (C2) 4 350 144
2a [Fe(SEt)4]1-/2- (C2) 0 56 -165
2b [Fe(SEt)3(SEtOH)1-/2- 1 70 -143
2c [Fe(SEt)2(SEtOH)2]1-/2- (C2) 2 173 -36

a The symmetry types of the ISC models are given in
parentheses. Ligand abbreviations: SEt ) ethanethiol-1-ide and
SEtOH ) sulfanylmethanol-1-ide. b Number of (S · · ·H-O)
H-bonds. c Inside the ISC complex, the dielectric constant is unity,
while for the environment, a dielectric constant of 80 corresponds
to water and 20 corresponds to protein.

Figure 4. Calculated redox potentials as a function of the
number of Fe-S · · ·H-O H-bonds in ISC models in two
dielectric environments: water- (ε ) 80) and protein-like (ε )
20). Models based on S4 symmetry allow a maximum of four
H-bonds (model 1b-e), while models based on C2 symmetry
allow a maximum of only two H-bonds (model 2a-c).

Table 4. Computed Redox Potentials Ecomp
o of ISC models

3(a-h) with a different Number of Fe-S · · ·H-N H-Bonds
of types HB1 and HB2

Ecomp
o , mV

ISC modela NHB1/NHB2
b ε ) 80c ε ) 20c

3a [Fe(SEt)2(saa)2]1-/2- 2/2 6 -161
3b [Fe(SEt)2(saa)(sac)]1-/2- 2/1 -22 -199
3c [Fe(SEt)2(sac)(sca)]1-/2- 1/2 -91 -261
3d [Fe(SEt)2(sac)2]1-/2- 2/0 -100 -278
3e [Fe(SEt)2(sca)2]1-/2- 0/2 -58 -232
3f [Fe(SEt)2(sac)(scc)]1-/2- 1/0 -171 -350
3g [Fe(SEt)2(sca)(scc)]1-/2- 0/1 -180 -357
3h [Fe(SEt)2(scc)2]1-/2- 0/0 -238 -419

a For ligand abbreviations see Supporting Information, Table
S2.1. b NHB1 and NHB2 are the numbers of H-bonds of type HB1
and HB2, respectively, Scheme 1. c Inside the ISC complex, the
dielectric constant is unity, while for the environment, the dielectric
constant of 80 corresponds to water and 20 corresponds to
protein.
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the protein or the level of quantum chemical theory,57 which
may not be appropriate in the presence of iron.

The redox potentials of ISC models 3(a-h) with S · · ·H-N
H-bonds are plotted in Figure 5. The linear fit yields a shift
of the redox potential per H-bond of 60 and 65 mV in water
and protein environments, respectively. This value agrees
with the estimated value of 70 mV from measurements in
Rieske and Rieske-type proteins.18 From our ISC models, it
is not possible to distinguish which type of H-bond (HB1 or
HB2) exerts a stronger redox potential shift.

Rubredoxin Redox Potential. Model 4 is our largest ISC
model (101 atoms) in this study designed to mimic the
H-bond pattern in Rd. Although this model follows the
orientation of the ISC and H-bonds as found in Cp Rd, it
does not include the side chains denoted in Scheme 1. The
ISC model 4 corresponds to a sequence involving only
glycine (G) at two positions with an incomplete backbone
(IBB) [8(G)10(G)11(IBB)41(G)43(G)44(IBB)]. It can best
be compared with the Cp Rd mutant29 [8(G)10(G)11(Y)41(L)-
43(G)44(G)]. Although there is an experimental value of the
redox potential reported for this Cp Rd mutant (+39 mV),29

there is no crystal structure for this protein available. We
compared model 4 in the oxidized state with the wild-type
Cp Rd crystal structure (PDB code 1IRO), yielding a rmsd
(without hydrogen atoms) of 0.577 Å. Major structural
deviations of model 4 compared to the ISC in Rd are with
respect to the two terminal methyl groups (black carbon
atoms in Figure 1b), corresponding to the IBBs at positions
11 and 44, which are constraints in the protein. We also
observed deviations in the six dihedral angles H-N-C-O,
whose hydrogens are involved in the H-bonds.

Comparing the reduced and oxidized state geometries, the
ISC model 4 yields an rmsd of 0.25 Å, that is comparable
to 0.18 Å obtained by considering the equivalent atoms in
the crystal structures of Cp Rd.82 We can also compare
equivalent atoms in the optimized geometries of model 4

with the Cp Rd crystal structures in the corresponding redox
states: 1FHH (oxd) and 1FHM (red),82 yielding an rmsd of
0.57 and 0.52 Å for the oxidized and reduced states,
respectively. Major structural deviations of model 4 from
the Rd crystal structures are with respect to the two terminal
methyl groups (black carbon atoms in Figure 1b), corre-
sponding to the IBBs at positions 11 and 44, which are
constraints in the protein. We also observed deviations in
equivalent dihedral angles H-N-C-O involving the H-bond
hydrogens between the ISC model and the Rd. In the latter
case, the H-bond strengths vary with the amino acid type in
those positions.33

The redox potentials computed of ISC model 4 are shown
in Table 5. For water (ε ) 80), it is +194 mV, while for the
protein environment (ε ) 20), it is +57 mV. The measured
redox potentials of Rd vary between -87 and +39 mV in
different species of Rd9,53,72,83,84 (see Supporting Informa-
tion, Table S1.1 for a more complete list of references). Our
computed ISC redox potential of model 4 is more positive,
which can qualitatively be understood, since it involves only
Gly residues in positions with amide H-bonds with sulfur.
Experiments with Cp Rd mutants exhibit a redox potential
that is down shifted by about 70 mV,29,31 mutating from
Val to Gly. Interestingly, our computed ISC redox potential
+57 mV is close to +39 mV measured for a Cp Rd mutant29

whose sequence [8(G)10(G)11(Y)41(L)43(G)44(G)] involved
in ISC H-bonds is closest to model 4.

We also computed the redox potential of model 4 in AN
obtaining -100 mV, which can be compared with the redox
potential -136 mV24 measured in AN for a synthetic
peptide-based ISC model with the sequence [8(L)10(G)11(Fp)-
41(G)43(G)44(Fp)] (Fp is a Phe-like compound24) similar
in chemical composition to model 4. Figure 6 shows the
dependence of the computed redox potential of ISC model
4 for different dielectric constants together with the range
of measured Rd redox potentials, the range of dielectric
constants used to describe an implicit protein model, and
the computed and measured redox potentials of the above
synthetic ISC model and model 4 in AN.

Our Rd-like ISC model 4 is at the limit of what we can
compute at present to evaluate absolute values of redox
potentials for ISC models fully quantum chemically. To
study the Rd protein in more detail with quantum chemical com-
putations requires more efficient methods like QM/MM85,86

Figure 5. Calculated redox potentials as a function of the
number of (S · · ·H-N) H-bonds in the ISC models of type HB1
and HB2 (see Scheme 1) in water (ε ) 80) and protein
environments (ε ) 20). The ISC model pairs (3b,c), (3d,e),
(3f,g) possess the same number of H-bonds in different
positions (see Figure 3).

Table 5. Calculated Redox Potentials of ISC Model 4 in
Different Dielectric Environments and Comparison with
Experimental Values with Similar ISC Ligand Compositiona

Ecomp
o , mV

ISC model ε ) 80b ε ) 20b ANc

4 [Fe(saaa)2]1-/2-d 194 57 -100
Rd interval e Rd analogue f

measured redox potentials (-87, +39) -136

a Model 4 possesses six amide H-bonds similar to Rd, see
Scheme 1 and Figure 1b. b Inside the ISC complex, the dielectric
constant is unity, while for the environment, the dielectric constant
of 80 corresponds to water and 20 corresponds to protein. c AN
with ε ) 37.5. d For the ligand abbreviation, see Supporting
Information, Table S1 e Rd experimental values,29 for a complete
list see Supporting Information, Table S2. f Synthetic
peptide-based ISC model as Rd analogue.24
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that describe the more distant parts of the complete protein
classically and can, therefore, consider also different con-
formations. However, this approach is beyond the scope of
this study. Alternatively, we can use a purely electrostatic
approach, which also allows to consider the influence of
protonation pattern and hydrogen atom flexibility87 on the
redox potentials of the protein cofactors78 and the aspects
of coupling between electron and proton transfer pro-
cessess.88-90 This will be subject of future work.

Factors Shifting Redox Potential in ISC Models. The
first factor we discussed was the variation in conforma-
tional symmetry between S4 and C2. The computed redox
potential shift (from model 1a to 2a) was 71 mV in water
(ε ) 80), while for AN (ε ) 37.5), the shift was 211 mV.
The second factor shifting the ISC redox potential is the
number and the type of H-bonds with ISC sulfurs. As we
have demonstrated, the shift per H-bond could vary from
65 to 95 mV depending on the type and the geometrical
constraints. H-bonds stabilize the negative charge of the
ISC in Rd.

The last factor we consider is due to dielectric environ-
ment. Comparing at ε ) 80, the small ISC model 2a with
the larger ISC model 3h, both of them without H-bonds, the
redox potential decreases from +56 to -238 mV. This
demonstrates how a low dielectric can down-shift the ISC
redox potential (about 294 mV in this case) when one places
a small ISC model in a protein-like environment. A similar
down-shift of 221 mV is computed when model 2a is placed
in a low dielectric with ε ) 20. The qualitative agreement
suggests that the use of ε ) 20 for the implicit protein model
is appropriate. The results obtained for our ISC models show
the importance of the dielectric environment in tuning the

ISC redox potentials and how the degree of solvent exposure
of ISC can affect the redox potential.

Inside the protein, these factors may vary in strength and
may be coupled. For example, the experiments performed
to measure the influence of H-bond strength by means of
side chain mutations in rubredoxin mutants30,33 affect not
only the strength of ISC H-bonds but change also the
electrostatic volume of the amino acid side chains involved
in H-bonds, thus, decreasing the capacity of charge transfer
from H-bonds to neighboring atoms.82,91 Both effects change
the redox potential and may act in opposite directions. Hence,
in our study, we separated the factors changing ISC redox
potentials, making it easier to understand the magnitude and
the direction of redox potential shifts depending on the
conformations, the H-bonds, and the dielectric environment,
all important for ISC proteins.

Conclusions

Using the B4(XQ3)LYP approach, we calculated absolute
redox potentials of 17 ISC models related to the ISC in
Rd in different media, which are water, AN, and protein-
like environment. In AN, the ISC redox potentials are very
negative being below -800 mV for the most elementary
ISC model with S4 symmetry, while in water and protein
environment, the redox potentials are close to zero. Part
of this enormous upshift is due to a change in symmetry
from S4 to C2, yielding about +200 mV in AN. The
remaining part of the redox potential upshift of +600 mV
is due to the difference between the aprotic environment
provided by AN and the protic environment provided by
water. In an implicit solvent model for water, using
continuum electrostatics, the energetics of H-bonds are
described implicitly by surface charges at the electrostatic
boundaries. The ISC models of this study that mimic the
protein environment consider polar hydrogen atom con-
tacts to form explicit H-bonds.

The redox potentials computed in the present study
agree with available measured values in the range of 50
mV in analogy to the agreement found for the large
number of redox potentials, which were computed for
transition metal complexes before.1 This degree of ac-
curacy could only be achieved with the modified
B4(XQ3)LYP functional in DFT combined with a post-
SCF correction followed by continuum electrostatics to
evaluate solvation energies. In this connection, also
electrostatic energies were optimized by choosing ap-
propriate atomic radii. Using of the same electrostatics
in combination with the B3LYP functional results in an
rmsd of 183 mV,1 comparable with 170 mV reported for
calculated redox potentials of 270 different organic
compounds.60

We explored the influence of two different H-bond
partners, Fe-S · · ·H-O and Fe-S · · ·H-N on the ISC
redox potentials. We found that in aqueous solution (ε )
80) one Fe-S · · ·H-O H-bond up-shifts the ISC redox
potential by 58 mV for the C2 symmetry and by 90 mV
for the S4 symmetry. In a low dielectric environment (ε
) 20) as in proteins, the computed upshift of the ISC
redox potential is expected to be 77 mV for a single

Figure 6. Dependence of the computed redox potential of
ISC model 4 as a function of the environmental dielectric
constant. The measured Rd redox potentials are within the
shaded horizontal regime. The dielectric constants used for
implicit protein models are in the shaded vertical regime. The
computed redox potentials of ISC model 4 in water and AN
are given by the open circle and triangle, respectively. The
experimental redox potential for a similar peptide-based ISC
in AN is given as the closed triangle.24 The computed redox
potential of model 4 with ε ) 20, corresponding to a protein
environment is given as the open diamond.
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Fe-S · · ·H-N H-bond correlating well with the experi-
mental estimate of 70 mV in Rieske proteins.18 The
H-bond influence on ISC redox potentials is larger for
Fe-S · · ·H-O than for Fe-S · · ·H-N H-bonds due to the
higher polarity of OH groups compared to NH groups in
the ISC models of this study. We calculated the redox
potential for a model complex that mimics the ISC inside
the protein environment and obtained good agreement with
experimental values of a Rd-like ISC and an ISC in Rd.
This practically quantitative agreement between the
computation and the experiment allows to understand the
redox potential shift between small ISC models and ISC
in proteins, which depends on three factors: the change
in conformation, (from symmetry S4 to C2, shifting the
redox potential by 71 mV), the number of H-bonds (about
60 mV for a single Fe-S · · ·H-N and 90 mV for
Fe-S · · ·H-O H-bond) and the degree of solvent exposure
(about 200 mV down-shift going from high to low
dielectric environment).
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Abstract: Incorporating receptor flexibility into molecular docking should improve results for
flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics
for the entire protein chain may also introduce significant error and “noise” that could decrease
docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We
address this apparent paradox by comparing the successes of several flexible receptor models
in cross-docking and multiple receptor ensemble docking for p38R mitogen-activated protein
kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based
molecular docking method using both molecular dynamics (MD) and torsion angle molecular
dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These
flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling
is directly compared to MD sampling. Several flexible receptor models are compared,
encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and
treatment of the entire chain as flexible. We find that, although including side chain and some
backbone flexibility is required for improved docking accuracy as expected, docking accuracy
also diminishes as additional and unnecessary receptor flexibility is included into the confor-
mational search space. Ensemble docking results demonstrate that including protein flexibility
leads to improved agreement with binding data for 227 active compounds. This comparison
also demonstrates that a flexible receptor model enriches high-affinity compound identification
without significantly increasing the number of false positives from low-affinity compounds.

1. Introduction

It is widely recognized that a significant problem in the field
of molecular docking is the incorporation of protein
flexibility.1,2 In experimentally characterized flexible protein
binding sites, conformational changes are observed upon
binding different ligands that include minor changes of side
chain positions, significant local side chain rearrangement,
flexible loop rearrangements, larger backbone movements

of the binding pocket, and large hinge motion of domains.3

Incorporating protein flexibility in molecular docking is
challenging because it is difficult to predict the extent of
protein conformational changes upon ligand binding (chal-
lenges in sampling), and it is also more difficult to score
flexible protein-ligand complexes accurately (challenges in
scoring). It is clear from the literature that rigid receptor
docking can be quite successful for some receptors.4

However, when rigid receptor docking is used for receptors
that are known to be flexible, docking results from a single
receptor conformation often suffer from too many false
negatives5 that may be accommodated by minor conforma-
tional changes6 or slightly more open conformations of the
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binding pocket.7 Although many studies have shown that
incorporating models of protein flexibility can improve
docking for these cases, we demonstrate in this article that
explicit protein flexibility with all atom molecular dynamics
(MD) for the entire protein chain may also introduce
significant error and “noise”, thereby decreasing docking
accuracy and diminishing the ability of a scoring function
to discriminate native-like binding poses. In contrast to this
result, we also show that similar models that use MD or
torsion angle molecular dynamics (TAMD) sampling for
flexible side chains and flexible loops are significantly more
successful than rigid docking.

In this study, we assess the incorporation of explicit all-
atom protein flexibility using both MD and TAMD in
CHARMM. Both methods allow flexibility of the protein
and ligand simultaneously, which is essential for refinement
in protein-ligand conformational space. However, TAMD
(internal coordinate space) is more efficient in sampling
compared to MD (Cartesian space) because there are
significantly fewer degrees of freedom in internal coordinates.
The use of conformational dynamics in internal coordinates
for flexible receptor docking was pioneered by Abagyan and
co-workers.8,9 Currently, explicitly exploring a large amount
of conformational space for both the protein and ligand
during the docking procedure is too computationally expen-
sive for screening a large number (>105) of compounds. As
many docking algorithms have been optimized for fast and
accurate docking of a flexible ligand into a static protein
structure, a computationally attractive approach to incorporate
protein flexibility is to use multiple receptor conformations
(MRCs) for rigid docking, which is now usually referred to
as “receptor ensemble docking” (RED).10 In this study, we
assess several different flexible receptor models using cross-
docking accuracy and also compare RED results to experi-
mental binding data.

P38R mitogen-activated protein (MAP) kinase is a difficult
test case for cross-docking in that it has a very flexible ligand
binding site experimentally characterized by numerous crystal
structures. Hydrogen exchange experiments monitored by
mass spectrometry have shown that the unphosphorylated
inactive state of p38R is significantly more flexible than the
doubly phosphorylated active state.11 The majority of
discovered inhibitors successfully bind to this more flexible
inactive form of the active site, and some inhibitors bind to
an alternative conformation of the binding site known as the
“DFG-out” conformation.12 This alternative conformation of
the binding site is denoted the DFG-out conformation
because the F169 side chain on the flexible activation loop
flips out into the binding site revealing a deep hydrophobic
pocket to which ligands are able to bind (Figure 1A).
Inhibitors have now been observed binding in the DFG-out
conformation in numerous tyrosine kinases and ser/thr
kinases.13 It has been proposed that targeting the enzyme in
the flexible inactive (nonphosphorylated) conformation is a
good strategy for designing selective kinase inhibitors.14

Several of these inhibitors have been shown to be selective
rather than promiscuous, and this has been attributed to
binding interactions in the DFG-out conformation. In this
paper, we examine an ensemble of 12 inactive (nonphos-

phorylated) p38R receptor conformations: nine conforma-
tionally diverse crystal structures of DFG-in conformations
(1a9u, 1bl6, 1bl7, 1di9, 1ouk, 1ouy, 1oz1, 1w84, and
1yqj)15-20 and three crystal structures of DFG-out conforma-
tions (1kv1, 1kv2, and 1w83).18,21

Figure 1. A successful cross-docking for a difficult example
involving DFG loop rearrangement. (A) The superposition of
a DFG-in protein-ligand complex (1ouy shown in gray) and
a DFG-out protein-ligand complex (1w83 shown in magenta).
(B) Ligand rmsd versus LIE1 score plot of flexible receptor
self-docking 1ouy (light blue), compared to flexible receptor
cross-docking (black) of the ligand 1ouy into the receptor
1w83. (C) Ligand rmsd versus % native protein-ligand
contacts for the same. (D) Ligand rmsd vs LIE1 score plot of
flexible receptor self-docking 1w83 (light blue), compared to
flexible receptor cross-docking (black) of the ligand 1w83 into
thereceptor1ouy.(E)Ligandrmsdversus%nativeprotein-ligand
contacts for the same. (F) CR rmsd of the P-loop versus CR

rmsd of the DFG loop plot for flexible receptor self-docking
1ouy (light blue), compared to flexible receptor cross-docking
(black) of the ligand 1ouy into the receptor 1w83. (G) CR rmsd
of the P-loop versus CR rmsd of the DFG loop plot for flexible
receptor self-docking 1w83 (light blue), compared to flexible
receptor cross-docking (black) of the ligand 1w83 into the
receptor 1ouy.
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2. Results and Discussion

2.1. Rigid Receptor Cross-Docking. With cross-docking
simulations, it is possible to determine the sensitivity of
docking results to changes in protein conformation by
analyzing the effect on the docking accuracy and the
prediction of ∆Gbinding. The entire 12 × 12 cross-dock was
performed from two different starting conformations of the
ligand. The first was started from the “swapped conforma-
tion” of the ligand from its cocrystal structure into a new
crystal structure. The second was started from the “best
rotation,” which is the lowest energy conformation from 1000
rigid body rotations into the new receptor. Cross-docking
results starting from the swapped conformation are biased
toward native-like poses and should represent the theoretical
maximum cross-docking accuracy for the rigid receptor that
atom clashes and conformational changes will allow. Rigid
receptor docking results starting from the best rotation are
unbiased and more directly analogous to the flexible receptor
docking method, which also starts from a best rotation into
a flexible receptor conformation. For cross-docking with a
rigid receptor, the top five lowest energy docking poses were
identified using the R-dependent dielectric (RDIE) scoring
function. The reason why it is important to consider the top
five scoring poses, and not only the best single scoring pose,
is that scoring functions are not always able to correctly rank
the most native-like poses, even in the case of self-docking.
In comparing cross-docking starting from the swapped
conformation and from the best rotation, the results are
similar when only the top-scoring pose is considered.
However, when the top five scoring poses are examined, it
is possible to see that cross-docking from the swapped
conformation had a higher percentage (38% e 2.0 Å rmsd)
of docking success compared to starting from the best
rotation into the new receptor conformation (25% e 2.0 Å
rmsd). This is expected, as the conformational search starting
from the swapped conformation should be more biased
toward low rmsd native-like poses. The overall docking
accuracy from rigid receptor cross-docking is similar for the
lowest energy pose regardless of whether they are scored
using either the RDIE or the LIE1 (LIE ) linear interaction
energy) scoring function, but the LIE1 scores perform slightly
better if you consider all of the top five scoring poses. Three
receptors (1kv1, 1kv2, and 1w83) are in the DFG-out
conformation,18,21 and when the results from only the single
top scoring poses are considered, these receptors are only
able to accurately cross-dock their own ligands to within
e2.0 Å rmsd. Two smaller ligands, 1di9 (a quinazoline-based
fragment) and 1w84 (an indole-based fragment), which bind
in a similar conformation and are selective to the DFG-in
conformation, are also able to bind to the DFG-out receptor
conformations withine3.0 Å rmsd because the conformation
of Phe 169 does not cause a direct atom clash. The ligands
selective for the DFG-out conformation are not able to dock
accurately in any of the nine DFG-in receptor conformations.

2.2. Constructing Several Models to Represent Protein
Flexibility. It was our goal to directly compare cross-docking
results using several models of protein flexibility scaling from
small side chain movements to large backbone movements.

We first considered a rigid backbone and flexible side chain
model and then constructed several flexible protein models
that were combinations of flexible side chains and flexible
backbone segments. To determine which side chains should
be considered flexible, the 12 reference protein-ligand
complex structures were superimposed by the best fit to
match the backbone CR coordinates. After superposition,
distances less than 6 Å between heavy atoms of the ligand
and the protein side chain were used to determine that 34
total residue side chains were considered to interact with the
12 ligands. In the approximation of a rigid backbone, for
large residue side chains to adequately sample conformational
space, the side chains of adjacent nearest neighbor residues
should also be considered to be flexible to allow for concerted
structural rearrangements. Therefore, the 34 residues com-
prising the binding site were linked together into six distinct
segments of contiguous residues (res: 30-41, 49-55, 67-89,
103-115, 137-157, 165-177) that form the topology of
the binding site. These six contiguous residue segments were
then considered to all have flexible side chains, for a total
of 74 residues (non-gly or -pro) with flexible side chains.
The two most flexible segments in the superposition of the
reference structures are residues 30-41, which will be
denoted the “P-loop” (phosphate binding loop), and part of
the activation loop (res: 165-177), which will be denoted
the “DFG loop”. These two loops were the most obvious to
include as flexible backbone segments in combination with
flexible side chains. In total, eight flexible protein models
were constructed, which are summarized in Table 1. Model
1 includes flexible side chains only. Models including
backbone flexibility were then combined with these flexible
side chains: model 2 includes backbone flexibility only in
the DFG loop, while model 3 includes backbone flexibility
in the two most flexible loops, the P-loop and the DFG loop.
Model 4 includes backbone flexibility in all six contiguous
residue segments that form the topology of the binding site.
Subsequent models 5-7 were constructed and incrementally
include flexibility into previously rigid segments. Model 7
is composed of one large flexible segment that defines the
entire topology of the binding site (res: 30-177) but still
allows 58% of the protein chain to be rigid. Model 8 includes
full backbone and side chain flexibility of the entire protein
(res: 5-351).

2.3. TAMD Flexible Receptor Cross-Docking. For flex-
ible receptor docking using TAMD, the entire 12 × 12 cross-
dock was performed for the eight different models of protein
flexibility. Ligand heavy atom rmsd metrics were used to
compare overall docking accuracy over all 144 cross-docking
simulations (Table 2). Considering the percentage where the
lowest scoring pose is e2.0 Å rmsd, the docking accuracy
seems to decrease proportionally to the log of the flexible
receptor degrees of freedom. The docking accuracies of
flexible models 1-6 are all significantly better than rigid
docking. Flexible model 8, where the entire protein chain is
considered to be flexible, is the only model that had a lower
docking accuracy than rigid docking. The fact that the most
flexible receptor model, model 8, exhibited the lowest
docking accuracy agrees with observations from previous
studies, suggesting that increased receptor flexibility may
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result in lower overall docking accuracy.22 However, when
you consider the results including the top five scoring poses,
model 8 still performs much better than rigid docking. This
indicates that model 8 was able to successfully sample and
then rank more native-like poses into the top five compared
to rigid docking. For model 8, when low rmsd poses are in
the top five, there is a diminished ability of the scoring
function to correctly rank the most native pose as the best
pose compared to the other flexible receptor models. For
model 8, when a pose e2.0 Å rmsd is represented in the top
five, it is correctly ranked as the lowest scoring pose only
21% of the time. In contrast, for model 1, where only the
side chains are flexible, when a pose e2.0 Å rmsd is
represented in the top five, it is correctly ranked as the lowest
scoring pose 67% of the time. Models 2-4 are able to
correctly rank low rmsd poses from the top five as the top
pose on the order of 42-52% of the time. Therefore, the
most flexible receptor model displays a reduced ability to
score or rank native-like binding poses compared to the other
models.

Considering only the percentage where any of the top five
scoring poses is e2.0 Å rmsd) in Table 2, the docking
accuracy increases from rigid receptor (38%) to model 1
(61%), to model 2 (76%) and is the highest for model 3
(84%). Model 3 is the most successfully flexible receptor
model for sampling and then ranking low rmsd poses into
the top five (Supporting Information Figure S1). From a

careful comparison of all 144 cross-docks individually, it is
clear that this improvement is due to the inclusion of
backbone flexibility for the two loops. The increase in
docking accuracy from 38% (rigid receptor) to 61% (model
1) reflects success for many of the less difficult cross-docking
situations where only minor or major changes in side chain
conformation are sufficient for successful docking. The
increase in docking accuracy from 61% for model 1 to 76%
for model 2 reflects success in more difficult cross-docking
situations where rearrangements in the backbone conforma-
tion of the DFG loop and side chains are required for
successful docking. Including flexibility in the two most
flexible loops (model 3) was even more successful at ranking
low rmsd poses (e2.0 Å) in the top five. It was somewhat
surprising that there was such a drop in docking accuracy
from model 3 (two flexible loops) to model 4 (six flexible
segments). From superposition of the cross-docking crystal
structures, it was expected that model 4 would perform well
for backbone rearrangements in the gatekeeper region (res:
103-115) required for success in a few specific cross-docks.
Even though model 4 outperforms models 1-3 for a few of
these specific cross-docking examples, it is less successful
in many of the less challenging cross-docks that required
only minor changes in side chain conformation.

Our investigation of models 4-8 was aimed at assessing
ways of including binding site flexibility in the absence of
multiple crystal structures or any evidence as to which parts

Table 1. Description of Flexible Receptor Docking Models

name for flex
protein model

N degrees of
freedom description

N flex backbone
residues

N Flex
side chains

residues composing
flexible backbone segments

TAMD model 1 271 flex side chains only 0 75 none
TAMD model 2 295 1 flex loop + flex side chains 12 75 DFG loop: 165-177
TAMD model 3 317 2 flex loops + flex side chains 23 75 P-loop: 30-41, DFG loop: 165-177
TAMD model 4 430 6 flex backbone segments 83 75 30-41, 49-55, 67-89, 103-115, 137-157,

165-177
TAMD model 5 514 4 flex backbone seg. 103 N/A 30-41, 49-89, 103-115, 137-177
TAMD model 6 604 2 flex larger backbone seg. 125 N/A 30-115, 137-177
TAMD model 7 720 1 huge flex backbone seg. 147 N/A 30-177
TAMD model 8 1639 entire protein flexible 346 N/A 5-351
MD model 2 2817 1 flex loop + flex side chains 12 75 DFG loop: 165-177
MD model 3 3030 2 flex loops + flex side chains 23 75 P-loop: 30-41, DFG loop: 165-177
MD model 4 4149 6 flex backbone segments 83 75 30-41, 49-55, 67-89, 103-115, 137-157,

165-177
MD model 8 16788 entire protein flexible 346 N/A 5-351

Table 2. Cross-Docking Accuracy for a Rigid Receptor Compared to Eight Flexible Receptor Models

name for protein
model

N degrees of
freedom description

best pose
e2.0 Å (%)

best pose
e3.0 Å (%)

any of top
five e2.0 Å (%)

any of top
five e3.0 Å (%)

rigid receptor 1 0 start with “swapped conf.” 15 24 38 51
rigid receptor 2 0 start with “best rotation” 15 24 25 38
rigid receptor 1 0 rescore with flex receptor LIE1 21 31 37 49
TAMD model 1 271 flex side chains only 40 58 61 85
TAMD model 2 295 1 flex loop + flex side chains 37 60 76 97
TAMD model 3 317 2 flex loops + flex side chains 35 51 84 94
TAMD model 4 430 6 flex backbone segments 31 51 60 84
TAMD model 5 514 4 flex backbone seg. 26 44 56 86
TAMD model 6 604 2 flex larger backbone seg. 26 47 58 83
TAMD model 7 720 1 huge flex backbone seg. 20 41 59 84
TAMD model 8 1,639 entire protein flexible 10 30 48 80
MD model 2 2,817 1 flex loop + flex side chains 35 65 65 88
MD model 3 3,030 2 flex loops + flex side chains 33 56 71 91
MD model 4 4,149 6 flex backbone segments 27 50 60 84
MD model 8 16,788 entire protein flexible 12 27 44 82
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of the receptor binding site are flexible. If nothing was known
about a receptor’s flexibility, would it be better to apply
backbone flexibility to multiple protein segments that form
the binding site, or to all contiguous residues that form the
binding site, or to the entire protein? It was surprising that,
when the top five scoring poses were examined, there was
not much of a difference between models 4-7. In constrast
to models 1-3, models 4-7 include backbone flexibility in
the hinge region (res: 106-112), which is the third most
flexible backbone segment in the reference crystal structures,
and atom clashes involving this region result in some rigid
docking failures. It was therefore surprising that including
backbone flexibility in this region did not have a significant
impact. In general, our results reflect that the best docking
success is achieved with the most minimal model that
adequately describes the experimentally observed protein
flexibility. Model 3, which has many flexible side chains and
only two flexible loops, demonstrates the best performance
in docking accuracy because it describes the flexibility of
the receptor adequately with the fewest necessary degrees
of freedom comprising the conformational search space. It
would be possible to pursue this strategy for a new receptor
target even in the absence of any knowledge of the flexibility
of the binding site, by predicting the most flexible segments
from MD simulations, normal-mode analysis,23,24 elastic
network normal modes,25 or other framework approach
algorithms.26 A comparison between flexible receptor models
1-8 also suggests that it would likely be better to consider
only the segments forming the binding site to be flexible,
rather than the entire protein. These principles can be widely
extended to build efficient flexible receptor docking models
for new targets of interest. For systems where large confor-
mational changes are expected, our results suggest that it
may be a good idea to use other conformational sampling
approaches (including normal-mode analysis, fully flexible
MD conformational sampling with solvent, etc.) in order to
identify a small subset of diverse low-energy conformations.
Then, when low energy conformations representing these
various states are selected, local explicit flexibility in the
binding site can be applied to improve docking accuracy.
This approach is in contrast to docking into a large number
of fully flexible structures (like flexible model 8) where the
performance of a scoring function is diminished due to
energetic “noise”.

Reduced docking accuracy in flexible model 8 was
primarily due to significant binding site rearrangements
resulting in low-scoring non-native ligand binding poses.
Distortions in the geometry of the ligand binding residue
side chains directly resulted in a loss of docking accuracy
in flexible model 8. Over the entire cross-dock, we show
that 60-70% of the native protein-ligand contacts were
sufficient for docking in native-like binding modes. In the
majority of the non-native binding pocket conformations,
more than 50% of the ligand binding residues had undergone
significant rearrangement and cannot form enough native-
like ligand contacts. Specific cross-docks, where only model
8 failed, were examined in detail, and in many cases there
were significant binding site conformational changes in the
side chains that are not observed in any of the reference

crystal structures. In these cases, the overall backbone CR

rmsd is in the range of 1.5-2.0 Å from the starting and
reference structures, but these backbone deviations are on
the order of the maximum CR rmsd between reference crystal
structures (1.7 Å CR rmsd for 1w83 and 1yqj). One similarity
between these docking failures was that there were significant
changes in either the backbone or side chain conformation
of the majority of residues that form native contacts with
the ligand. Two specific groups of conserved hydrophobic
contacts in kinase scaffolds have been proposed as key
contacts involved in catalytic and regulatory conformational
changes: the regulatory spine (res: 75, 86, 148, and 169) and
the catalytic spine (res: 38, 51, 113, 156, 157, 158, 212, and
216).27,28 An interesting observation was that, in many cases
where only model 8 failed, conformational changes were also
observed in the side chain contacts in the catalytic spine,
where no changes in the catalytic spine are observed between
any of the 12 reference crystal structures despite significant
changes in the binding pocket. Model 8 is the only model
where the entire catalytic spine is flexible, and these observed
rearrangements only occurred for model 8. Therefore,
it would have been possible to use this information to select
low-energy conformations generated from model 8 that
maintained native-like structure in the catalytic spine but
allowed significant rearrangements of the binding site.

It is possible that some non-native distortions to the
structure in fully flexible model 8 may be due to a lack of
explicit or implicit solvent during the brief conformational
sampling procedure to generate apo receptor conformations.
Including implicit solvent during this conformational search
and the subsequent refinement of the receptor ligand
complexes would be possible, but at a great increase in
computational expense. To assess this, we performed a few
control simulations of this procedure using the GBMV
implicit solvent model and found that the overall level of
backbone (CR rmsd) and side chain rearrangement is very
similar. Apo receptor conformations generated with implicit
solvent also exhibited similar binding site distortions in side
chain conformations that contact the ligand, as well as side
chain conformational changes involved in the catalytic spine
(most notably residues Leu156, Val158, and Ile212) and in
all four residues in the regulatory spine. One notable
difference in the binding site conformations generated with
implicit solvent is that Asp168 and Glu72 form less close
contacts with Lys53, Arg67, and Arg173, presumably
because the full charges on these side chains were solvated.
For certain specific cross-docking failures, non-native con-
tacts between Asp168 and Lys53 were formed, but there are
also examples of close interactions between these residues
in some of the reference cocrystal structures (1ouk and 1w84)
compared to the others. It remains unclear if the added
computational expense of the implicit solvent during receptor
conformation generation would actually improve docking
accuracy compared to our other models. Performing the entire
cross-dock again with this procedure was beyond the scope
of this manuscript. A large ensemble of fully flexible protein
structures produced with high-quality explicit solvent simula-
tions would likely retain ensemble members that contain such
non-native distortions. Docking into this entire ensemble
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would still be “noisy”, and therefore, we propose that a better
strategy would be to select a few low-energy representative
states from such an ensemble and then apply local flexibility
to the binding site as mentioned above. Our results for this
specific kinase system may not be generalized to all other
flexible receptors, but our conclusions should hold in the
regime where the amount of sampling required for visiting
diverse low-energy conformational states (such as DFG-in/
DFG-out) is sufficient to rearrange the majority of ligand
interacting residues in the binding site.

TAMD flexible receptor docking succeeds in many dif-
ficult cases using models 2 and 3 where rigid receptor
docking fails. When the cross-docking results are compared
to the experimental binding data using the LIE2 scoring
functions (Supporting Information Table S1), the flexible
receptor results are in much better agreement (1.1 average
unsigned error (AUE) kcal/mol), as expected. The poorer
agreement with the binding data for the rigid receptor is the
result of lower docking accuracy, especially for atom clashes
with high-affinity compounds (false negatives). There is a
big improvement in docking accuracy for the three receptors
in the DFG-out conformation using the TAMD flexible
receptor models, where models 2 and 3 perform the best.
Receptors in the DFG-out conformation are now able to
successfully dock ligands that bind in the DFG-in conforma-
tion as well as the converse, ligands selective for DFG-out
are also able to successfully dock to DFG-in receptors. A
specific example of one of these difficult cross-docks is
swapping the ligands from 1ouy (DFG-in) and 1w83 (DFG-
out), shown in Figure 1A. The swapped conformation of each
ligand has atom clashes with the DFG loop, requiring
significant DFG loop conformational changes for successful
cross-docking into a native-like conformation. For flexible
receptor cross-docking of the ligand 1ouy into the receptor
1w83 (Figure 1B and C), the lowest-energy pose for this
cross-dock was 1.5 Å rmsd for the ligand, and the complex
contained 71% of the native protein-ligand contacts. For
cross-docking of the ligand 1w83 into the receptor 1ouy,
the lowest-energy pose was 2.4 Å rmsd for the ligand, and
the complex contained 66% of the native protein-ligand
contacts. Among the top five nonredundant poses was another
pose with 1.8 Å rmsd for the ligand which contained 69%
of the native protein-ligand contacts in the complex.

Despite the fact that the DFG loop does not sample the
entire range of DFG loop conformations, TAMD models 2
and 3 are still able to successfully cross-dock ligands
selective for the DFG-out conformation into receptors in the
DFG-in conformation. Upon careful examination of these
structures, many individual examples demonstrate that
smaller movements of the DFG loop backbone (on the order
of 3-6 Å), as well as changes in side chain conformation,
are sufficient to remove the primary atom clashes between
the native conformation of the ligand and the DFG loop.
Thus, for cross-docking these examples, even though the
generated conformations of the DFG loop are only able to
come as close as 2.5-3.0 Å CR rmsd to the reference
backbone conformation of the DFG-loop (Figure 1E and F),
the ligands are still capable of docking in the correct
conformation because up to 70% of the native protein-ligand

contacts are properly formed and contribute the strongest
anchor points for binding in the correct orientation. TAMD
sampling using model 3 was also successful at correctly
predicting significant backbone and side chain conformational
changes in the P-loop. Figure 2 shows two separate examples
of concerted changes in the two flexible loops that lead to
successful cross-docking in difficult cases. In both examples
in Figure 2, Tyr 35 from the P-loop undergoes a successful
rearrangement from the starting conformation (purple) to the
final conformation (red), which is in turn closer to the
reference target conformation (blue), allowing the ligand
(red) to dock in the correct conformation. Arrows are shown
to highlight the movement of Tyr 35 from the starting
conformation closer to the reference conformation. In the
first example (Figure 2A and B), the ligand 1bl7 (DFG-in)
is able to dock accurately into the DFG-out conformation
because of the backbone and side chain rearrangement of
Phe 169. In the second example (Figure 2C and D), the ligand
1yqj (DFG-in) is able to dock accurately into the 1di9 (DFG-
in) receptor conformation. Tyr 35 on the P-loop moves over
(red) to form a more native-like contact with the ligand, as
in the reference structure (blue).

2.4. MD Flexible Receptor Cross-Docking. TAMD sam-
pling was directly compared to MD sampling over the entire
cross-dock set for flexible receptor models 2, 3, 4, and 8.
Considering only the first docking accuracy metric in Table
2 (the percentage where the lowest scoring pose is e2.0 Å
rmsd), TAMD docking accuracy is better than MD for
models 2-4. MD sampling reduced the docking accuracy
for cross-docks requiring significant DFG loop conforma-
tional changes. For many difficult cross-docks, TAMD
sampling was able to identify a native-like low-energy
conformation, and MD sampling was insufficient. For these
examples, scatter plots of ligand rmsd versus LIE1 energy
show that TAMD sampling produced low-energy native-like
conformations, and MD sampling was unable to sample
native-like conformations at all (Supporting Information
Figure S2). In other cases, MD sampling was sufficient to
sample native-like conformations yet displayed a reduced
ability to score or rank native-like binding poses compared
to TAMD (non-native conformations score better than the
native). Despite these deficiencies of MD sampling compared
to TAMD sampling, MD model 2 was used for ensemble
docking of 227 active compounds to determine if it was
sufficient to demonstrate significant improvement over rigid
ensemble docking. This choice was made as a compromise
between accuracy and speed. While our rigid receptor
docking protocol runs within an hour for each ligand to
generate the top-ranked poses, fully flexible TAMD model
8 (or MD model 8) has comparative a runtime on the order
of 34 h. MD model 2 has a slightly faster runtime on the
order of 26 h when using the consfix routine in CHARMM
to speed up the nonbonded evaluations. These runtimes are
not yet optimized, and all runtimes were evaluated on a single
2.66 GHz Intel Xeon quad-core processor.

2.5. LIE Scoring Functions Used for Receptor Ensemble
Docking. In analyzing the results from docking the series of
227 active compounds into the ensemble of 12 receptor
conformations, LIE1 (derived from native scoring) was
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applied to rank the ligand conformations for both rigid and
flexible receptor docking. After the top five scoring poses
are identified, calculated energy components from MD are
used for comparison to experimental binding data using the
LIE2 model that incorporates desolvation. For clarity in
presenting results from ensemble docking, only results from
the single lowest-scoring pose will be used, rather than
including all results from the top five. Our objective in
comparing to binding data (fitting LIE2 to the experiment)
is to assess if the top-scoring ligand poses derived from
flexible receptor docking are able to provide better agreement
with binding data than rigid receptor docking.

In analyzing results from ensemble docking using the LIE2

model, much better fits to the experimental data were
achieved by adding an entropic term related to the number
of freely rotatable bonds29 in each given ligand that becomes
immobilized upon binding to the receptor: [∆Gbinding )
R(∆VDW) + �(∆(ELEC+GBE)) + γ(Nrotatable_bonds)]. This term had
not been included previously in LIE2 because the cross-
docking test set showed minimal improvement upon adding
the entropic term. Fits to the LIE2 model yield values of γ
that are within the range of other values (0.1-0.6 kcal/mol)
reported in the literature for the entropic contribution to
∆Gbinding from a single freely rotatable bond in a ligand.29,30

The parameter γ was found to be (rigid γ ) 0.19, flex γ )
0.35) when the docking results for all 12 receptors were fit
simultaneously to binding data. Comparisons to binding data
are calculated in two ways: first, all 12 receptors were fit
simultaneously to the binding data using a single LIE2 model,
and second, each receptor was fit individually to the
experimental data with its own LIE2 model. The second
approach has smaller errors in kilocalories per mole, as
expected, but an important finding is that these two fitting
approaches both show similar qualitative trends and few
differences in comparing rigid and flexible receptors.

2.6. Docking Accuracy for RED. Although there are not
crystal structures for all of the 227 active compounds, a
reasonable approximation can be made for the ligand binding
conformations assuming that the vast majority of active
compounds will adopt binding modes similar to known
crystal structures of similar compounds. There are six major
series of related compounds: (1) 2-aminopyrimidine car-
bamates,31 (2) 4-azaindoles,19 (3) aminopyrazoles,32 (4)
benzimidazolones,33 (5) indole and pyridine fragments,18 and
(6) triazolopyridine oxazoles.34 All ligands that bind in the
DFG-in conformation share at least two anchor points or
pharmacophores (Figure 3): (1) a hydrogen bond or close
interactions with the backbone and side chains in the
gatekeeper region of the active site (res: 107-110H) and
(2) a deep hydrophobic pocket that binds aromatic groups
(T106, L75, and L104). These two anchor points can be used
to determine the overall orientation of each ligand docking
pose. Series 2, 4, and 6 also have a third unique anchor point
which is a hydrophilic interaction with the charged NH3

group of K53. Ligand binding poses were considered to bind
in a native-like orientation if they satisfied two or more of
these anchor points, and this criterion was used to ap-
proximate the overall docking accuracy for each receptor
(Table 3). Hydrogen bonding to the hinge region in Figure

Figure 2. Successful cross-docking examples involving concerted
rearrangements of backbone and side chain of the P-loop and the
DFG loop. For all images, the reference receptor conformation is
shown in blue, superimposed with the starting receptor conformation
for a difficult cross-dock shown in purple. The reference ligand
position is shown in black. In B and D, the new lowest-energy
flexible receptor conformation is shown in red, along with the
correctly predicted native-like ligand conformation (rmsd < 2.0 Å).
In both examples, Tyr 35 from the P-loop undergoes a successful
rearrangement from the starting conformation (purple) to the
final conformation (red), which is in turn closer to the reference target
conformation (blue), allowing the ligand (red) to dock in the correct
conformation. Arrows are shown to highlight the movement of Tyr
35 from the starting conformation closer to the reference conforma-
tion. In A and B, the ligand 1bl7 (DFG-in) is able to dock accurately
into the DFG-out conformation because of the backbone and side-
chain rearrangement of Phe 169. In the second example (C and
D), the ligand 1yqj (DFG-in) is able to dock accurately into the 1di9
(DFG-in) receptor conformation.
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3F shows the peptide plane flip (from structure 1zzl) that is
also present in the structure for 1ouk and 1ouy. All
compounds are able to hydrogen-bond to the hinge region
in either conformation, although the ideal ligand interactions
may not be formed.

The highest docking accuracy using a rigid receptor model
was found for receptors 1ouk (67%) and 1ouy (64%). The
receptor 1ouk also had the best docking accuracy in the cross-
docking study according to ligand rmsd metrics. This is an
interesting finding in light of a recent solution NMR study
which concluded that the predominant ensemble in solution
is most similar to the crystal structures of 1ouk and 1ouy.35

This NMR study compared a set of 73 measured residual
dipolar couplings (RDCs) from the apo conformation in
solution to various crystal structure conformations.35 Recep-
tor conformations 1ouk and 1ouy exhibit a peptide plane flip
over the gatekeeper residues M109 and G111, which
participate in backbone hydrogen bonding with ligands.
Comparison of the measured RDCs upon binding the
pyridinylimidazole inhibitor 1a9u demonstrated evidence for

a structural transition over residues M109 and G111 from
the receptor conformation (1ouk) to the crystallographic
conformation (1a9u).35 Therefore, prior to binding, the
predominant conformation of the apo receptor was most
similar to 1ouk and 1ouy. This experimental observation
rationalizes the observed high docking accuracy and good
agreement with binding data for rigid receptor docking with
1ouk and 1ouy. It is also interesting that the lowest rigid
receptor docking accuracy is observed for the receptor
conformation of 1a9u, and this can be attributed to the
peptide plane flip in the gatekeeper region as well as a very
closed conformation of the P-loop. Low docking accuracy
for the ligand 1a9u in cross-docking can also be explained
by NMR evidence that this ligand binds in more than one
conformation.35,36

There are several receptors that perform very poorly
for rigid docking that show improvements in docking
accuracy upon adding flexibility. The docking accuracy
for individual rigid receptors ranges from as low as 11%
for 1a9u to as high as 67% for 1ouk. For 5 of 12 receptors
with relatively low rigid docking accuracy (1a9u, 1bl6,
1bl7, 1w83, and 1w84), the flexible docking model
improves the docking accuracy. However, for five other
receptors that had a comparatively high rigid receptor
docking accuracy (1di9, 1ouk, 1ouy, 1oz1, and 1yqj),
including flexibility slightly diminished overall docking
accuracy and overall agreement with binding data. In this
way, flexibility improved agreement with experimental
results for receptors that perform poorly in rigid docking
and reduced agreement with experimental results for the
receptors that had the best results for rigid docking.
However, despite this small decrease in overall docking
accuracy for these receptors, flexible receptor docking still
achieved overall improvement in ranking compounds when
compared to binding data.

2.7. RED Comparison to Binding Data. Comparison to
experimental binding data shows that the flexible receptor
model has an improved ability to rank compounds. When
all 12 receptors are fit to binding data simultaneously, 8 of
12 have a better linear correlation (R2) with the experimental
data with a flexible receptor. When the receptors are fit
individually, 7 of the 12 receptors showed improved agree-
ment in terms of error (AUE) in kilocalories per mole and
linear correlation (R2) with a flexible receptor. In a com-
parison of each individual receptor to experimental binding
data, the flexible receptor model demonstrated improved
enrichment of high-affinity compounds over low-affinity
compounds (Table 3, Supporting Information Table S2).
Results from rigid and flexible docking are compared by
calculating the enrichment factor (EF) for each receptor on
the basis of the number of high affinity hits in the top n
ranked compounds. EFs were calculated [EF ) (Hitsn/NCn)/
(Hitstotal/NCtotal)], where Hitsn is the number of true high-
affinity actives retrieved in NCn (the top n ranked com-
pounds), Hitstotal is the total number of high-affinity actives,
and NCtotal is the total number of compounds. Enrichment
factors were calculated for two sets of the highest-affinity
compounds. The first group of high-affinity compounds was
46 of 227 ligands that have ∆Gexp < -11.0 kcal/mol, and

Figure 3. Two common protein-ligand interactions (anchor
points), shared by all six series of active compounds binding
in the DFG-in receptor conformation. An interaction with the
hydrophobic pocket (dashed line) and hydrogen bonding to
residues in the gatekeeper region are common to all six series
of active compounds: (A) 2-aminopyrimidine carbamates, (B)
4-azaindoles, (C) aminopyrazoles, (D) benzimidazolones, (E)
indole and pyridine fragments, and (F) triazolopyridine oxazoles.
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the second group was 89 of 227 ligands with ∆Gexp < -10.0
kcal/mol. The enrichment factor EF1 was calculated for this
first group 1 (∆Gexp < -11.0), and the enrichment factor
EF2 was calculated for group 2 (∆Gexp < -10.0 kcal/mol).
Given these definitions, the maximum theoretical value of
EF1 is 4.9, and the maximum theoretical value of EF2 is 2.6.
A third group of 57 low-affinity compounds was selected
from the 227 using the criterion ∆Gexp > -8.0 kcal/mol. This
third group of low-affinity compounds was used to calculate
the number of false positives, assuming that group 2 (true
positives) could be successfully separated from group 3. A
large majority of the individual receptors (10 of 12 receptors)
had improved enrichment factors with a flexible receptor
(Figure 4), and the overall enrichment over the ensemble of
12 receptors is better for the flexible receptor model
(Supporting Information Tables S2 and S3). The flexible
receptor model also showed significant enrichment compared
to the rigid receptor model in separating these 227 active
compounds from a large number (>9000) of decoy molecules
(Figure 5A and B). These decoy molecules, which are
specific for p38R, were taken from the database of useful
decoys (DUD) and represent a very difficult decoy set
because the ligands were selected to be similar to the actives
in several molecular properties.37 As 28 of our 227 active
compounds are greater in molecular weight (MW) than the
DUD decoy molecules, we also calculated the enrichment
factors considering only 153 active ligands that share the
same molecular weight range (450 > MW > 320) as the DUD
decoys to eliminate any source of artificial enrichment
(Figure 5C and D).38 Either approach to calculating the
enrichment factor shows significant improvement of the

flexible receptor model compared to the rigid receptor for
either DFG-in or DFG-out conformations (Figure 5).

As our results show that certain receptors perform well
for one ligand series, while not so well for others, we
investigated several combinations of minimal receptor en-
sembles. A minimal receptor ensemble of four receptors
(1a9u, 1di9, 1ouk, and 1oz1) was constructed using the best
rigid receptor for each series respectively. When these rigid
receptor docking results are fit simultaneously to the LIE2

model, it achieves much better agreement with binding data
than any individual receptor (Figure 6) and shows that it is
possible for this LIE2 model to rank all six series simulta-
neously using a MRC ensemble approach. For the six major
series of related compounds, the receptor with the best
agreement was used for each series respectively: (1) 2-ami-
nopyrimidine carbamates (1ouk), (2) 4-azaindoles (1a9u), (3)
aminopyrazoles (1a9u), (4) benzimidazolones (1oz1), (5)
indole and pyridine fragments (1di9), and (6) triazolopyridine
oxazoles (1ouk). The best linear fit for this model through
all points (AUE ) 1.1 kcal/mol, rms ) 1.4 kcal/mol, and
R2 ) 0.41) is shown in black in Figure 6A. Figure 6 shows
that the best fit receptor for each series has a slightly different
slope, even when fit simultaneously. The agreement with the
binding data for each series is as follows: (1) 2-aminopyri-
midine carbamates (R2 ) 0.30), (2) 4-azaindoles (R2 ) 0.24),
(3) aminopyrazoles (R2 ) 0.19), (4) benzimidazolones (R2

) 0.16), (5) indole and pyridine fragments (R2 ) 0.72), and
(6) triazolopyridine oxazoles (R2 ) 0.17).

2.8. Comparison to Other Flexible Receptor Docking
Studies with p38r. As p38R is considered to be a representa-
tive ser/thr kinase with strong induced fit effects, it has been

Table 3. Receptor Ensemble Docking Results: Docking Accuracy, Comparison to Binding Data, and Enrichment Factor
(EF1Max)a

fit all simultaneously fit each individually

id PDB docking accuracy AUE (kcal/mol) rms (kcal/mol) R2 EF1 Max AUE (kcal/mol) rms (kcal/mol) R2 EF1 Max

1 1a9u rigid 0.11 1.90 2.24 0.04 0.71 1.82 2.16 0.03 0.22
1 1a9u flex 0.22 2.11 2.54 0.12 1.76 1.68 2.11 0.10 1.57
2 1bl6 rigid 0.20 1.87 2.26 0.05 0.73 1.76 2.16 0.04 0.65
2 1bl6 flex 0.41 1.86 2.23 0.14 1.71 1.65 2.07 0.14 1.62
3 1bl7 rigid 0.32 1.88 2.24 0.04 0.58 1.87 2.23 0.04 0.60
3 1bl7 flex 0.38 1.87 2.29 0.10 0.73 1.67 2.09 0.09 0.68
4 1di9 rigid 0.27 1.78 2.16 0.19 2.42 1.43 1.80 0.18 2.25
4 1di9 flex 0.20 2.03 2.50 0.13 1.47 1.64 2.09 0.12 1.46
5 1kv1 rigid 0.15 2.37 3.13 0.01 0.55 2.32 2.94 0.01 0.52
5 1kv1 flex 0.04 2.83 3.61 0.02 0.83 1.57 1.99 0.12 1.33
6 1kv2 rigid 0.26 2.25 2.90 0.00 0.36 2.23 2.71 0.01 0.33
6 1kv2 flex 0.03 2.05 2.63 0.09 0.76 1.40 1.75 0.22 1.69
7 1ouk rigid 0.67 1.53 1.85 0.15 0.93 1.49 1.84 0.16 1.11
7 1ouk flex 0.33 1.95 2.33 0.10 1.22 1.64 2.05 0.10 1.19
8 1ouy rigid 0.64 1.57 1.92 0.12 0.93 1.57 1.92 0.12 0.89
8 1ouy flex 0.46 1.97 2.40 0.07 1.31 1.75 2.20 0.06 1.22
9 1oz1 rigid 0.49 1.49 1.87 0.21 1.38 1.41 1.78 0.19 1.07
9 1oz1 flex 0.18 1.79 2.21 0.11 1.16 1.61 2.06 0.12 1.33
10 1w83 rigid 0.05 1.95 2.52 0.00 0.35 1.67 2.11 0.07 1.33
10 1w83 flex 0.08 1.85 2.43 0.06 0.73 1.52 1.93 0.14 1.67
11 1w84 rigid 0.20 1.65 2.08 0.18 1.46 1.53 1.90 0.14 0.95
11 1w84 flex 0.21 1.51 1.89 0.19 2.17 1.49 1.88 0.21 2.50
12 1yqj rigid 0.50 1.62 1.96 0.08 0.49 1.49 1.85 0.17 0.93
12 1yqj flex 0.48 1.74 2.11 0.11 1.21 1.60 1.98 0.12 1.30

a The enrichment factor EF1 was calculated for the first group (∆Gexp < -11.0 kcal/mol) of high-affinity compounds. The maximum
observed EF1 (EF1 Max) within the top 20% of ranked compounds is reported here. The maximum theoretical value of EF1 is 4.9. Additional
enrichment factors analysis is reported in Supporting Information Table S2.
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used previously in several other flexible receptor docking
studies.39-42 A small subset of our cross-dock can be
compared to other studies with ICM39 and Glide41 for
docking accuracy, where a docking success is defined as the
single lowest-energy structuree 2.0 Å rmsd. For a very small
4 × 4 comparison with ICM,39 our flexible model 1 was the
best with a 38% accuracy, which was lower than ICM with
a 63% accuracy; however, this lower performance is
predominantly from poor docking accuracy of the ligand for
1a9u, which has been shown to bind experimentally in more
than one binding mode.35,36 For a larger comparison with
Glide41 (3 × 3 DFG-out; 9 × 9 DFG-in), flexible model 1
was the best with 46% accuracy, where Glide was 60%
accurate.

Early database enrichments were also measured in these
two studies using ICM39 and Glide,41 and our early enrich-
ment in the top 1-5% of the ranked database (Figure 5C
and D) is roughly comparable given that these two studies
have different lists of actives and decoys. These two studies
also both used on the order of 1000 decoys, and we have
used more than 9000 decoys. In the ICM study for the
receptor 1a9u, enrichment factors for the top 1%, 2%, and
10% were 16.7, 8.3, and 5.0, respectivly, whereas our
corresponding EFs from Figure 5C for 1a9u are 7.1, 3.0,
and 1.1, respectively. The early enrichments for our rigid

docking results for receptor 1kv2 are also reasonable
compared to rigid docking performed in the DUD data set
paper with DOCK,37 where the EF at 1% was 2.1 with
DOCK and our respective EF at 1% was 1.4, although our
EF values range from above 10 to 3.3 for multiple actives
found within the top 1%. In a recent report comparing ICM
and Glide for enrichment of 111 actives against 6450 decoys,
the area under a receiver operating characteristic (ROC) curve
was reported for enrichment.42 In the ROC curve, the signal
(fraction of true positives) is plotted on the y axis against
the noise (fraction of false positives) on the x axis, and the
area under the curve (AUC) indicates the overall signal-to-
noise, where 1.0 is theoretically perfect performance and 0.5
is a random performance. In the above-mentioned study, the
ROC AUC values for single receptor docking were 0.64 for
Glide and 0.70 for ICM, and the ROC AUCs for multiple
receptor docking were 0.81 for Glide and 0.88 for ICM.42

We have calculated the ROC AUC for our actives with
the DUD decoy set (Figure 5C and D) for the molecular
weight range of 320-450 and have found that the ROC AUC
for the flexible receptor is 0.47 (1a9u) and 0.44 (1kv2). These
are both less than 0.5 and are therefore worse than random
when considering ranking the entire database, despite the
fact that these data sets show reasonable early enrichment
within the top 1-10% of the data set. However, the ROC
AUCs are still better for the flexible receptor compared to
the rigid receptors 0.42 (1a9u) and 0.36 (1kv2). One reason
for this poor apparent performance is due to the large number

Figure 4. Enrichment factors for rigid and flexible receptor
docking into receptors (A) 1a9u, (B) 1bl6, (C) 1kv2, and (D)
1w84. These enrichment factors EF1 and EF2 are calculated
assuming that groups of high-affinity compounds can be
separated from groups of low-affinity compounds.

Figure 5. Enrichment factors for separating active com-
pounds from more than 9000 decoy molecules. Enrichment
of all 227 actives from decoys for receptor (A) 1a9u and (B)
1kv2. Enrichment of 153 actives in the same molecular weight
range (320-450) as the decoys for receptor (C) 1a9u and
(D) 1kv2.
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of low MW actives in our set, where high MW decoys score
better than low MW actives. When only the actives and the
decoys in the high MW range of 375-450 are compared
(52 actives and 4432 decoys), then our enrichment studies
have a ROC AUC of 0.64 (1a9u) and 0.64 (1kv2) for the
flexible receptors. These ROC AUC values are both better
than random over the entire database and more similar to
values reported for single receptor docking for Glide and
ICM.42 Another reason for the lower ROC AUC for the entire
MW range of 320-450 may be that the decoys in the DUD
data set may be more similar to p38R actives than the decoy
set in the study using Glide and ICM.42 Our results show
that, for DUD, reasonable, early enrichment is observed in
EF factors but that much better overall enrichment occurs
in a comparison of actives and decoys in the MW range of
375-450 compared to the MW range of 320-375. We
suspect that this may be because greater MW ligands have

more specific contacts with the receptor compared to their
decoys and that lower MW decoys are more similar to low
MW actives.38 In general, although our results for the flexible
receptor models are much better than our rigid receptor
results, these flexible receptor models are still not performing
as well as ICM and Glide.

3. Computational Methods

3.1. Linear Interaction Energy Scoring Function for
Docking. For ranking docking poses of the same ligand,
using the total energy of the protein-ligand complex with a
RDIE is sufficient,43 as long as the receptor is rigid. When
flexibility is introduced into the protein during the confor-
mational search, the total energy of a given protein-ligand
complex is no longer a reliable metric to distinguish low-
energy native-like poses. This lower predictive power is due
to “noise” from conformational changes in intraprotein
interactions, which are energetically equivalent or greater
than conformational changes in protein-ligand interaction
energy. For this reason, when protein flexibility is introduced
into the conformational search problem, a scoring function
that is based on energetic components from protein-ligand
interaction is more effective. In a previous study, CHARMm
protein-ligand interaction energies performed well compared
to eight other commonly used scoring approaches for the
discrimination of docked and misdocked structures.43 Al-
though this approach works well for rigid docking, for
flexible protein docking, we have employed LIE models44

for our CHARMm protein-ligand interaction energies of the
generic form ∆Gbinding ) R(∆component1) + �(∆component2) +
γ(∆component3) as the sum of potential energy components with
weighted coefficients. Following the work of Caflisch and
co-workers,44 we have used a LIE model of the form ∆Gbinding

) R(∆VDW) + �(∆(ELEC+GBE)) for predicting the absolute
∆Gbinding in order to compare ligands of various sizes and
shapes (to rank a series of ligands). In the current study of
protein flexibility, we use a less computationally expensive
LIE model of the form ∆Gbinding ) R(∆VDW) + �(∆ELEC) for
ranking binding poses of the same ligand where both the
protein and ligand are flexible simultaneously. This simplified
LIE score avoids the computationally expensive calculation
of generalized Born (using GBMV) solvation energy com-
ponents for every docking pose. Using this model assumes
that differences in solvation energy should be a minor
component when considering poses of the same ligand.
Therefore, our approach to flexible receptor docking uses a
hierarchical two-step scoring approach to reduce computa-
tional expense,45,46 where a simplified “LIE1” model is used
to select the best-scoring poses, which are then rescored using
a more sophisticated and computationally expensive “LIE2”
model that includes desolvation.

In order to construct these LIE scoring functions for
flexible receptor docking, energetic components acquired
from “native scoring” and from self-docking using a rigid
receptor were compared. Native scoring LIE components
were calculated from both the minimized static native
structure and MD simulations started from these structures.
Three metrics of comparison are used to compare predicted

Figure 6. Comparison to binding data, using a minimal
ensemble of four rigid receptor conformations (1a9u, 1di9,
1ouk, and 1oz1). The best linear fit for this model through all
points is shown in A in black. The best linear fit is shown in
B, C, D, and E for each of the six series: (1) 2-aminopyrimidine
carbamates (red), (2) 4-azaindoles (black), (3) aminopyrazoles
(light blue), (4) benzimidazolones (green), (5) indole and
pyridine fragments (orange), and (6) triazolopyridine oxazoles
(purple).
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∆Gbinding to experimental ∆Gbinding values: average unsigned
errror (AUE) in kilocalories per mole, root-mean-square error
(rms) in kilocalories per mole, and the best fit linear
correlation coefficient (R2). When the parameters R and �
are fit to the energy components from native scoring, the
more sophisticated LIE2 model including the desolvation
effects [∆Gbinding ) R(∆VDW) + �(∆(ELEC+GBE))] demonstrates
an improved agreement with experimental results as expected
compared to LIE1 without solvation [∆Gbinding ) R(∆VDW)
+ �(∆ELEC)]. The best fit (AUE ) 1.0 kcal/mol) was from
the LIE2 model applied to ensemble averages over MD
simulation. Given the reasonable transferability of these LIE1

fits between native scoring and self-docking, we used them
as a scoring function for flexible receptor docking.44 As an
additional check, all of the docking poses collected from self-
docking were rescored using the LIE1 scoring function, and
native-like ligand poses with heavy atom rmsd e2.0 Å were
still obtained as the lowest-energy poses. Cross-docking
results described below show that using LIE1 scores results
in improved cross-docking accuracy compared to using the
total energy of the complex, for both rigid receptor docking
and for flexible receptor docking.

3.2. Preparation of Cross-Docking Set. Our molecular
docking approach uses the program CHARMM (Chemistry
at HARvard Molecular Mechanics) for an all-atom potential
energy description of protein-ligand complexes.47 The
CHARMm force field, originally parametrized by Momany
and Rone48 has been extended to describe ligands in the
Ligand-Protein Database (LPDB) and was used to build
potential energy functions for all ligands in this study.49 The
crystal structure coordinates of 12 protein-ligand complex
structures of p38R MAP kinase were downloaded from the
PDB database.15-21 All structural water molecules were
removed, and standard protonation states for neutral pH were
applied to all ionizable protein residues. Appropriate pro-
tonation states were applied to ligands by calculating pKa’s
for titratable groups using both Marvin (http://www.
chemaxon.com) and the Web server SPARC (http://ibmlc2/
chem.uga.edu/sparc/).50 Hydrogen atoms were built for
ligands using open Babel (http://openbabel.org), and all
protein hydrogen atoms were built using CHARMM. For
ligands with multiple possible tautomers (such as 1a9u), only
the single tautomer that allows a close favorable interaction
(between the NH3 group of Lys 53 and imidazole nitrogen)
inferred from the cocrystal structure was used.

The activation loop residues D168 and F169 form the
characteristic inactive “DFG-out conformation” in the struc-
tures of 1kv1 and 1kv2 and 1w83. The structures 1kv1 and
1kv2 are missing electron density for the rest of the flexible
residues 170-184 in the activation loop. Flexible loop
conformations for this missing electron density were built
using Modeler and the MODloop server (http://modbase.
compbio.ucsf.edu/modloop/modloop.html).51 For 1kv1 and
1kv2, several conformations of the activation loop were
considered, but the lowest-energy models similar to the DFG-
out conformation of 1w83 were selected. The all-atom
protein-ligand complexes were minimized for 200 steps in
vacuo, and this was taken as the experimental reference
conformation of all structures.

3.3. Rigid Receptor Docking (CDOCKER). In our rigid
receptor-docking model, a 1.0 Å grid is used to describe the
static protein conformation of the binding site, where the
interaction energies of 20 types of probe atoms are calculated
for every point on the grid. The 3D grid is calculated to
extend 8 Å in all directions from any atom in the ligand.
Following a simulated annealing conformational search of
the flexible ligand, the grid is removed and the all-atom
protein-ligand representation is minimized, fixing the
coordinates of the protein, using the standard all-atom
potential function with a distance-dependent dielectric (RDIE).
This interaction energy is taken as the score for the final
ligand pose. Other details of previous CDOCKER setups and
protocols have been published elsewhere.52-55 For each
given protein-ligand complex, 10 docking trials were
performed, composed of 1000 individual docking attempts
(100 random conformations × 10 random rotations) for a
total of 10 000 docking attempts per complex. Within each
docking trial, the interaction energy scores of the final ligand
poses are sorted and clustered to identify the “top five”
nonredundant clusters of docking poses. After these “top
five” docking poses are identified, then a short MD simula-
tion of the entire protein-ligand complex is performed for
each of the “top five” in order to more accurately predict
∆Gbinding. In these short MD simulations, the electrostatic
contribution to the solvation energy is approximated by using
a generalized Born implicit solvent potential energy term
(GBMV).56,57 For the “top five” docking poses, MD simula-
tions are performed using a 16 Å nonbonded cutoff and the
GBMV implicit solvent model. These MD simulations are
performed at 300 K using harmonic restraints on the CR

atoms of the protein backbone, starting with 500 (2 fs) MD
steps for equilibration. The harmonic restraints are then
released for an additional 1000 (2 fs) steps of production
MD, which is used to calculate the ensemble average
protein-ligand interaction energies. The first 50 steps are
skipped, and then ensemble average interaction energy
properties are calculated from 950 structures for the LIE2

model.
3.4. TAMD Flexible Receptor Docking. The TAMD

method uses an efficient Newton-Euler inverse mass opera-
tor algorithm for solving the equations of motion in internal
coordinates.58 Molecules are represented with a branched tree
structure of rigid body clusters connected by torsional hinges.
Torsional cross-terms are constructed from local molecular
fragments, using a soft-core potential to introduce implicit
bond and angle flexibility into the rigid geometry approxima-
tion. The use of the soft-core potential effectively removes
high-energy barriers on the IC potential energy surface and
facilitates more efficient sampling of conformational space.
Additional details about the TAMD method have been
published elsewhere.59

The flexible receptor docking method differs from the rigid
docking method in that it never uses a grid representation
of the protein. An overview of the flexible docking procedure
is shown in Figure 7. In the first step of the flexible receptor
docking procedure, random conformations of the ligand are
generated for a total of 200 ligand conformations. The next
step is to perform TAMD conformational sampling of the
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receptor in the absence of the ligand to generate a diverse
ensemble of 200 flexible receptor conformations. During this
conformation generation procedure, a 14 Å nonbonded cutoff
is used along with a RDIE and a soft-core potential. When
TAMD is used for simulated annealing, quite large temper-
atures can be effectively employed for rapid conformational
sampling, depending on which model of protein flexibility
is used. Models with fewer flexible degrees of freedom can
use larger temperatures for sampling without integrator
stability problems. For flexible model 2, heating is performed
from 2000 to 2500 K, while for flexible model 8, heating is
performed from 500 to 700 K and then the system is cooled
from 700 K down to 300 K. These protocols yield overall
protein rmsd’s that are in the range of 0.3-3.0 Å CR rmsd
from the starting receptor conformations.

In the next step, the 200 random flexible receptor
conformations are docked with 200 random flexible ligand
conformations. For each new random pair of flexible ligand
and receptor conformations, 1000 ligand rotations are
performed around a reference ligand’s center of mass, to
identify the optimal rotation conformation of the flexible
ligand in the flexible receptor conformation. For this search
for an optimal rotation in the binding site, a soft-core
potential and all-atom models are used for both the ligand
and the receptor. Next, the structure of the protein-ligand
complex is refined using TAMD simulated annealing, which
allows for simultaneous flexibility of the protein and ligand.
The heating and cooling cycle is carried out for all complexes
using 1000 steps of 2 fs TAMD, where the system is heated
from 500 to 700 K over 1000 steps and then cooled from
700 K back down to 300 K over 1000 steps. During this
simulated annealing cycle, significant rearrangements of both

the protein and ligand are possible. Although some com-
plexes do not move far from their starting structure because
they contain favorable protein-ligand interactions, other less
favorable complexes undergo significant conformational
rearrangements. For flexible protein model 2, changes
characterized by atom movements as large as 6-8 Å are
observed for both ligand and flexible protein side chains in
numerousexamples.ThefinalTAMDgeneratedprotein-ligand
complex structures are then minimized for 1000 steps using
the soft-core potential. Then, the soft-core potential is
removed and replaced with the standard potential function
with a distance-dependent dielectric (RDIE). Interaction
energies and potential energy components are calculated from
this final minimized protein-ligand complex and are used
to calculate the LIE1 score to energy-rank the TAMD
generated flexible receptor complexes. Similar to rigid
receptor docking, these LIE1 scores for the final flexible
protein-ligand complex conformation are sorted and clus-
tered to identify the “top five” nonredundant clusters of
docking poses. As for rigid receptor docking, then a short
MD simulation of the entire protein-ligand complex is
performed using the GBMV implicit solvent model for each
of the “top five” in order to calculate the potential energy
components for the LIE2 score.

3.5. RED for a Series of 227 Active Compounds. In
order to extend our study from the N ) 12 cross-dock, we
also considered the docking of 227 active compounds that
have IC50 binding data for human p38R reported in the
Binding Database (www.bindingdb.org).60 Approximate
binding free energies were calculated from IC50 data using
solution information and the relationship (Ki ) IC50(Km/(S
+ Km)). The covalent structure and initial low-energy 3D
conformations of each ligand were generated from smiles
strings using Marvin. Appropriate protonation states were
applied to ligands by calculating pKa’s for potential titratable
groups using both Marvin and the Web server SPARC.
Decoy molecules specific for p38R were taken from the
DUD, and the protonation states from DUD were used.37

All 227 ligands were docked to the ensemble of 12 receptor
conformations using both the rigid and flexible receptor-
docking model. For flexible receptor docking, flexible protein
model 2 was used with MD flexible receptor conformational
sampling in order to determine if MD sampling alone was
sufficient to achieve improvements over rigid docking.

4. Conclusions

Several models were constructed to represent the flexibility
of the binding site for p38R MAP kinase, which exhibits
significant binding site flexibility in ligand-bound cocrystal
structures. These flexible receptor models scaled from the
inclusion of (1) flexible side chains (model 1), (2) one or
more flexible backbone segments (models 2 through 7), and
(3) treatment of the entire protein as flexible (model 8). As
constructed, these models scale in the number of total protein
degrees of freedom that describe the conformational search
space. Models 2 and 3 demonstrate superior performance in
cross-docking accuracy because they describe the flexibility
of the system adequately with the fewest degrees of freedom.
We show that the fully flexible protein model 8 suffers from

Figure 7. Overview of the flexible receptor docking protocol.
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reduced docking accuracy. In fully flexible protein model 8,
the scoring function docking accuracy is diminished and
more “noisy” due to extensive binding site rearrangements
involving the majority of the ligand interacting residues.
While some of these conformational changes are native and
observed in crystal structures leading to docking successes,
other non-native rearrangements result in low-scoring non-
native ligand binding poses.

In a direct comparison of TAMD sampling to MD
sampling for these various models of protein flexibility,
TAMD sampling was found to be both more efficient and
more accurate. However, even using MD sampling, the
percentage of cross-docking success is significantly greater
with the flexible receptor models 2 and 3 than for the rigid
receptor models. This comparison demonstrates that the
flexible receptor models succeed in many difficult cases
where the rigid receptor model fails and that reasonable
“native-like” receptor conformations are sampled regardless
of the starting conformation. Using MD sampling and flexible
receptor model 2, we performed RED using the same 12
receptor conformations and 227 active compounds. The
comparison to experimental binding data showed that the
flexible receptor model showed improved agreement with
binding data and an improved ability to rank compounds. In
a comparison of each individual receptor, the flexible receptor
model also showed improved enrichment of true positives
in top-ranked compounds. The flexible receptor methodology
described in this paper is most applicable for proteins that
show strong induced fit effects.
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